二次函数与几何综合运用——存在性问题教学设计

合集下载

二次函数与几何综合运用存在性问题教学设计

二次函数与几何综合运用存在性问题教学设计

二次函数在几何方面的应用——存在性问题一、教学目标:知识与技能:通过本节课的专题学习体会二次函数与几何的综合应用,培养学生综合运用知识的技能,提高学生分析问题解决问题的能力。

过程与方法:利用数形结合思想,把“数”与“形”结合起来,互相渗透.同时熟练运用分类讨论的思想、方程的思想等各种数学思想方法。

情感态度与价值观:鼓励学生要知难而上,敢于挑战,激发学生学习数学的兴趣。

二、教学重点、难点重点:二次函数与三角形、四边形、存在性问题综合应用;利用各种数学思想方法解决问题。

难点:二次函数与三角形、四边形、存在性问题的分析和解决。

教学方法:自主探索、合作交流。

教学手段:运用多媒体教学三、教学过程:类型一特殊三角形的存在、探究问题【方法指导】1.探究等腰三角形的存在、探究问题时,具体方法如下:(1)若为存在问题,则先假设存在,再进行下一步;若为探究问题,则直接进行下一步;(2)当所给条件中没有说明哪条边是等腰三角形的底,哪条边是等腰三角形的腰时,要对其进行分类讨论,假设某两条边相等,得到三种情况;(3)设未知量,求边长.在每种情况下,直接或间接设出所求点的坐标(若所求的点在抛2+bx+cx,ax);若所求的点在对称轴上时,该点的坐标可(物线上时,该点的坐标可以设为b-,)以设为(,并用所设点坐标表示出假设相等的两条边的长或第三边的长;y2a(4)计算求解.根据等腰三角形的性质或利用勾股定理或相似三角形的性质列等量关系式,根据等量关系求解即可.探究等边三角形的存在、探究问题时,可以先求出该三角形为等腰三角形时的情况,然后求腰和底相等时的情况即可.2.探究直角三角形的存在、探究问题时,具体方法如下:)若为存在问题,则先假设存在,再进行下一步;若为探究问题,则直接进行下一步;1(.(2)当所给的条件不能确定直角顶点时,分情况讨论,分别令三角形的某个角为90°;(3)设未知量,求边长,在每种情况下,直接或间接设出所求点的坐标(若所求的点在抛2)(;若所求的点在对称轴上时,该点的坐标可物线上时,该点的坐标可以设为cax++bxx,b,),利用所设点的坐标分别表示出三边的长,用勾股定理进行验证并求解以设为(. -y2a【范例解析】2bxcByxAyxxy+两点,抛物线例1(2013铜仁)如图,已知直线+=3、-3分别交=轴、轴于ABCxA点不重合). 、轴的另一个交点两点,点(是抛物线与经过与(1)求抛物线的解析式;ABC的面积; (2)求△(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.◆例题分层解析:ABA及及点(1)根据直线解析式求出点的坐标,然后将点Bbc的值,求出抛物线的坐标代入抛物线解析式,可得出点、解析式.C的坐标,继而1)求得的抛物线解析式,可求得点(2)由(AC的长度,代入三角形面积公式即可计算求出.MMmMABA,=)(3)根据点在抛物线对称轴上,可设点,分三种情况讨论:①的坐标为(-1,MBBAMBMAm的值后即可得出答案=②. =,求出,③◆解题方法点析:根据题中要求,抓住形成等腰三角形的条件,采用分类讨论的思想,对三种可能性一一求解,做到不重、不漏。

《用二次函数解决几何问题(选讲)》教学设计

《用二次函数解决几何问题(选讲)》教学设计

二次函数复习3《用二次函数解决几何问题(选讲)》教学设计一、教材分析1、地位和作用(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一。

二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,更为高中学习一元二次不等式和圆锥曲线奠定基础。

在历届中考试题中,二次函数都是压轴题中不可缺少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)本节课是在复习了二次函数的基本概念、性质和应用的基础上,通过运用二次函数解决几何问题的思路和方法的探索,提高学生应用二次函数解决问题的能力。

