液压缓冲器原理

液压缓冲器原理
液压缓冲器原理

油压缓冲器讲义

一.油压缓冲器工作原理

二.油压缓冲器的应用场合及作用

应用于数控机床、自动化设备、铁路车辆、起重机、气缸、传送带、包装设备、医疗设备、机器人、铸造设备、注塑机、中空机等。

作用:消除震动和碰撞破坏等冲击,减少噪音,加速机械动作频率,延长机械寿命。

三.目前生产油压缓冲器的企业

美国ACE中国工厂、德国ITT中国工厂、台湾希捷克中国工厂、台湾亚德克、

日本KYB中国工厂以及分布在广东、浙江、江苏、山东的很多工厂。

四.目前选用的密封品牌

美系、日系、韩系、台系企业基本采用以阪上及NOK密封为基础的技术,德

系主要用B+S、Parker,但从走访企业情况来看,绝大部分企业在用阪上密封或仿阪上密封,这些企业无论是用国产密封还是用进口密封,基本都知道阪上密封在油研缓冲器行业的应用。

另外在日本,100%的缓冲器企业都选用阪上密封,如SMC/KYB/CKD/小金井KOGANEI。

五.目前各企业选用密封材料及对比分析

NBR材料:以阪上及国产品牌为主PU材料:以NOK、Parker为主

阪上推荐用NBR材料原因如下:

1.PU材料的低温性能不好;

2.刚装配或做实验时,会感觉PU密封比NBR密封的密封效果好,但长期使用后,PU材料会产生很大的

变形,导致漏油;

3.由于油压缓冲器体积小,PU材料密封的装配性不如NBR 。

六.目前使用不同品牌密封的寿命对比(以使用占多数的NBR材料为例)使用国产或台湾产NBR密封,缓冲器寿命10万次—80万次

使用阪上NMY系列密封,缓冲器寿命300万次—500万次

使用阪上NYH单道杆封,缓冲器寿命500万次—800万次

使用阪上RDH防尘+NYH杆封,缓冲器寿命1000万次以上

液压转向器的工作原理

1 液压转向器的工作原理及运用简介 1.1 液压转向器简介 液压转向器:即液压动力式转向器。转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。它是转向系中最重要的部件。它的作用是:增大转向盘传到转向传动机构的力和改变力的传递方向。 液压转向器是由随动转阀和一幅摆线转定子副组成的一种摆线转阀式全液压转向器。它与供油泵、溢流阀(或分流阀)、转向油缸及其它连接附件组成的全液压转向系统,广泛应用于农业机械、船业机械、园林机械、道路养护机械、林业机械、工程机械和矿山机械等低速重载车辆上。驾驶人员通过它可以用较小的操纵力实现较大的转向力控制,并且性能安全、可靠,操纵轻便、灵活。开心型:转向器处于中位(不转向)时,供油泵与油箱相通。开心型转向系统中使用的是定量液压泵。闭心型转向器中位处于断路状态(闭芯),即当转向器不工作时,液压油被转向器截止, 转向器入口具有较高的压力。闭芯型转向系统中使用的是压力补偿变量泵。负载传感型转向器能够传递负载信号到优先阀,通过优先阀优先控制转向系统所需流量。根据压力传感信号的控制方式,分为动态传感型和静态传感型。负载回路反应型:在转向器处于中位即驾驶员没有进行车辆转向操作的时候,转向油缸两侧直接连接到摆线副上,方向盘上可以感受到转向油缸上

受到的外力。无反应型:在转向器处于中位即驾驶员没有进行车辆转向操作的时候,两油缸截止,方向盘上不能感受转向油缸上受到的外力。

1.2 液压转向器的工作原理 液压转向器:即液压动力式转向器。转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。它是转向系中最重要的部件。它的作用是:增大转向盘传到转向传动机构的力和改变力的传递方向。液压转向器是由随动转阀和一幅摆线转定子副组成的一种摆线转阀式全液压转向器。它与供油泵、溢流阀(或分流阀)、转向油缸及其它连接附件组成的全液压转向系统,广泛应用于农业机械、船业机械、园林机械、道路养护机械、林业机械、工程机械和矿山机械等低速重载车辆上。驾驶人员通过它可以用较小的操纵力实现较大的转向力控制,并且性能安全、可靠,操纵轻便、灵活。 1.3 液压转向器的分类 转向器按结构形式可以分为多种类型。目前较为常用的有齿轮齿条式、蜗杆曲柄指销式、循环球-齿条齿扇式、循环球曲柄指销式、蜗杆滚轮式等。如果按助力形式,又可分为机械式(无助力)和动力式(有助力)。其中动力转向器又可以分为气压动力式、液压动力式、电助助力式、电液助力式等种类。 (1)齿轮齿条转向器 齿轮齿条式转向器收是一种最常见的转向器。其基本结构是一对相互啮合的小齿轮和齿条。转向轴带动小齿轮转动时,齿条变作直线运动。又是,烤翅调制解来带动横拉杆,就可以转动转向器。所以,这是一种最简单的转向器。它的优点是结构简单,成本低廉,转向灵活,体积小,可以直接带动横拉杆。在汽车上得到广泛应用。 (2)蜗杆曲柄指销式转向器 蜗杆曲柄指销式转向器适宜蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支撑在曲柄上,曲柄与转向器摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自传,一

