重力异常正演实验
重力异常正反演问题

正演问题的定义: 根据巳知的、具有剩余质量的地质体的形状、产状和剩余密度 分布,通过理沦计算,研究它们所引起的异常及其各阶导数异 常的数值大小、空间分布和变化规律。 反演问题的定义: (1)由观测上重力异常的分布,在给定物体边界位置函数的条 件下,求解物体的密度分布函数;(物性反演) (2)由观测面上重力异常分布,在给定物体密度函数的条件下, 求解物体的边界位置的数值;(几何反演) (3)由观测面上重力异常分布。在给定特殊约束(如设物体密 度均匀、形态规则)条件下,求解物体密度参数和几何参数。 给定的函数和特殊约束称为反演问题的定解条件。
用解析公式计算出每个小长方
最后,将所有长方体的重力异
常值累加,以求得整个地质体在 计算点的异常值。
体在计算点所产生的重力异常值。
点元法 “点元”法所取的各个点元的体积可以相同,也可不同。各 个点元的物性可以相同,也可不同。通常是将勘探剖面之间的 地质体用适当的长方体或立方体来近似,确定出各个点元的角 点坐标,即可计算出该点元的三重积分值。 对于一个点元而言,其计算公式如下:
(j-1)
。由(4-6)式可知,由ρ
(j-1)
产生的重力场频谱为 F[△g(j-1)]为
n n F [ ( j 1) ( DH L ( r ) DH u ( r ))]
F g ( j 1) 2G
n 1
(- k ) n 1 n!
e
k zc
(4-9)
而已知场△g(r0,z0)的频谱 F[△g]也可由(4-6)式来表示、将 F[△g]与 F[△g(j-1)]相减并经整 理后可得
2.面元法
用一组垂直于z轴的平面
或者垂直于X轴、y轴的平 面切割地质体,地质体与平 面相交形成一系列的裁面。
球体重力异常正演程序报告

球体重力异常正演程序报告球体重力异常正演是地球物理学中的一种重要方法,用于研究地下物质分布和地球内部结构。
本报告将重点介绍球体重力异常正演程序的原理、步骤和应用。
一、原理球体重力异常正演是基于牛顿引力定律和球体模型的数学计算方法。
根据牛顿引力定律,在球体表面上的任意一点,重力加速度可以表示为:g = G * (M / r^2)其中,g为重力加速度,G为引力常数,M为球体的质量,r为球心到该点的距离。
根据球体模型,球体的质量可以表示为:M = (4/3) * π * ρ * R^3其中,ρ为球体的密度,R为球体的半径。
将质量公式代入重力加速度公式,可得到球体表面上的重力加速度公式:g = (4/3) * G * π * ρ * R / r^2二、步骤球体重力异常正演程序的步骤如下:1. 确定观测点的位置和高度,以及球体模型的半径和密度。
2. 计算球体表面上的重力加速度,根据上述公式进行计算。
3. 根据观测点与球心的距离,计算球体表面上的重力加速度的投影值。
4. 重复步骤3,直到计算出所有观测点的重力加速度投影值。
5. 计算观测点的球体重力异常值,即观测点的重力加速度减去球体表面上的重力加速度投影值。
三、应用球体重力异常正演程序在地球物理勘探中有广泛的应用,主要包括以下几个方面:1. 地质勘探:通过球体重力异常正演,可以对地下的岩石密度分布进行推测,从而帮助地质勘探人员确定地质构造和找到潜在的矿产资源。
2. 油气勘探:油气藏通常与地下的密度异常有关,通过球体重力异常正演,可以对潜在的油气藏进行初步判断,指导油气勘探的方向和深度。
3. 地壳构造研究:地球内部的构造和演化与地下岩石的密度分布密切相关,通过球体重力异常正演,可以揭示地壳的变形和演化过程,为地壳构造研究提供重要的参考依据。
4. 火山和地震研究:火山和地震活动通常与地下的岩浆和断层有关,球体重力异常正演可以帮助科学家们理解火山和地震的发生机制,预测可能的灾害风险。
重力异常正演资料