2、广州《评价标准》要求:会根据条件确定二次函数的表达式,通过图像和性质体验数形结合研究函数的方法;会运用二次函数的最值解决简单的实际问题。

3、中考要求:能在理解二次函数的特征和性质的基础上,运用到实际情境中,在具体情境中认识二次函数的特征,获得一些经验。

二、学情分析1、在经历了两次课的复习之后,学生已掌握二次函数的定义、图像及性质、用函数观点看一元二次方程、解决实际问题等知识;2、学生的分析、理解能力较第一次复习时有明显提高,但对于复杂的几何问题仍然存在解题上的欠缺,对文字较多的题目普遍具有恐惧感;3、学生学习数学的热情很高,课堂气氛活跃,勤学好问,具有一定的自主探究和合作学习的能力;4、学生能力有一定差异,两极出现分化,以中层学习状况的学生居多。

三、教学目标①认知目标:分析几何图形,获得y与x的关系②能力目标:能根据解析式的特性解决几何问题③情感目标:感受数形结合的思想,体验探索难题、收获成功的喜悦四、教学重点:根据几何图形列出二次函数关系.教学难点:运用所学二次函数的知识,分步解决几何问题五、教法分析1、以教学大纲为依据,渗透德育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学。

北师大版数学九年级下册《二次函数在几何方面的应用》教学设计1

北师大版数学九年级下册《二次函数在几何方面的应用》教学设计1

北师大版数学九年级下册《二次函数在几何方面的应用》教学设计1一. 教材分析北师大版数学九年级下册《二次函数在几何方面的应用》这一节的内容,主要让学生了解二次函数在几何中的应用。

通过学习,学生能够掌握二次函数图象与几何知识之间的联系,提高解决几何问题的能力。

教材通过具体的例题,引导学生利用二次函数的性质解决实际问题,培养学生的数学应用意识。

二. 学情分析九年级的学生已经学习了二次函数的基本性质,对二次函数的图象和解析式有一定的了解。

但是,将二次函数与几何知识结合起来解决问题的能力还不够。

因此,在教学过程中,教师需要引导学生将已知的二次函数知识运用到解决几何问题上,帮助学生建立知识之间的联系。

三. 教学目标1.理解二次函数在几何中的应用,掌握二次函数图象与几何知识之间的联系。

2.能够运用二次函数解决简单的几何问题,提高解决实际问题的能力。

3.培养学生的数学应用意识,提高学生的数学素养。

四. 教学重难点1.重点:二次函数在几何中的应用,二次函数图象与几何知识之间的联系。

2.难点:如何将二次函数知识运用到解决实际几何问题上。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索二次函数与几何知识之间的联系。

2.利用数形结合的方法,让学生直观地理解二次函数在几何中的应用。

3.采用案例分析法,让学生通过分析具体例题,掌握解决几何问题的方法。

六. 教学准备1.准备相关的教学案例和例题,用于引导学生进行思考和练习。

2.准备教学课件,帮助学生直观地理解二次函数在几何中的应用。

3.准备黑板和粉笔,用于板书和讲解。

七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾二次函数的基本性质和图象,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示教材中的例题,让学生观察和分析二次函数图象与几何问题之间的关系。

3.操练(10分钟)教师引导学生跟随讲解,一起解决例题。

在这个过程中,教师要注意引导学生运用二次函数的知识解决几何问题,让学生体会二次函数在几何中的应用。

《二次函数存在性问题探究》教学设计

《二次函数存在性问题探究》教学设计

《二次函数存在性问题探究》教学设计【教材内容】中考数学疑难问题《二次函数存在性问题探究》【课时安排】第 1 课时【教学对象】九年级学生【授课教师】【教材分析】《二次函数存在性问题探究》是人教版九年级上册教科书第22.3 课《实际问题与二次函数》的拓展,属于函数与几何综合题,本课安排在该教材中二次函数综合第 3 节课时。

《二次函数存在性问题探究》是“动态几何中的二次函数问题”,以图形的运动变化为背景,其背景图形是三角形,其运动方式是单个动点。

解决其问题的核心是:探索变量之间的对应关系(变化规律),掌握等腰三角形、直角三角形在二次函数图形变化中的特点,运用数形结合思想、数学建模思想、分类讨论思想、转化思想等教学思想。