调速器的工作原理

调速器的工作原理 液压调速器在感应元件和油量调节机构之间加入一个液压放大元件(液压伺服器),使感应元件的输出信号通过放大元件再传到油量调节机构上去,因此也叫间接作用式调速器。液压放大元件有放大兼执行作用,主要由控制和执行两个部分组成。一、无反馈的液压调速器其工作原理如下:当负荷减小时,由曲轴带动的驱动轴转速升高,飞球的离心力增加,推动速度杆右移。于是,摇杆以A点为中心逆时针转动,滑阀右移,压力油进入伺服器油缸的右部空间。与此同时,油缸的左部空间通过油孔与低压油路相通,其中的油被泄放。在压差的作用下,伺服活塞带动喷油泵齿条左移,以减少供油量。当转速恢复到原来数值时,滑阀也回到中央位置,调节过程结束。当负荷增加,转速降低时,调速过程按相反方向进行。从上述分析可知,调速器飞球所产生的离心力仅用来推动滑阀,因而飞球的重量尺寸就可以做得较小。而作为放大器的液压伺服器的作用力,则可根据需要,选择不同尺寸的伺服活塞和不同滑油压力予以放大。但是,在这种调速器中,因为感应元件直接驱动滑阀,无论它朝哪个方向往动,均难准确地回到原来位置而关闭油孔。这样就使柴油机转速不稳定,而产生严重的波动。为了使调速器能稳定调节,在调速器中还要加入一个装置,其作用是在伺服活塞移动的同时对滑阀产生一个反作用,使其向平衡的位置方向移动,减少柴油机转速波动的可能性。这种装置称为反馈机构。二、具有刚性反馈机构的液压调速器它的构造与上述无反馈液压调速器基本相同,只有杠杆义AC的上端A不是装在固定的铰链上,而是与伺服活塞的活塞杆相连。这一改变使感应元件、液压放大元件和油量调节机构之间的关系发生如下的变化。当负荷减小时,发动机转速升高,飞球向外张开带动速度杆向右移动。此时伺服活塞尚未动作,因此反馈杠杆AC的上端点A暂时作为固定点,杠杆AC绕A反时针转动,带动滑阀向右移动,把控制孔打开,高压油便进入动力缸的右腔,左腔与低压油路相通。这样高压油便推动伺服活塞带动喷油调节杆向左移动,并按照新的负荷而减少燃油供给量。在伺服活塞左移的同时,杠杆AC绕C点向左摆动与B点相连接的滑阀也向左移动,从而使滑阀向相反的方向运动。这样在伺服活塞移动时能对滑阀运动产生了相反作用的杠杆装置称为刚性反馈系统。当调节过程终了时,滑阀回到了起始位置,把控制油孔关闭,切断通往伺服油缸的油路。这时伺服活塞就停止运动,喷油泵调节杆随之移动到一个新的平衡位置,发动机就在相应的新负荷下工作。因此,相应于发动机不同的负荷,调速器就具有不同的稳定转速。因为发动机负荷变化时需要改变供油量,所以A点位置随负荷而变。与滑阀相连接的B点在任何稳定工况下均应处于原来的位置,与负荷无关。这样C点的位置必须配合A点作相应的变动,因而导致了转速的变化。假如当负荷减小时,调速过程结束后,滑阀回到中间原来位置时,伺服活塞处于减少了供油量位置,使A点偏左,C点偏右,因C 点偏右,弹簧进一步受压,只有在稍高的转速下运转才能使飞球的离心力与弹簧压力平衡。这说明负荷减小时稳定运转后,柴油机的转速比原来稍有升高。同理,当负荷增加时,稳定运转后,柴油机的转速比原来稍有降低。具有刚性反馈的液压调速器,可以保证调速过程具有稳定的工作特性,但负荷改变后,柴油机转速发生变化,稳定调速率d不能为零。如果要求负荷变化时即要调速过程稳定,又能保持发动机转速恒定不变(即入就必须采用另一种带有弹性反馈系统的液压调运器。三、具有弹性反馈的液压调速器它实际上是在"刚性反馈"装置中加入一个弹性环节--缓冲器和弹簧。弹簧的一端同固定的支点相连,而另一端则与缓冲器的活塞相连。缓冲器的油缸同伺服器的活塞成刚体联接。当发动机负荷减小时,转速增大,飞球的离心力增加。同样,滑阀右移,而伺服活塞则左移,减少喷油泵的供油量。当活塞的运动速度很高时,缓冲器和缓冲活塞就象一个刚体一样地运动。随着伺服活塞5的左移,缓冲器和AC杠杆上的A点也向左移动。这一过程和上述刚性反馈系统的调速器完全相同。但当调速过程接近终了时,滑阀已回到原来的位置,遮住了通往伺服油缸的

