什么是频率响应函数

合集下载

电路的频率响应—网络函数定义和分类

电路的频率响应—网络函数定义和分类
串联谐振:L 与 C 串联时 u、i 同相 并联谐振:L 与 C 并联时 u、i 同相
研究谐振的目的,就是一方面在生产上充分利 用谐振的特点,(如在无线电工程、电子测量技术等 许多电路中应用)。另一方面又要预防它所产生的危 害。
11-2 串联谐振电路
i
+
+
R u_ R
uL
+
u
_
L
+
_
C
u
_
C
(1) 谐振条件
可求得求得转移电压比的|H(j)|。从输出和输入波形的相 位差可求得()。改变信号发生器的频率,求得各种频率 下的网络函数H(j),就知道该网络的频率特性。
谐振的概念: 在同时含有L 和C 的交流电路中,如果总电压和
总电流同相,称电路处于谐振状态。此时电路与电 源之间不再有能量的双向交换,电路呈电阻性。
例试求图 (a)所示网络负载端开路时的驱动点阻抗
U1 / I1 和转移阻抗 U2 / I1 。
解:首先画出网络的相量模型,如图 (b)所示。用阻抗 串并联公式求得驱动点阻抗
U I 11 j1CR2R Rj11C1jR 2C 2C22Rj23C 2RC jC
为求转移阻抗 U2 / I1, 可外加电流源 I1 ,用分流公
有U : LUCQU
所以串联谐振又称为电压谐振。
谐振时: UL与UC 相互抵消,但其本
身不为零,而是电源电压的Q倍。
ULI0XLR 0LUQ U
UL
相量图:
1
UC
I0XC
0C
UQU
R
UR
U
如Q=100,U=220V,则在谐振时
I
ULUCQU 22000V

机械工程测试技术课后答案

机械工程测试技术课后答案

思考题与习题0-1 举例说明什么是测试?答:⑴测试的例子:为了确定一端固定的悬臂梁的的固有频率,可以采用锤击法对梁尽享激振,在利用压力传感器、电荷放大器、波形记录器记录信号波形,由衰减的振荡波形便可以计算出悬臂梁的固有频率。

⑵结论:由本例可知,测试是指确定被测对象悬臂梁固有频率的全部操作,是通过一定的技术手段—激振。

拾振、记录、数据处理等,获取悬臂梁固有频率的信息过程。

0-2以方框图的形式说明测试系统的组成,简述主要组成部分的作用。

答:⑴:测试系统的方框图如图0—1所示。

⑵:各部分的作用如下.传感器是将被测信息转换成某种电信号的器件;信号调理是把来自传感器的信号转换成适合传输和处理的形式;信号处理环节可对来自信号调理环节的信号,进行各种运算.滤波和分析;信号显示、记录环节将来至信号处理环节的信号显示或存储;模数转换和数模转换是进行模拟信号与数字信号的相互转换,以便于用计算机处理。

0—3 针对工程测试技术课程的特点,思考如何学习该门课程?答:本课程具有很强的实践性,只有在学习过程中密切联系实际,加强实验,注意物理概念,才能真正掌握有关知识。

在教学环节中安排与本课程相关的必要的实验及习题,学习中学生必须主动积极的参加实验及完成相应的习题才能受到应有的实验能力的训练,才能在潜移默化中获得关于动态测试工作的比较完整的概念,也只有这样,才能初步具有处理实际测试工作的能力。

思考题与习题1-1信号的分哪几类以及特点是什么?⑴、按信号随时间的变化规律分为确定性信号和分确定性信号,确定信号分为周期信号(包括谐波信号和一般周期信号)和非周期信号(准周期信号和以便非周期信号);非确定性信号包括平稳随机信号(包括各态历经信号和非各态历经信号)和非平稳随机信号.⑵、按信号幅值随时间变化的连续性分类,信号包括连续信号和离散信号,其中连续信号包括模拟信号和一般模拟信号,离散信号包括一般离散信号和数字信号.⑶、按信号的能量特征分类,信号包括能量有限信号和功率有限信号。

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念1. 传递函数与频率响应函数的定义传递函数和频率响应函数是在控制系统分析中经常被使用的两个重要概念。