【学情分析】一方面,纵观广东省近三年中考数学压轴题都是“动态几何中的函数问题”,中考第二轮复习时基本都是采用专题方式推进,初中数学专题复习课往往是针对某一类重点题型、重要知识板块或者某一种比较突出的思想方法等组织展开专题复习、专题研究。

培养学生思维的灵活性和发散性,进而提高学生综合运用知识的能力。

另一方面,解决这类问题需要灵活运用数学思想方法,培养学生数形结合思想、分类讨论思想、转化思想。

存在性问题是指判断满足某种条件的事物是否存在的问题。

这类问题的知识覆盖面广,综合性强,题意构思巧妙,解题方法灵活,对学生分析问题和解决问题的能力要求都比较高。

【教学目标】一、知识与技能(1)让学生体验角的存在性问题、等腰三角形存在性问题的探索过程,感受二次函数存在性问题点线面的关系,抓住角、等腰三角形中元素的变与不变的关键点,结合分类讨论的思想解决存在性问题。

(2)培养学生运用数形结合、数学建模、分类讨论、转化等数学思想方法;拓宽学生的思维和视野,提高学生解决二次函数存在性问题的能力,考核学生综合运用知识的数学核心素养。

二、过程与方法(1)通过对图形情境中的数学信息作出合理的分析,能用二次函数描述和刻画现实事物间的函数关系与几何图形的动态问题。

(教学设计)二次函数综合(动点)问题平行四边形存在问题教学设计

(教学设计)二次函数综合(动点)问题平行四边形存在问题教学设计

教学过程一、课堂导入如图,已知平面直角坐标系上的三点坐标分别为A(2,3)、B(6,3),C (4,0),现要找到一点D,使得这四个点构成的四边形是平行四边形,那么点D的坐标_______________________________.问题:这是我们在平面直角坐标系那章学习的内容,如果我们将二次函数容纳其中,在抛物线上求作一点,使得四边形是平行四边形并求出该点坐标时,又该如何解答呢?如果是存在两个动点又该如何解答?二、复习平行四边形性质:两组对边分别平行且相等,对角相等,对角线互相平分。

三、例题精析【例题】1. (2011湛江)如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形;(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.【答案】(1) y=x2+2x-3;(2)见解析;(3) F的坐标为(3,12),(-5,12),(-1,-4).【解析】解:(1)由题意得{−b2=−14c−b24=−4,解得:b=2,c=-3,则解析式为:y=x2+2x-3;(2)由题意结合图形则解析式为:y=x2+2x-3,解得x=1或x=-3,由题意点A(-3,0),∴AC=√9+9=3√2,CD=√1+1=√2,AD=√4+16=2√5,由AC2+CD2=AD2,所以△ACD为直角三角形;(3)∵A(-3,0),B(1,0),∴AB=4,∵点E在抛物线的对称轴上,∴点E的横坐标为-1,当AB为平行四边形的一边时,EF=AB=4,∴F的横坐标为3或-5,把x=3或-5分别代入y=x2+2x-3,得到F的坐标为(3,12)或(-5,12);当AB为平行四边形的对角线时,由平行四边形的对角线互相平分,∴F点必在对称轴上,即F点与D点重合,∴F(-1,-4).∴所有满足条件的点F的坐标为(3,12),(-5,12),(-1,-4)四、课堂小结平行四边形模型探究:1. 已知三个定点,一个动点的情况在直角坐标平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,直接写出点M的坐标。

二次函数与几何综合-特殊三角形存在问题(解析版)

二次函数与几何综合-特殊三角形存在问题(解析版)