液压机的工作原理共篇.doc

★液压机的工作原理_共10篇 范文一:液压机工作原理液压机工作原理 【目的和要求】 认识液压机的工作原理,加深对帕斯卡定律的理解。 【仪器和器材】 大小不同的注射器各一个,支架,砝码若干。 【实验方法】 用大小不同的注射器按图1.29-1装置起来,在注射器里注入适量的水(不宜太多,以防活塞脱出)。先在大活塞上放一重物,大活塞被压下去,小活塞被顶上来。然后在小活塞上放一个明显轻一些的重物,就有可能阻止小活塞上升,使活塞平衡,甚至可以看到大活塞上的重物竟被举了起来。 观察大小活塞上力的大小,得知加在小活塞上一个不大的力,通过密闭液体,在大活塞上就能产生一个很大的力,从而加深对帕斯卡定律的认识,掌握液压机的工作原理。 【注意事项】 图1.29-1实验对掌握液压机的原理,有较强的直观性,做好这一实验必须注意以下几点: 注射器的选择:最好选用容量较大的灌肠用(或兽用)注射器,两只的容量相差较大为好。 注射器的润滑:为了减小摩擦,提高演示效果,注射器内壁可涂少许牙膏,并多次来回往复拉动。灌水时筒内不要留有空气。 活塞上端的面积较小,凸凹不平,为了使活塞顶端稳定地托住重物,可分别在活塞顶端用环氧树脂(或502等其他快干胶)粘一圆片或套上一圆铁片。砝

码要放在正中间。注射器要竖直安装,不要倾斜。 在演示了“小力胜大力”的基础上,可进一步进行半定量演示,研究大小砝码质量之比(应包括活塞质量)和大小活塞的截面积之比。注射器的截面积S,可以用刻度尺量出注射器上全部刻度线之间的长度L,去除注射器的容积V,得出即S=V/L。也可以利用游标卡尺或刻度尺及内卡钳测出注射器的内径d,根据公式S=πd2/4算出。考虑到活塞与筒壁间有摩擦,选取重物时,应使大小砝码质量之比稍少于两注射器活塞截面之比,处理得当可以发现两者基本上相同,从而归纳得出液压机的原理。 【参考资料】 图1.29-3所示的装置也可演示液压机原理。取一个较大的透明塑料瓶或玻璃瓶(去底)用胶管与一玻璃管(上接漏斗)相连,倒入染色水,两容器水面相平(原理后面讲)。将煤油分别慢慢注入瓶和管中,煤油都浮于水面,只有当玻璃管中煤油柱的高度与瓶中煤油层的厚度相等时,两边的水面又相平。这表明细管中少量的煤油能够顶起瓶中大量的煤油,同样说明了液压机原理。 编者提示:本小实验可辅以“力学”部分的物理实验教学,以此培养和提高学生的实验能力和素养。 2003-06-01选自:《初中物理演示实验》 范文二:液压机的工作原理液压机的工作原理 液压机简介: 也压机由主机及控制机构两大部分组成。液压机主机部分包括机身、主缸、顶出缸及充液装置等。动力机构由油箱、高压泵、低压控制系统、电动机及各种压力阀和方向阀等组成。动力机构在电气装置的控制下,通过泵和油缸及各种液

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

液压助力转向系统工作原理

液压助力转向系统工作原理、故障诊断与排除 排除, 原理, 液压, 系统, 故障诊断 于树彬,刘建勋(济南鲍德汽车运输有限公司,山东济南 250101) 摘要:介绍了汽车液压助力转向系统的工作原理,并就助力系统易出现的转向沉重、前轮摆振、转向轻重不同、跑偏等故障的产生原因及排除方法进行了阐述。 1 前言 目前,已有许多汽车的转向系统带有液压助力,它使驾驶车辆转向时轻便灵活,更利于提高车辆的行驶安全性。为了使驾修人员更好地了解液压助力转向系统的性能,下面介绍其工作原理、故障诊断与排除方法。 2 液压助力转向系统的工作原理 液压助力转向系统主要由机械部分和液压助力装置两部分组成。机械部分由转向传动副、转向摇臂、纵拉杆总成、横拉杆总成、转向节臂、转向主销、转向节主销套、转向节压力轴承及转向节等组成。液压助力装置部分由液压助力器、贮油箱、转向油泵及管路等组成。液压助力转向按液流形式分为常流式和常压式两种,按分配阀的形式又可分为滑阀式和转阀两种。现以液压常流式转向为例介绍液压助力转向系统的工作原理。 如图1(a)所示,助力转向系统主要由油泵3、控制阀(滑阀7和阀体9)、螺杆螺母式转向器(11、12)及助力缸15等组成。 滑阀7同转向螺杆11连为一体,两端设有两个止推轴承。由于滑阀7的长度比阀体9的宽度稍大,所以两个止推轴承端面与阀体端面之间有轴向间隙h,使滑阀连同转向螺杆一起能在阀体内做轴向移动。回位弹簧10有一定的

预紧力,将两个反作用柱塞顶向阀体两端,滑阀两端的挡圈正好卡在两个反作用柱塞的外端,使滑阀在不转向时一直处于阀体的中间位置。滑阀上有两道油槽C、B,阀体的相应配合面上有三道油槽A、D、E。油泵3由发动机通过带或齿轮来驱动,压力油经油管流向控制阀,再经控制阀流向动力缸L、R腔。 汽车直线行驶时,如图1(a)所示,滑阀7在回位弹簧10和反作用阀8的作用下处于中间位置,动力缸15两端均与回油孔道连通,油泵输出的油液通过进油道量孔4进入阀体9的环槽A,然后分成两路:一路通过环槽B和D,另一路流过环槽C和E。由于滑阀7在中间位置,两路油液经回油孔道流回油箱,整个系统内油路相通,油压处于低压状态。