单位长度, dm d
• 若水平圆柱体有限长, 则
密度均匀的水平圆柱体
l
g G
d
l [( x)2 ( y)2]3/2
(x
2Gh0l
h0 )(x2 l2
h02 )3/2
密度均匀的水平圆柱体
• 当 l 时,
g 2Gh0
密度均匀的球体Vg VFra bibliotekzG
v
( z)d dd [( x)2 ( y)2 ( z)2 ]3/2
密度均匀的球体
密度均匀的球体
Vg
GM
[x2
h0 y2
h02 ]3/2
密度均匀的球体
Vg
GMh0 ( x2 h02 )3/2
球体重力异常图
球体重力异常图
利用已知异常计算球体参数
重力异常正演
正问题与反问题
正问题也称为正演计算(Forward Calculation) 已知地质体的形状、产状和剩余密度等,通过理 论计算来求得异常的分布和规律。
正问题与反问题
• 反问题也称为反演(Inversion) • 已知异常的分布特征和变化规律,求场源的赋存
状态(如产状、形状和剩余密度等)
正问题与反问题
正演计算是解反问题的基础,解反 问题(反演)是目的
正问题与反问题
简单规则几何形体的异常
• 为了简化,假设地质形体孤立存在,密度均匀, 地面水平,所取剖面为中心剖面。
• 规则形体:球体、水平圆柱体、垂直台阶、脉状 体……
密度均匀的球体(点质量)
• 自然界中,一些近于等轴状的地质体, 如矿巢、矿囊、岩株、穹窿构造等, 都可以近似当作球体来计算它们的重 力异常,特别当地质体的水平尺寸小 于它的埋藏深度时,效果更好。
磁性体磁场正演

§3、规则形体的磁场
薄板状体
薄板状体可看作是厚板的特殊 情况。在磁法中“厚”与“薄”也 是一个相对概念。在一定限度 内当板状体的b<<h 时,称其 为薄板,反之为厚板。 厚板与薄板的剖面曲线形态类 似。薄板的磁场表达式可从厚 板的磁场表达式简化导出。 厚板状体可以看作薄板状体组 合而成,薄板的异常窄,幅值 小,而厚板异常宽,幅值大。
H ax
μ 0 M s • sin α rB ln = 2π rA
μ 0 M s • sin α Za = (Δϕ ) 2π
§3、规则形体的磁场
倾斜磁化板状体磁场
斜磁化指板的侧面与磁化强 度Ms斜交的情况,γ≠0 斜交磁化厚板的顶面、底面 和侧面都要出现磁荷。 斜交磁化无限延伸厚板磁场 Za图形随磁化倾角:
x = 0, Z a⊥ = Z a max H a⊥ = 0 μ0 2ms = 4π R 2
规则形体的磁场
四、水平圆柱体
通常将自然界中延深和宽度都比较小,沿走向很长 的磁性体看作水平圆柱体。 一.水平圆柱体的磁场表达式: 若为垂直磁化,即is=90°,或I=90°时:
μ0 ms ( R 2 − x 2 ) Z a⊥ = 2π ( x 2 + R 2 ) 2
磁性体磁场正演
规则形体的磁场
球体的重力异常:Δg = GM
h (x + h )
2 2 3 2
规则形体的磁场
球体的重力异常:Δg = GM
h (x + h )
2 2 3 2
磁异常垂直分量 Z a
qm h : Z a = 4π 2 2 3 2 (x + h )
规则形体的磁场
一、单极的磁场(顺轴磁化、无限延深柱体)
重力正演、反演

2)当σ>o时,极大值一侧对应着上升盘,极小 值一侧对应着下降盘,在极小值十分清晰且大 干极大值的绝对值时,属正断层类型,反之则 属逆断层类型。
二度铅垂柱体 对于沿水平方向延伸较长而横截面近于矩形的 矿脉,可以当成二度铅垂柱体来研究。在正演 它的异常时,坐标系及有关参数的选取见图,用 (x+α)与(x一α)分别代替铅垂台阶各公式中的 x,并将结果相减,即获得这一形体的重力异 常及各阶导数异常的公式:
当柱体的下底 H→+∞ 时,便可获得底部无限延 伸的铅垂脉的相应公式Δg→∞
( x − a) 2 + h 2 V xz = Gσ ln ( x + a) 2 + h 2 h h 2ah V zz = 2Gσ (tg −1 − tg −1 ) = 2Gσtg −1 2 x−a x+a x + h2 − a2 ⎡ ⎤ x+a x−a 2a ( a 2 + h 2 − x 2 ) V zzz = 2Gσ ⎢ = 2Gσ 2 − 2 2 2 2 ⎥ ( x + a) + h ⎦ ( x + a 2 + h 2 ) 2 − 4a 2 x 2 ⎣ ( x + a) + h
GM GMD = 2 2 nD ( x1 / n + D 2 ) 3 / 2
x 1/n = ± D n 2 / 3 − 1
取n=2,得x1/2=0.766D(X正半轴)和x’1/2=-0.766 D (X负半轴),说明异常半极值点的横坐标为球心 深的0.766倍
4、当D不变,使M加大m倍时,异常也同样加大
[( x + a ) 2 + H 2 ][( x − a ) 2 + h 2 ] V xz = Gσ ln [( x + a ) 2 + h 2 ][( x − a ) 2 + H 2 ] H h H h ) − tg −1 − tg −1 + tg −1 V zz = 2Gσ (tg −1 x+a x+a x−a x−a ⎡ ⎤ x+a x+a x−a x−a − + − V zzz = 2Gσ ⎢ ⎥ 2 2 ( x + a) 2 + H 2 ( x − a) 2 + h 2 ( x − a) 2 + H 2 ⎦ ⎣ ( x + a) + h
两种新的长方体重力异常正演公式及其理论推导