专项12 二次函数与几何综合-特殊三角形存在问题等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB=AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA=BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA=CB .注意:若有重合的情况,则需排除.以点 C 1 为例,具体求点坐标:过点A 作AH ⊥x 轴交x 轴于点H ,则AH=1, 又32121131311==-=∴=HC AC ,()03211,坐标为故点-C 类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C直角三角形的存在性【方法1 几何法】“两线一圆”(1)若∠A 为直角,过点 A 作 AB 的垂线,与 x 轴的交点即为所求点 C ;(2)若∠B 为直角,过点 B 作 AB 的垂线,与 x 轴的交点即为所求点 C ;(3)若∠C 为直角,以 AB 为直径作圆,与 x 轴的交点即为所求点 C .(直径所对的圆周角为直角)如何求得点坐标?以C 2为例:构造三垂直.),坐标为(故代入得:坐标得、由易证0213232222C C C BN AM B A N MBBN AM BN AMB ===∆≈∆()),坐标为(,,坐标为故或故又即代入得:,设,坐标得、由易证求法相同,如下:、040231a ,4a ,3ab ,3ab 1N a,31,4333333343C C C C C C C C C C b bM BN AM B A NBM N AMNB AM ==+=======∆≈∆【方法2 代数法】点-线-方程23m 20352235110,m 135-m 1-m 35-m 11-m 22222122111=+=+=+=+==,解得:)代入得方程(,,,)表示线段:();,()、,(),又坐标为()表示点:设(:不妨来求下)()()()(BC C C C A AB B A【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【答案】(1)y=,(2)m=时,△ADE的面积取得最大值为(3)点P坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2)【解答】解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得,所以二次函数的解析式为:y=,(2)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A2=9+n2,PE2=1+(n+2)2,AE2=16+4=20,当P A2=PE2时,9+n2=1+(n+2)2,解得,n=1,此时P(﹣1,1);当P A2=AE2时,9+n2=20,解得,n=,此时点P坐标为(﹣1,);当PE2=AE2时,1+(n+2)2=20,解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述,P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).【变式1-2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)y=x2﹣2x﹣3 (2)①n=时,PM最大=②P(3﹣,2﹣4)或(2,﹣3).【解答】解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)解法一:当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=n2=0(不符合题意,舍),n3=2,n2﹣2n﹣3=﹣3,P(2,﹣3).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3﹣,n3=3+(不符合题意,舍),n2﹣2n﹣3=2﹣4,P(3﹣,2﹣4).综上所述:P(3﹣,2﹣4)或(2,﹣3).解法二:当PM=PC时,∵BC:y=x﹣3∴∠ABC=45°∵PH⊥AB∴∠BMH=∠CMP=45°∴PM=PC时,△CPM为等腰直角三角形,CP∥x轴设P(n,n2﹣2n﹣3),则CP=nMP=﹣n2+3n∴n=﹣n2+3n解得n=0(舍去)或n=2,∴P(2,﹣3)当PM=CM时,设P(n,n2﹣2n﹣3),则=﹣n2+3n=﹣n2+3n∵n>0∴n=﹣n2+3n解得n=3﹣∴P(3﹣,2﹣4)综上所述:P(3﹣,2﹣4)或(2,﹣3)【变式1-2】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)存在,设Q(m,﹣m+3)(0<m<3),∵A(﹣1,0),C(0,3),∴AC2=OA2+OC2=12+32=10,AQ2=(m+1)2+(﹣m+3)2=2m2﹣4m+10,CQ2=m2+m2=2m2,∵以A,C,Q为顶点的三角形是等腰三角形,∴AC=AQ或AC=CQ或AQ=CQ,当AC=AQ时,10=2m2﹣4m+10,解得:m=0(舍去)或m=2,∴Q(2,1);当AC=CQ时,10=2m2,解得:m=﹣(舍去)或m=,∴Q(,3﹣);当AQ=CQ时,2m2﹣4m+10=2m2,解得:m=,∴Q(,);综上所述,点Q的坐标为(2,1)或(,3﹣)或(,).