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

减震缓冲技术

减震缓冲技术发展综述 姓名:尚兴超 学号:511011503 指导老师:梁医 一.概述 机械振动、冲击问题广泛存在于工程机械[1]、汽车机械、建筑机械、船舶机械、航空航天、武器领域[2]等,减振器和缓冲器主要是用于减小或削弱振动或冲击对设备与人员影响的一个部件。它起到衰减和吸收振动的作用。使得某些设备及人员免受不良振动的影响,起到保护设备及人员正常工作与安全的作用,因此它广泛应用于各种机床、汽车、摩托车、火车、轮船、飞机及坦克等装备上。 振动问题的基本方程为: ()e sin n t d x A t ζωωφ-=+ 从方程中可以看出,系统振动幅值的衰减与阻尼系数大小ζ有关[3],也就是说,震动产生的能量将会被阻尼所吸收。减震器和缓冲器就是基于此原理而设计的。 二.发展历史 世界上第一个有记载、比较简单的减震器是1897年由两个姓吉明的人发明的。他们把橡胶块与叶片弹簧的端部相连,当悬架被完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓, 产生止动。1898年,第一个实用的减震器 由一个法国人特鲁芬特研制成功并被安装到摩托赛车上。他将前叉悬置于弹簧上,同时与一个摩擦阻尼件相连,以防止摩托车的振颤。1899年,美国汽车爱好者爱德华特·哈德福特将前者应用于汽车上。后来,又经历了加布里埃尔减震器、平衡弹簧式减震器和1909年发明的空气弹簧减震器。空气弹簧减震器类似于充气轮胎的工作原理,它的主要缺点是常常产生漏气。 1908年法国人霍迪立设计了第一个实用的液压减震器。其原理是液流通过小孔时产生的阻尼现象。20世纪60年代,通用公司麦迪逊工程师研制了把螺旋弹簧、液压减震器和上悬架臂杆组成的麦迪逊减震器,其体积比较小,得到了广泛的应用[4]。 三.研究现状 液压缓冲器是目前应用最为广泛的减震缓冲装置,其结构简单,运行平稳。

对于液压油缸的基本认识

对于液压油缸的基本认识 液压油缸是将液压能转变为机械能的、做直线往复运动(摆动缸做摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。 1、液压缸的工作原理 液压缸一般有两个油腔,每个油腔中都通有液压油,液压缸工作依靠帕斯卡原理(静压传递原理:在密闭容器内,施加于静止液体上的压力将以等值同时传递到液体各点)。当液压缸两腔通有不同压力的液压油时,其活塞两个受压面承受的液体压力总和(矢量和)输出一个力,这个力克服负载力使液压缸活塞杆伸出或缩回。 图一液压缸工作原理 以图一为例,当液压缸左腔通高压油时,活塞左侧受压力,油腔油液通油箱,活塞右侧不受压力,则此时活塞左侧所受压力与负载相等(油压由液体压缩提供,即负载力提供压力)。用公式表达如下 式中 p————液压缸左腔油压; 1 A————液压缸活塞左侧受压面积; 1 p————液压缸油腔油压; 2 A————液压缸活塞右侧受压面积; 1 F————负载力 2、液压缸的常见结构 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

图二液压缸结构图 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。 3、液压缸的分类 液压缸分为单作用液压缸、双作用液压缸、组合液压缸和摆动液压缸。 单作用缸又分为柱塞式液压缸、单活塞杆液压缸、双活塞杆液压缸和伸缩液压缸。 双作用液压缸分为单活塞杆液压缸、双活塞杆液压缸、伸缩液压缸。 组合液压缸分为弹簧复位液压缸、串联液压缸、增压缸、齿条传动液压缸。 摆动液压缸:输出轴直接输出扭矩,其往复回转的角度小于360°,也称摆动马达。 表1 液压缸的分类 4、液压缸的应用 液压传动在各类机械行业中的应用非常广泛,甚至达到“非液压 不可实现”的地步,常见的应用范围有: A、工程机械:挖掘机、装载机、推土机、压路机、铲运机; B、超重运输机械:汽车吊、港口龙门吊、装载机械、皮带运输机; C、矿山机械:凿石机、开掘机、开采机、破碎机、提升机、液压