传递函数表示了系统的输入和输出之间的关系,通常用于描述线性时不变系统的动态特性。

而频率响应函数则是描述系统对不同频率信号的响应特性,帮助我们分析系统对于输入信号频率的衰减或放大情况。

2. 传递函数的深入理解传递函数通常用 H(s) 或 G(s) 表示,其中 s 是复数变量。

传递函数可以表示为系统的输出与输入的比值,其实际上是系统的冲激响应与冲激输入的拉普拉斯变换。

通过传递函数,我们可以分析系统对于各种输入信号的时域和频域响应,从而更好地理解系统的动态特性。

3. 频率响应函数的广度分析频率响应函数通常可以表示为H(jω),其中ω 是频率变量。

它可以描述系统对于不同频率输入信号的幅度和相位特性,通过频率响应函数,我们可以清晰地了解系统在不同频率下的放大或者衰减情况,从而更好地设计控制系统并进行频域分析。

4. 传递函数和频率响应函数间的关系传递函数和频率响应函数之间存在着密切的关系。

事实上,频率响应函数可以通过传递函数来得到,通过传递函数的极点和零点,我们可以清晰地了解系统对于不同频率信号的响应情况,从而利用频率响应函数来优化系统的控制性能。

5. 个人观点和理解对于传递函数和频率响应函数的理解,我认为它们是控制系统分析和设计中非常重要的概念。

通过对传递函数和频率响应函数的深入理解,我们可以更好地了解系统的动态特性,在控制系统设计中更加灵活地选择合适的控制策略。

频率响应函数还可以帮助我们进行系统的稳定性分析和频域设计,对于系统的性能指标如稳定裕度、相位裕度等有着重要的指导意义。

总结回顾传递函数和频率响应函数作为控制系统分析中的重要概念,对于系统的动态特性和频域特性有着深刻的影响。

通过对传递函数和频率响应函数的分析,我们可以更好地理解系统的动态响应和频率特性,从而更好地设计和优化控制系统。

频率响应函数

频率响应函数

频率响应函数
频率响应函数表征了测试系统对给定频率下的稳态输出与输入
的关系。

这个关系具体是指输出、输入幅值之比与输入频率的函数关系,和输出、输入相位差与输入频率的函数关系。

这两个关系称为测试系统的频率特性。

频率响应函数一般是一个复数。

频率响应函数直观地反映了测试系统对各个不同频率正弦输入
信号的响应特性。

通过频率响应函数可以画出反映测试系统动态特性的各种图形,简明直观。

此外,很多工程中的实际系统很难确切地建立其数学模型,更不易确定其模型中的参数,因此要完整地列出其微分方程式并非易事。

所以,工程上常通过实验方法,对系统施加激励,测量其响应,根据输入、输出关系可以确立对系统动态特性的认识。

因而频率响应函数有着重要的实际意义。

3.系统函数和频率响应

3.系统函数和频率响应



h(n ) z n
稳定系统的系统函数H(z)的ROC须包含 单位圆,即频率响应存在且连续。

因果稳定:ROC: r z , 0 r 1
H(z)须从半径小于1的圆到 的整个z域内 收敛,即系统函数H(z)的全部极点必须在 单位圆内。
2019/1/15 电子工程系
例. 已知系统的极点为
2019/1/15
电子工程系
(2)绘制频率响应的matlab函数:freqz() (3)计算和绘制系统零极点的matlab函数 roots()、zplane() 4.几种特殊的系统
全通滤波器 梳状滤波器 最小相位系统
2019/1/15 电子工程系
P67
本章回顾
1、z变换及性质、收敛域 2、求z反变换:长除法、部分分式展开法 3、利用z变换求解差分方程 4、序列的Fourier变换及性质 5、z变换与Laplace/Fourier变换的关系 6、因果/稳定系统的收敛域 7、离散系统的系统函数和频率响应
0.2e j / 4 , 0.2e j / 4 , 0.4, 2e j / 6 , 2e j / 6 , 1.5 什么情况下,系统为因果系统, 什么情况下,系统为稳定系统
j Im[ z ]
2e
0.2e 4 0.4
j
j

6

1.5
1
Re[ z ]

6
解: 因果系统 z 2
稳定系统 0.4 z 1.5
8、几种特殊的系统
2019/1/15 电子工程系
本章作业: P71-74
4. 5. 6.(3)(4) 8. 13. 15. (1) (3) 18. 21. (3) 23. 24. 28.