【考点2 直角三角形的存在性】【典例2】(2021秋•建华区期末)抛物线y=x2+bx+c经过A、B(1,0)、C(0,﹣3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在y轴上是否存在一点E,使△ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.【解答】解(1)∵抛物线y=x2+bx+c经过B(1,0)、C(0,﹣3),∴,解得,∴抛物线的解析式为:y=x2+2x﹣3.(4)在y轴上存在点E,使△ADE为直角三角形,理由如下:∵抛物线的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),设E点坐标为(0,m),∴AE2=m2+9,DE2=m2+8m+17,AD2=20,当∠EAD=90°时,有AE2+AD2=DE2,∴m2+9+20=m2+8m+17,解得m=,∴此时点E的坐标为(0,);当∠ADE=90°时,DE2+AD2=AE2,m2+8m+17+20=m2+9,解得m=﹣,∴此时点E的坐标为(0,﹣);当∠AED=90°时,AE2+DE2=AD2,m2+9+m2+8m+17=20,解得m=﹣1或m=﹣3,∴此时点E的坐标为(0,﹣1)或(0,﹣3).综上所述,符合题意的点E的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).【变式2-1】(2022•灞桥区校级模拟)如图,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3).(1)求二次函数的表达式及顶点坐标;(2)连接BC,在抛物线的对称轴上是否存在一点E,使△BCE是直角三角形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x﹣3),将点C(0,3)代入y=a(x﹣1)(x﹣3),∴3a=3,∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为(2,﹣1);(2)存在一点E,使△BCE是直角三角形,理由如下:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,设E(2,t),∵△BCE是直角三角形,∴BE⊥CE,∵B(3,0),C(0,3),∴BC=3,BE=,CE=,①当BC为斜边时,∴18=()2+()2,解得t=,∴E点坐标为(2,)或(2,);②当BE为斜边时,∴18+()2=()2,解得t=5,∴E点坐标为(2,5);③当CE为斜边时,∴18+()2=()2,解得t=﹣1,∴E点坐标为(2,﹣1);综上所述:E点坐标为(2,)或(2,)或(2,5)或(2,﹣1).【变式2-2】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c 交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.【解答】解:(1)将点A(﹣5,0),B(﹣1,0),C(0,5)代入y=ax2+bx+c,∴,解得,∴y=x2+6x+5,∵y=x2+6x+5=(x+3)2﹣4,∴顶点D(﹣3,﹣4);(2)设抛物线C2上任意一点(x,y),则(x,y)关于y轴对称的点为(﹣x,y),∵点(﹣x,y)在抛物线C1上,∴抛物线记作C2的解析式为y=x2﹣6x+5,设E(t,t2﹣6t+5),过点D作DG⊥x轴交于点G,过点E作EH⊥x轴交于点H,∵∠DOE=90°,∴∠GOD+∠HOE=90°,∵∠GOD+∠GDO=90°,∴∠HOE=∠GDO,∴△GDO∽△HOE,∴=,∵DG=4,GO=3,HE=﹣t2+6t﹣5,OH=t,∴=,∴t=4或t=,∴E(4,﹣3)或E(,﹣).【变式2-3】(2022•武功县模拟)如图,经过点A(2,6)的直线y=x+m与y轴交于点B,以点A为顶点的抛物线经过点B,抛物线的对称轴为直线l.(1)求点B的坐标和抛物线的函数表达式;(2)在l右侧的抛物线上是否存在点P,使得以P、A、B为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=x+m经过点A(2,6),∴2+m=6,解得m=4,即y=x+4.令x=0,得y=4,即点B的坐标为(0,4).∵点A(2,6)为抛物线的顶点,∴可设抛物线的函数表达式为y=a(x﹣2)2+6(a≠0),将点B(0,4)代入,得4=4a+6,解得,∴抛物线的函数表达式为.∴点B的坐标为(0,4),抛物线的函数表达式为y=﹣x2+2x+4;(2)∵点A(2,6)为抛物线的顶点,∴抛物线的对称轴l:x=2.