汽车转向电动机工作原理及转向系统概述

汽车转向电动机工作原理及转向系统概述 汽车上配置的转向系统,大致可以分为三类:(1)一种是机械式液压动力转向系统;(2)一种是电子液压助力转向系统;(3)另外一种电动助力转向系统。 一、电动助力转向系统(EPS) 1、英文全称是Electronic Power Steering,简称EPS,它利用电动机产生的动力协助驾车者进行动力转向。EPS的构成,不同的车尽管结构部件不一样,但大体是雷同。一般是由转矩(转向)传感器、电子控制单元、电动机、减速器、机械转向器、以及畜电池电源所构成。 2、主要工作原理:汽车在转向时,转矩(转向)传感器会“感觉”到转向盘的力矩和拟转动的方向,这些信号会通过数据总线发给电子控制单元,电控单元会根据传动力矩、拟转的方向等数据信号,向电动机控制器发出动作指令,从而电动机就会根据具体的需要输出相应大小的转动力矩,从而产生了助力转向。如果不转向,则本套系统就不工作,处于standby(休眠)状态等待调用。由于电动电动助力转向的工作特性,你会感觉到开这样的车,方向感更好,高速时更稳,俗话说方向不发飘。又由于它不转向时不工作,所以,也多少程度上节省了能源。一般高档轿车使用这样的助力转向系统的比较多。

由于电动助力转向系统只需电力不用液压,与机械式液压动力转向系统相比较省略了许多元件。没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,零件数目少,布置方便,重量轻。 而且无“寄生损失”和液体泄漏损失。因此电动助力转向系统在各种行驶条件下均可节能80%左右,提高了汽车的运行性能。因此在近年得到迅速的推广,也是今后助力转向系统的发展方向。 有一些汽车冠以电动助力转向,其实不是真正意义上的纯电动的助力转向,它还需要液压系统,只不过由电动机供油。传统的液压动力转向系统的油泵由发动机驱动。 为保证汽车原地转向或者低速转向时的轻便性,油泵的排量是以发动机怠速时的流量来确定的。而汽车行驶中大部分时间处于高于怠速的速度和直线行驶状态,只能将油泵输出的油液大部分经控制阀回流到储油罐,造成很大的“寄生损失”。 为了减少此类损失采用了电动机驱动油泵,当汽车直线行驶时电动机低速运转,汽车转向时电动机高速运转,通过控制电动机的转速调节油泵的流量和压力,减少“寄生损失”。 二、机械式液压动力转向系统

液压缓冲器原理

油压缓冲器讲义 一.油压缓冲器工作原理 二.油压缓冲器的应用场合及作用 应用于数控机床、自动化设备、铁路车辆、起重机、气缸、传送带、包装设备、医疗设备、机器人、铸造设备、注塑机、中空机等。 作用:消除震动和碰撞破坏等冲击,减少噪音,加速机械动作频率,延长机械寿命。 三.目前生产油压缓冲器的企业 美国ACE中国工厂、德国ITT中国工厂、台湾希捷克中国工厂、台湾亚德克、 日本KYB中国工厂以及分布在广东、浙江、江苏、山东的很多工厂。 四.目前选用的密封品牌 美系、日系、韩系、台系企业基本采用以阪上及NOK密封为基础的技术,德 系主要用B+S、Parker,但从走访企业情况来看,绝大部分企业在用阪上密封或仿阪上密封,这些企业无论是用国产密封还是用进口密封,基本都知道阪上密封在油研缓冲器行业的应用。 另外在日本,100%的缓冲器企业都选用阪上密封,如SMC/KYB/CKD/小金井KOGANEI。 五.目前各企业选用密封材料及对比分析 NBR材料:以阪上及国产品牌为主PU材料:以NOK、Parker为主 阪上推荐用NBR材料原因如下: 1.PU材料的低温性能不好; 2.刚装配或做实验时,会感觉PU密封比NBR密封的密封效果好,但长期使用后,PU材料会产生很大的

变形,导致漏油; 3.由于油压缓冲器体积小,PU材料密封的装配性不如NBR 。 六.目前使用不同品牌密封的寿命对比(以使用占多数的NBR材料为例)使用国产或台湾产NBR密封,缓冲器寿命10万次—80万次 使用阪上NMY系列密封,缓冲器寿命300万次—500万次 使用阪上NYH单道杆封,缓冲器寿命500万次—800万次 使用阪上RDH防尘+NYH杆封,缓冲器寿命1000万次以上