+(
z) arctan ( z)R | 2 | 2 | 2 ( x)( y) 1 1 1
g(x, y, z) = G ||| ( x) ln{( y) + R} + ( y) ln{( x) + R}
( z) arctan ( x)( y) | 2 | 2 | 2 ( z)R 1 1 1
g(x, y, z) = G ||| ( x) ln{( y) + R} + ( y) ln{( x) + R}
两种新的长方体重力异常正演公式及其理论推导
骆遥 1, 2
1 中国科学院地质与地球物理研究所,北京(100029) 2 中国科学院研究生院,北京(100049) E-mail:geo@
摘 要: 在前人推导长方体重力场、磁场正演理论表达式工作的基础上,重新对长方体重 力场正演理论表达式进行理论推导,提出了两种全新的长方体重力异常正演公式形式,并给 出了全部的理论推导过程,对比模型正演计算结果表明,新导出长方体重力场正演理论表达 式的正确。 关键词:长方体,重力场,正演,积分 中图分类号:P631
线数据单位为 g.u.
Fig2. The cubic model gravity contour map
5. 结论
综合前人对长方体重力场正演理论表达式的推导过程,并借鉴长方体磁场及其梯度场理 论表达式的推导,推导出了两种新的长方体重力场正演理论表达式(11)式和(13)式,对 比模型正演计算结果表明,新导出长方体重力场正演理论表达式是完全正确的。
似积分的推导[15~17],对 2 的推导有:
2= 2( 1
z)2 ( {(
y) {( x) +
R}2
第四节 地质体参数的计算 重力勘探5-正反演

i ) ln
2 i 1 i2
2 i 1
2 i
(i1
i
)
tg
1
i i
tg1
i1 i1
(二)任意形状三度体
1、线元法
➢用一组垂直于y轴的平面
和一组垂直于X轴的平面分 别切割地质体,则任意两 个平面的交线包合在地质 体之内的部分形成一个线 元。
x 时, g Gf h
1
P(x,0)
●x
h2
h 1 △σ △h
2
△σ △h
主剖面异常曲线单调变化,断层正上方梯度最大;平面异常等值 线呈条带状分布,与断层线平行。
在前述三个特征点上,异常值与埋深无关; 异常形态与埋深有关,埋藏越浅,水平梯度越大。
等值线为一系列平行台阶走向的直线,在断面附近等值线最密, 称为“重力梯级带”,且异常向台阶延伸方向单调增大。
第四节 地质体参数的计算
正演与反演
正问题也称正演,是指给定地质异常体的形状、产状 和剩余密度分布,通过计算得出重力异常的大小、特 征和变化规律等。
反问题也称反演,是指根据重力异常的数值大小、变 化规律等场的特征,结合已知的地质资料和地质体的 物性参数,求解地质体的形状和空间位置等。
正问题从给定地球物理模型,通过数值计算或物理模拟,得 出相应地球物理场的过程,目的是认识和掌握地球物理场的 特征与场源之间的对应关系;
当α=90°(垂直断层)时,重力异常极大值 与极小值绝对值相等,曲线以原点O为中心对 称
当α<90°(正断层)时,下降盘一侧异常极 小值明显
当α>90°(逆断层)时,上升盘一侧异常极 大值明显
重力异常正反演问题