系统的频率响应函数

系统的频率响应函数

系统的频率响应函数系统的频率响应函数是描述系统输入与输出之间的频率关系的数学函数。

它通常表示为H(ω),其中H是频率响应函数的符号,ω表示频率。

频率响应函数可以是连续时间系统的拉普拉斯变换,也可以是离散时间系统的Z变换。

在以下的讨论中,我们将主要关注连续时间系统的频率响应函数。

频率响应函数对系统的稳态性能和滤波特性具有重要的影响,因此对于系统的设计和分析来说是非常关键的。

下面我们将介绍一些关于系统频率响应函数的重要概念和性质。

1.频率响应函数的定义:频率响应函数是系统的输出与输入之间的幅度和相位关系的数学表示。

在连续时间系统中,频率响应函数H(ω)可以表示为系统的拉普拉斯变换:H(ω)=G(jω)其中,G(s)是系统的传递函数,s是复变量,j是虚数单位。

2. 幅频特性:系统的幅频特性是频率响应函数的幅度分布关系。

它决定了系统对不同频率的输入信号的放大或衰减程度。

通常用幅度特性曲线表示,可以是Bode图、奈奎斯特图等。

幅频特性的分析可以帮助我们了解系统的增益衰减情况和频率选择性能。

3.相频特性:系统的相频特性是频率响应函数的相位分布关系。

它决定了系统对不同频率的输入信号的相位变化。

相频特性也通常用相位特性曲线表示。

相频特性的分析可以帮助我们了解系统的相位延迟和相位失真情况。

4.幅相特性的分离:频率响应函数可以分解为幅度响应函数和相位响应函数的乘积形式:H(ω)=,H(ω),*ϕ(ω)其中,H(ω),表示幅度响应函数,ϕ(ω)表示相位响应函数。

幅相特性的分离可以使系统的分析更加方便和直观。

5.系统的稳定性:频率响应函数对系统的稳态性能具有重要影响。

当频率响应函数在所有ω值处有界时,系统是稳定的。

稳态性能的分析可以通过频率响应函数的幅值来进行,以确定系统的增益补偿。

6.频率响应函数的设计:频率响应函数的设计可以通过选择适当的系统传递函数来实现。

通常,需要根据特定的系统要求和设计目标来选择合适的传递函数,以达到所需的频率响应特性。

机械工程测试技术复习题(有答案)

机械工程测试技术复习题(有答案)

一,简答题1。

什么叫测试系统的频率响应函数?它和系统的传递函数有何关系?答:测试装置输出信号的傅里叶变换和输入信号的傅里叶变换之比称为装置的频率响应函数,若在系统中的传递函数H(s)已知的情况下,令H(s)中的s=jw 便可求得频率响应函数。

2. 测试装置的静态特性和动态特性各包括那些?答:静态特性:(1)线性度,(2)灵敏度,(3)回程误差,(4)分辨率,(5)零点漂移和灵敏度漂移.动态特性:(1)传递函数,(2)频率响应函数,(3)脉冲响应函数,(4)环节的串联和并联。

3. 在什么信号作用下,系统输出的拉斯变换就是系统的传递函数.答:在单位脉冲信号作用下,(单位脉冲函数δ(t )=1)。

4. 为什么电感式传感器一般都采用差动形式?答:差动式电感器具有高精度、线性范围大、稳定性好和使用方便的特点。

5. 测试装置实现不失真测试的条件是什么?答:幅频和相频分别满足A (w )=A 0=常数,Φ(w)=-t 0w ;6. 对于有时延t 0的δ函数)(0t -t =δ ,它与连续函数f (t)乘积的积分dt )(0⎰∞∞--t f t t )(δ将是什么?答: 对于有时延t 0的δ函数)(0t -t =δ ,它与连续函数f (t )乘积只有在t=t 0时刻不等于零,而等于强度为f (t 0)的δ函数,在(-∞,+∞)区间中积分则dt )(0⎰∞∞--t f t t )(δ=dt )(0⎰∞∞--t f t t )(δ=f (t 0) 8. 巴塞伐尔定即 的物理意义是什么?在时域中计算总的信息量等于在频域中计算总的信息量.9. 试说明动态电阻应变仪除需电阻平衡外,还需电容平衡的原因?答:由于纯电阻交流电桥即使各桥臂均为电阻,但由于导线间存在分布电容,相当于在各桥臂上并联了一个电容,因此,除了有电阻平衡外,必须有电容平衡。