升降机液压缸系统工作原理

升降机液压缸系统工作原理 作为物流机械被广泛使用的液压升降机,其结构原理和工作特点值得研究。液压升降机携带物品和升降机台工作件上升,液压缸提供动力,即液压缸输出势能可以转化成能源,并进行工作台工件的下降,其潜在的能量将被释放。 这种潜力不能有效地回收利用,将导致能源浪费。这种能量废物是不小的电梯,但负载显着提升高度所需的频率,工作模式是非常令人印象深刻答:对于这种模型,储能装置在液压系统的设计表下降,以释放潜在的能量储存起来,并在用于消费减少徒劳上升的,更高的能量利润效率,并在同一时间,以达到系统运行平稳,安全性,可靠性工作目的。在本文中,实现能量回收的液压升降机比较蓄能器液压系统的变化,分析和恢复潜力到设计中。用两个液压缸补充能量回收概述可以辅助缸回收定量方法液压系统如所示,而现在它的工作原理,过程和特性进行了分析和讨论。 该系统由主,辅液压缸,泵站和控制阀。表是主缸活塞杆增加或减少使用,根据工件放置在表未显示。增加重量的两个,两缸有杆腔的辅助缸的活塞杆使用辅助缸液压能量回收系统单路连接管,管道连接到液压控制,配有两个相反的集阀门,从两缸有杆腔的控制电路,;缸系列;三换向阀用于控制两缸的操作和反向线的方向,如使表玫瑰,阀设置的权位,泵排出的液压油通过单向阀,控制阀和阀右室副油箱杆的燃料供应,先导式止回阀打开后,副油箱无杆腔的液压油通过流体控制单,流阀进入主缸无杆腔主缸有杆腔在液压油阀的权利,两通阀右位在这种情况下,两三个单向阀在左边,在液压阀年液压和气动力的作用,在右位和节流阀流回油箱,从离开辅助缸活塞杆驾驶的体重下降,而主缸活塞杆带动工作台上升。这个过程就相当于与重新潜力,通过表。如替补下降阀门的左侧位置,液压泵出院后单向液压油阀,控制阀和阀位离开主缸杆腔油,操作员控制止回阀被打开,使主缸杆腔液机油压力先导式单向阀,流入副油箱无杆腔离开辅助缸有杆腔的液压油通过阀。两两通阀,右位在这一点上,两三个单向阀右位和节流阀流回油箱,所以主缸活活塞杆带动工作台下降,而辅助缸活塞杆驱动体重上升。 其工作原理是:在下降工作平台进行工作重速度太快,一侧的阀门控制流体压力比低到足以克服弹簧力,阀芯位是留下来切断主油箱或辅助帮助通过油缸有杆腔和油箱,溢流阀背压阀回油箱,增加回报流体阻力,减少液压缸保护作用的速度。当需求急剧下降,电气,液压阀阀电磁通电,利用电磁力阀门核心右位,切换回沥青。为了便于制造和安装,应使用同规格主缸和辅助帮助缸重量重量可调,其重量应大于表表负载的重量总和的一半。两个液压缸补充能量回收的方法,以提高设立一个辅助的液压缸和一个更大的重量,结构的升降机趋势复杂和繁琐,生产成本,液压系统的结构也更复杂的应用是有限的。累加器来实现能量回收为了克服这些缺点,应用范围不断扩大,设计使用累加器液压系统的恢复潜力。原有系统的能量回收理由:电梯下降,使液体在液压缸下腔行并存储到累加器的机械势能转换成液压能;工作台再次上升到液压泵油相当于系统采用液压系统蓄能器回收潜力设置压力罐,减少液压泵,口油压力差的电机,降低了功耗再次上升液压泵以节省能源。提起唯一的运动,在垂直方向,减少可以利用重力的优势来实现,以简化液压缸的结构,降低制造成本,使用单作用气缸,平行的两缸,液压缸的长度缩短,使这台机器设计紧凑,易于安装,使用两个伸缩液压缸;部系统采用限压变量叶片泵和速度控制阀组成的体积-节流调速回路来调整升降机液压缸速度,以提高效率;两个四通电磁阀控制液压缸侧的运动由负载可变排量泵的工作压力溢流阀用于限制最大工作压力的安全阀系统的系统;分流-集流阀两个升降机液压缸同

缓冲器

缓冲器 1、定义: 缓冲寄存器又称缓冲器,它分输入缓冲器和输出缓冲器两种。前者的作用是将外设送来的数据暂时存放,以便处理器将它取走;后者的作用是用来暂时存放处理器送往外设的数据。由于缓冲器接在数据总线上,故必须具有三态输出功能。 2、专用语 接口集成电路专用语 最基本线路构成的门电路存在着抗干扰性能差和不对称等缺点。为了克服这些缺点,可以在输出或输入端附加反相器作为缓冲级;也可以输出或输入端同时都加反相器作为缓冲级。这样组成的门电路称为带缓冲器的门电路。 带缓冲输出的门电路输出端都是1个反相器,输出驱动能力仅由该输出级的管子特性决定,与各输入端所处逻辑状态无关。而不带缓冲器的门电路其输出驱动能力与输入状态有关。另一方面。带缓冲器的门电路的转移特性至少是由3级转移特性相乘的结果,因此转换区域窄,形状接近理想矩形,并且不随输入使用端数的情况而变化、加缓冲器的门电路,抗干扰性能提高10%电源电压。此外,带缓冲器的门电路还有输出波形对称、交流电压增益大、带宽窄、输入电容比较小等优点。不过,由于附加了缓冲级,也带来了一些缺点。例如传输延迟时间加大,因此,带缓冲器的门电路适宜用在高速电路系统中。 3、基本原理 在CPU的设计中,一般输出线的直流负载能力可以驱动一个TTL负载,而在连接中,CPU的一根地址线或数据线,可能连接多个存储器芯片,但存储器芯片都为MOS电路,主要是电容负载,直流负载远小于TTL负载。故小型系统中,CPU可与存储器直接相连,在大型系统中就需要加缓冲器。 任何程序或数据要为CPU所使用,必须先放到主存储器(内存)中,即CPU只与主