设:
(D.1)
所以:
按式(D.1)的形式累加起来,最后只需要求一次反正切函 数,这样处理后,计算速度提高一倍以上。
1.2.2 直立“线元”法
某工区物探、勘探工作布置示意图
正演问题的定义: 根据巳知的、具有剩余质量的地质体的形状、产状和剩余密度 分布,通过理沦计算,研究它们所引起的异常及其各阶导数异 常的数值大小、空间分布和变化规律。 反演问题的定义: (1)由观测上重力异常的分布,在给定物体边界位置函数的条 件下,求解物体的密度分布函数;(物性反演) (2)由观测面上重力异常分布,在给定物体密度函数的条件下, 求解物体的边界位置的数值;(几何反演) (3)由观测面上重力异常分布。在给定特殊约束(如设物体密 度均匀、形态规则)条件下,求解物体密度参数和几何参数。 给定的函数和特殊约束称为反演问题的定解条件。
什么是正问题与反问题?
反问题:m=G-1d
观测数据d
地质模型 m
正问题:d=Gm
(一)规则形体的正、反演问题
为了简化,假设地质形体孤立存在,密度均匀,地 面水平,所取剖面为中心剖面
规则形体:球体、水平圆柱体、垂直台阶、脉状体……
1、球体
规 则 形 体 的 正 、 反 演 问 题
近似于等轴状地质体,如盐丘、矿巢、溶洞等
lim g 0; g max
g max h02 m G 2 ; x1/ 2 0.766h0 ; m h0 G
2、水平圆柱体 2、水平圆柱体(线质量)
规 则 形 体 的 正 、 反 演 问 题
小柱体元在P(x,0,0)点产生的重力异常为
g G
h0 dy
(x y h )
用一组垂直于y轴的平面
和一组垂直于X轴的平面分 别切割地质体,则任意两 个平面的交线包合在地质 体之内的部分形成一个线 元。 用解析式计算每一个线 元在计算点产生的重力异 常作用值。 对所有钱元的作用值依 次进行X方向和Y方向的数 值积分,便得到整个地质 体在计算点所产生的重力 异常值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
plot(x,g(106,:),'g'),axis([-105,105,0,1.5]),title('水平圆柱体δg(当h变化的时候)'),
Legend('h=10');
hold on;
plot(x,g1(106,:),'r'),legend('h=20')
;
描述和分析:
水平圆柱体的δg,异常平面等值线图形为一系列相互平行的直线,δg、Vzz以及Vzzz异常图每条直线所代表的异常值从中间向两侧呈对称状逐渐减小,而Vxz、Vzzz异常图两侧等值线出现对称的负极值。
从剖面图可以看出,δg、Vzz和Vzzz为x的偶函数,而Vxz为x的奇函数,因此,δg、Vzz和Vzzz为轴对称曲线,而Vxz为点对称曲线。
由重力对比图我们可以看出,当将埋深变深,曲线变缓。
备注:
vzz=2*G*lam.*(h.^2-X.^2)./((X.^2+h.^2).^2);
vzzz=4*G*lam.*(h.^2-3.*X.^2)./((X.^2+h.^2).^3);
figure(1);
contour(g,20);title('水平圆柱体δg等值线图');
figure(2);
subplot(2,2,1),plot(x,g(106,:)),axis([-105,105,0,1.5]),title('水平圆柱体δg');
subplot(2,2,2),plot(x,vxz(106,:)),axis([-105,105,-0.1,0.1]),title('水平圆柱体vxz');
subplot(2,2,3),plot(x,vzz(106,:));,axis([-105,105,-0.05,0.15]),title('水平圆柱体vzz');
吉林大学地球探测科学与技术学院
实验报告
课程名称
重力与磁法勘探
成绩评定:
教师:
年月日
报告人
(姓名、学号)
王浩然62130902
班号
9
实验时间
2015/11/2
地点
地质宫应用地球物理实验室
实验题目
简单条件下规则圆柱体重力异常的正演计算
实验目的
及要求
要求学生熟悉计算机常用的编程语言,能够编制简单的计算程序。学习和掌握简单条件下水平圆柱体的重力异常计算方法,并能使用常用的绘图软件对所计算的结果绘制剖面和平面图,以便加深对圆柱体重力异常特征的认识。
subplot(2,2,4),plot(x,vzzz(106,:));,axis([-105,105,-0.001,0.003]),title('水平圆柱体vzzz');
figure(3);
surf(g);title(&=20;
g1=2*G*lam*h./(X.^2+h.^2);
实验内容(包括:实验内容、实验步骤、问题讨论、结论及建议):
实验步骤:
1.教师将本班学生分为4组。
2.使用水平圆柱体进行编程计算;
3.将计算结果绘制成相应的平面、剖面图;
4.讨论实验中遇到的以及对水平圆柱体重力异常理解过程中产生的问题;
5.对实验的认识、讨论和建议。
实验内容:
实验的模型和参数:
无限长水平圆柱体,线密度λ=1,埋深10m,20m
程序原代码:
clear
x=-105:1:105;
y=-105:1:105;
[X,Y]=meshgrid(x,y);
G=6.67;
lam=1;
h=10;
g=2*G*lam*h./(X.^2+h.^2);
vxz=4*G*lam.*h.*X./((X.^2+h.^2).^2);
vxz=-4*G*lam.*h.*X./((X.^2+h.^2).^2);