10.说明测量装置的幅频特性A(ω)和相频特性φ(ω)的物理意义。

答:测量装置的幅频特性A(ω)是指定常线性系统在简谐信号的激励下,其稳态输出信号和输入信号的幅值比。

频率响应函数

频率响应函数

频率响应函数频率响应函数是描述在幅度或相位连续变化的情况下,通过傅里叶分析方法所得到的信号电压或电流的幅度随频率变化关系的一种方法。

在实际中的许多技术设备中,例如变频调速器、振荡器等都有频率响应函数这个指标。

它能帮助工程师选择合适的使用条件,提高产品的可靠性。

由于噪声通常也会出现在频率域内,因此,频率响应函数在声学中也有一定的应用。

有一次,老师给我们做了一个实验:把水从一个容器(一般为杯子)里倒进另一个容器(一般为桶里)里,然后再将水倒入烧瓶里,看看哪个更快。

一开始我想这应该很简单吧!但当老师让我们看书时,发现大家还没明白实验的道理。

老师见大家没弄懂,便细心地给我们讲解了实验的原理。

当老师说到他是通过傅里叶分析方法来计算频率响应函数时,我觉得不可思议,但当他详细讲解了他是怎样计算后,我才知道,其实是一回事儿。

后来老师让我们自己动手做一遍,就明白了。

我不服气,便也用同样的方法计算了一遍。

我首先计算了水从容器里倒进烧瓶里的速度。

“这么慢?”我心想,这也太慢了,我还以为只需几秒呢!老师好像看透了我的心思,说:“对,你是想说要想知道快的结果,就先要将慢的过程反过来计算吧!”这句话真提醒了我,怪不得我总觉得奇怪,现在明白了。

这次,我按老师说的先计算了水从容器里倒进烧瓶里的速度。

然后,我又算了水从烧瓶里倒进烧瓶里的速度。

最后,我算了水从烧瓶里倒进容器里的速度。

哇,我发现,水从烧瓶里倒进容器里的速度居然比水从烧瓶里倒进烧瓶里的速度快!当然,实验证明,频率响应函数与物质的某些特性并无直接关系。

如石英的物质是由它的成分来决定的,而不是它的频率。

人们通常测量一个元件的频率响应函数是用伏安法,它是利用元件两端的电压和元件上电流之间的关系来确定的,并不考虑物质的温度、压强和体积等外界因素的影响。

所以,人们说频率响应函数是幅度的函数,而不是像大多数物理概念那样是指它的绝对值。

频率响应函数既不是频率的导数,也不是频率的倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。

这也称为网络分析,系统的输入和输出同时测量。

通过这些多通道测量,分析仪可以测量系统如何“改变”输入。

一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。

事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。

宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被广泛地用作激励信号。

图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。

一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。

在各种激励条件下,对UUT系统的特性进行了实验测量。

这些特征包括:频率响应函数(FRF),通过以下参量描述: 增益频率函数。

相位频率函数。

共振频率,阻尼因素,总谐波失真,非线性。

利用宽带随机激励的FFT、交叉功率谱法测量频率响应。

宽带激励可以是高斯分布的真随机噪声信号,也可以是一个伪随机信号,其振幅分布可以由用户来定义。

宽带这一术语可能具有误导性,因为一个好的实现的随机激励信号应该是频带有限的,并由分析频率范围的上限控制。

也就是说,激励不应该激发高于测
量仪器所能测量的频率。

随机发生器只产生频宽在分析频率范围内随机信号。

这也将把激发能量集中在有用的频率范围,以提高测试动态范围。

宽带随机激励的优点是它能在短时间内激发宽频段,因此总测试时间较短。

宽带激励的缺点是其频率能量在短时间内广泛传播。

每个频率点激发的能量贡献远小于总信号能量(大概是-30到-50dB小于总数)。

即使对于频率响应函数(FRF)估计有一个大的平均数字,宽带信号也不能有效地测量UUT的极端动态特性。

扫频正弦测量,优化了每个频率点的测量值。

由于激励信号是一个正弦波,在某一时刻其所有的能量都集中在一个频率上,改进了宽带激励中的动态范围不足的缺点。

此外,如果频率响应幅值大小下降,响应的跟踪滤波器可以帮助接收到非常小的正弦信号。

只要优化每个频率的输入范围,就可以将测量的动态范围扩展到150分贝以上。

频率响应函数的应用很广,其中测试试件的固有频率是基础应用,可以有效的避免共振频率。

试件由于材质、材料属性、形状的不同会影响自身刚度和质量。

它的固有频率只受刚度分布和质量分布的影响,阻尼对固有频率的影响有限。

质量增大固有频率必然降低,刚度增大固有频率必然增大。

理论上讲,试件有多阶固有频率。

在二维频谱图中,并不是所有的峰值对应的都是固有频率,因为有可能是激励频率或是它的倍频。

因此通常通过测量频响函数的方式来测量固有频率,频响函数对应的峰值都是系统的固有频率。

多数情况下,我们只关心低阶或特定阶固有频率。

常用两种方法测试频率响应函数,锤击法和正弦扫频法。

CoCo-80X 动态信号分析仪利用锤击法测试
Spider-81B 振动控制器+振动台利用正弦扫频法测试
杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

相关文档
最新文档