存交换数据,所以主存的速度在很大程度上决定了系统的运行速度。程序在运行期间,在一个较短的时间间隔内,由程序产生的地址往往集中在存储器的一个很小范围的地址空间内。指令地址本来就是连续分布的,再加上循环程序段和子程序段要多次重复执行,因此对这些地址中的内容的访问就自然的具有时间集中分布的倾向。数据分布的集中倾向不如程序这么明显,但对数组的存储和访问以及工作单元的选择可以使存储器地址相对地集中。这种对局部范围的存储器地址频繁访问,而对此范围外的地址访问甚少的现象被称为程序访问的局部化(Locality of Reference)性质。由此性质可知,在这个局部范围内被访问的信息集合随时间的变化是很缓慢的,如果把在一段时间内一定地址范围被频繁访问的信息集合成批地从主存中读到一个能高速存取的小容量存储器中存放起来,供程序在这段时间内随时采用而减少或不再去访问速度较慢的主存,就可以加快程序的运行速度。这个介于CPU和主存之间的高速小容量存储器就称之为高速缓冲存储器,简称Cache。不难看出,程序访问的局部化性质是Cache得以实现的原理基础。同理,构造磁盘高速缓冲存储器(简称磁盘Cache),也将提高系统的整体运行速度CPU一般设有一级缓存(L1Cache)和二级缓存(L2Cache)。一级缓存是由CPU制造商直接做在CPU内部的,其速度极快,但容量较小,一般只有十几K。PⅡ以前的PC一般都是将二级缓存做在主板上,并且可以人为升级,其容量从256KB 到1MB不等,而PⅡCPU则采用了全新的封装方式,把CPU内核与二级缓存一起封装在一只金属盒内,并且不可以升级。二级缓存一般比一级缓存大一个数量级以上,另外,在CPU中,已经出现了带有三级缓存的情况。 4、作用及特点 作用 汽车缓冲器是通过利用液压弹簧减震功能,当汽车瞬间相撞时,缓冲器就起到了缓冲作用从而减轻两车相撞后的破坏程度,提高车与人的安全性。一般来说,对于新车,减震缓冲器起到的是使驾驶更加舒适的作用;而当减震弹簧用久之后,往往因缺乏弹性而出现疲软现象,反应不灵敏,很容易引发事故。 特点 1、采用高档轿车的缓冲原理,明显提高车辆减震性能。 2、降低由减震器受损和老化而产生的噪音。 3、可减轻长途驾驶后的疲劳感。 4、有效解决减震器弹簧疲软问题,恢复减震器性能。

电压关断型缓冲器(RCD Snubber)的基本类型及其工作原理

本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。 RCD Snubber电路的基本类型及其工作原理 RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。 为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。 图1 常用的RCD Snubber电路 抑制电压上升率模式 对于功率MOSFET来讲,其电流下降的速度较GTR或IGBT快得多,其关断损耗的数值要比GTR或IGBT小,但是这个损耗对整个小功率的电源系统也是不容忽视的。因此提出了抑制电压上升率的RCD Snubber。 如图1所示,在开关管关断瞬间,反激变压器的漏感电流需要按原初始方向继续流动,该电流将分成两路:一路在逐渐关断的开关管继续流动;另一路通过Snubber电路的二极管Ds向电容Cs充电。由于Cs上的电压不能突变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了Snubber电路。如果Cs足够大,开关管电压的上升及其电流的下降所形成的交叉区域将会进一步降低,可以进一步降低开关管的关断损耗。但是Cs的取值也不能过大,因为在每一个关断期间的起始点(也就是开通期间的结束点),Cs必须放尽电荷以对电压上升率进行有效的抑制;而在关断期间的结束点,Cs虽然能降低开关管电压的上升时间,但其端电压最终会达到()(为忽略漏感时的电压尖峰,为次级对初级的反射电压)。 关管导通的瞬间,Cs将通过电阻Rs与M所形成的回路来放电。Snubber的放电电流将流过开关管,会产生电流突波,并且如果某个时刻占空比变窄,电容将不能放尽电荷而不能达到降低关断损耗的目的。 可见,Snubber电路仅在开关过渡瞬间工作,降低了开关管的损耗,提高了电路的可靠性,电压上升率的减慢也降低了高频电磁干扰。 电压钳位模式 RCD Clamp不同于Snubber模式,其目的是限制开关管关断瞬间其两端的最大尖峰电压,而开关管本身的损耗基本不变。在工作原理上电压钳位模式RC的放电时间常数比抑制电压上升率模式更长。 以图2为例分析电路的工作过程,并且使用工作于反激式变换器的变压器模型。反激式变压器主要由理想变压器、激磁电感与漏感组成。

液压机机工作原理

编辑本段(一)组成 四柱液压机由主机及控制机构两大部分组成。液压机主机部分包括液压缸、横梁、立柱及充液装置等。动力机构由油箱、高压泵、控制系统、电动机、压力阀、方向阀等组成。[1] (二)用途 该液压机适用于可塑性材料的压制工艺。如粉末制品成型、塑 料制品成型、冷(热)挤压金属成型、薄板拉伸以及横压、弯压、翻透、校正等工艺。 四柱液压机具有独立的动力机构和电器系统,采用按钮集中控制,可实现调整、手动及半自动三种操作方式。 (三)特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 液压机简介 (又名:油压机)利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机

要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。 工作原理 四柱液压机[2]的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5MP)用齿轮泵;中压(油压小于6.3MP)用叶片泵;高压(油压小于32.0MP)用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 安全操作 1、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 2、作业前,应先清理模具上的各种杂物,擦净液压机杆上任何污物。 3、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 4、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好后模具再试压。 5、液压机工作前首先启动设备空转5分钟,同时检查油箱油位是否足够、油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。深圳油压机 TM系列引 6、开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 7、调整工作压力,但不应超过设备额定压力的90%,试压一件工件,检验合格后再生产。 8、对于不同的液压机型材及工件,压装、校正时,应随时调整压机的工作压力和施压、保压次数与时间,并保证不损坏模具和工件。 9、机体压板上下滑动时,严禁将手和头部伸进压板、模具工作部位。 10、严禁在施压同时,对工作进行敲击、拉伸、焊割、压弯、扭曲等作业。 11、液压机压机周边不得抽烟、焊割、动火,不得存放易燃、易爆物品。做好防火措施。 12、液压机工作完毕,应切断电源、将压机液压杆擦试干净,加好润滑油,将模具、工件清理干净,摆放整齐 维护保养

液压助力转向的工作原理

液压助力转向的工作原理: 如图1(a)所示,助力转向系统主要由油泵3、控制阀(滑阀7和阀体9)、螺杆螺母式转向器(11、12)及助力缸15等组成。 滑阀7同转向螺杆11连为一体,两端设有两个止推轴承。由于滑阀7的长度比阀体9的宽度稍大,所以两个止推轴承端面与阀体端面之间有轴向间隙h,使滑阀连同转向螺杆一起能在阀体内做轴向移动。回位弹簧10有一定的预紧力,将两个反作用柱塞顶向阀体两端,滑阀两端的挡圈正好卡在两个反作用柱塞的外端,使滑阀在不转向时一直处于阀体的中间位置。滑阀上有两道油槽C、B,阀体的相应配合面上有三道油槽A、D、E。油泵3由发动机通过带或齿轮来驱动,压力油经油管流向控制阀,再经控制阀流向动力缸L、R腔。 汽车直线行驶时,如图1(a)所示,滑阀7在回位弹簧10和反作用阀8的作用下处于中间位置,动力缸15两端均与回油孔道连通,油泵输出的油液通过进油道量孔4进入阀体9的环槽A,然后分成两路:一路通过环槽B和D,另一路流过环槽C和E。由于滑阀7在中间位置,两路油液经回油孔道流回油箱,整个系统内油路相通,

油压处于低压状态。 图1汽车液压助力转向系统工作原理 1 油箱 2 溢流阀 3 齿轮油泵 4 进油道量孔 5 单向阀 6 安全阀 7 滑阀 8 反作用阀 9 阀体10 回位弹簧 11 转向螺杆12 转向螺母13 纵拉杆14 转向垂臂15 助力缸 汽车向右转弯时,转向螺杆11(左旋螺纹)顺时针方向转动,与转向轴制成一体的滑阀7和转向螺杆克服回位弹簧10及反作用阀8一侧的油压的作用力而向右移动。此时如图1(b)所示,环槽A与C,B与D分别连通,而环槽C与E使进油道与助力缸15的L腔相通,形成高压回路;B与D使回油道与R腔相通,形成低压回路。在油压差的作用下,活塞向右移动,而转向螺母12向左移动。纵拉杆13也向右移动,带动转向轮向右偏转。由于系统压力很高(一般为6.9Mpa以上),汽车转向主要依靠推力。驾驶作用于转向盘的转向力基本上是打开滑阀所需的力,一般为5~10N,最大不超过10N, 因而转向操纵十分轻便。 汽车左转弯时滑阀7左移,如图1(c)所示,油路改变流通方向,助力缸15加力方向相反。 在转向过程中,助力缸的油压随转向阻力而变化,二者相互平衡。汽车转向时,助力缸只提供动力,而转向过程仍由驾驶员通过转向盘进行控制

溢流阀原理及故障处理

溢流阀原理及故障处理 主编:龙游

目录 一、DB/DBW型先导溢流阀 (1) 二、DR型先导式减压阀…………………………………………………… 三、DZ型先导顺序阀……………………………………………………… 四、DA/DAW型先导控制式卸荷阀………………………………………… 五、压力继电器……………………………………………………………… 六、压力表开关……………………………………………………………… 七、单向阀、液控单向阀…………………………………………………… 八、电磁换向阀和电液换向阀……………………………………………… 九、Z2FS型叠加式单向节流阀……………………………………………… 十、行程节流阀……………………………………………………………… 十一、2FRM型调速阀………………………………………………………… 十二、分流—集流阀………………………………………………………………

一、DB/DBW 型先导溢流阀 1.结构和工作原理 DB 型阀是先导控制式的溢流阀;DBW 型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW 型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB 型阀主要是由先导阀和主阀组成。DBW 型阀是由电磁换向阀、先导阀和主阀组成。 DB 型溢流阀: A 腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B 腔(控制油内排型)或通过外排口(11) 流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A 腔流到B 腔(即卸荷)。 DBW 型电磁溢流阀: 此阀工作原理与DB 型阀相同,只是可通过安装在先导阀上的电磁换向阀 (14)使系统在任意时刻卸荷。 DB/DBW 型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X 和外排口Y 。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。 (2)空穴产生的噪声 图1 DB 型溢流阀

相关文档
最新文档