①当AB为该等腰三角形的底边时:如图,点P在P2的位置.过点A作AC⊥y轴于点C,过点P2作P2D⊥AC交CA的延长线于点D,作P2E⊥y轴于点E,连接P2A,P2B,则P2A=P2B,∠D=∠P2EB=90°.∵A(2,6),B(0,4),AC⊥BC,∴AC=BC=2,∴△ABC是等腰直角三角形,∴∠CAB=∠CBA.∵P2A=P2B,∴∠P2AB=∠P2BA,∴180°﹣∠CAB﹣∠P2AB=180°﹣∠CBA﹣∠P2BA,即∠P2AD=∠P2BE.在△P2AD和△P2BE中,∠D=∠P2EB,∠P2AD=∠P2BE,P2A=P2B,∴△P2AD≌△P2BE(AAS),∴P2D=P2E.设,则P2E=m,,∴,解得(舍去)或,∴;②当AB为该等腰三角形的腰时,作点B关于l的对称点P1,由抛物线的对称性可知,AB=AP1.∵B(0,4),抛物线的对称轴为直线x=2,∴P1(4,4).综上可知,在l右侧的抛物线上存在点P,使得以P、A、B为顶点的三角形是等腰三角形,点P的坐标为(4,4)或.【考点3 等腰直角三角形的存在性】【典例3】(2022•黔东南州一模)抛物线y=ax2+bx﹣经过点(1,﹣1),现将一块等腰直角三角板ABC(∠ACB=90°)按照如图的方式放在第二象限,斜靠在两坐标轴上,且点A、C坐标分别为(0,2)、(﹣1,0).B点在抛物线y=ax2+bx﹣图象上.(1)求点B的坐标:(2)求抛物的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求出点P的坐标:若不存在,请说明理由.【解答】解:(1)过点B作BD⊥x轴,垂足为D.∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO(AAS),∴BD=OC=1,CD=OA=2,∴点B的坐标为(﹣3,1);(2)抛物线y=ax2+bx﹣经过点(1,﹣1),点B(﹣3,1),则,解得,所以抛物线的解析式为y=x2+x﹣;(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC(AAS),∴CM=CD=2,P1M=BD=1,∵OC=1,∴OM=1,∴P1(1,﹣1);②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴点P2(2,1),③以A为直角顶点的等腰Rt△ACP的顶点P有两种情况.即过点A作直线L⊥AC,在直线L上截取AP=AC时,点P可能在y轴右侧,即现在解答情况②的点P2;点P也可能在y轴左侧,即还有第③种情况的点P3.因此,然后过P3作P3G⊥y轴于G,同理:△AGP3≌△CAO,∴GP3=OA=2,AG=OC=1,∴P3为(﹣2,3);经检验,点P1(1,﹣1)与在抛物线y=x2+x﹣上,点P2(2,1)点P3(﹣2,3)都不在抛物线y=x2+x﹣上.综上,存在,点P的坐标为(1,﹣1).【变式1-1】(2022•兴宁区校级模拟)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;【解答】解:(1)由题意,解得:,∴二次函数的表达式为y=x2﹣2x;(2)过点A作直线AF⊥x轴于点F,由(1)得y=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),①AM=BM,∵B(8,0),∴BF=4,∵∠AFB=90°,AF=BF=4,∴△ABF是等腰直角三角形,∴M在点F处,△ABM是等腰直角三角形,此时M为(4,0),②AB=AM,由①得△ABF是等腰直角三角形,BF=4,∴AB===4,∴M为(4,﹣4﹣4)或(4,﹣4+4),③AB=BM,∵AB=BM,BF⊥AM,∴MF=AF,∴M为(4,4),综上所述,M为(4,0),(4,﹣4﹣4)或(4,﹣4+4)或(4,4);【变式3-2】(2022•禅城区二模)如图,抛物线经过原点O,对称轴为直线x=2且与x轴交于点D,直线l:y=﹣2x﹣1与y轴交于点A,与抛物线有且只有一个公共点B,并且点B在第四象限,直线l与直线x=2交于点C.(1)连接AD,求证:AD⊥AC.(2)求抛物线的函数关系式.(3)在直线l上有一点动点P,抛物线上有一动点Q,当△PBQ是以PQ为斜边的等腰直角三角形时,直接写出此时点P的坐标.【解答】解:(1)如图1,过点C作CE⊥y轴于点E,则∠AEC=∠DOA=90°,∵直线y=﹣2x﹣1与y轴交于点A,与直线x=2交于点C,∴A(0,﹣1),C(2,﹣5),∴E(0,﹣5),∴OA=1,OD=2,CE=2,AE=4,∴=,==,∴=,∵∠AEC=∠DOA,∴△AEC∽△DOA,∴∠CAE=∠ADO,∵∠ADO+∠DAO=90°,∴∠CAE+∠DAO=90°,∴∠DAC=180°﹣(∠CAE+∠DAO)=180°﹣90°=90°,∴AD⊥AC.(2)设抛物线的函数关系式为y=ax2+bx,∵对称轴为直线x=2,∴=2,∴b=﹣4a,∴y=ax2﹣4ax,由ax2﹣4ax=﹣2x﹣1,整理得ax2+(2﹣4a)x+1=0,∵直线y=﹣2x﹣1与抛物线有且只有一个公共点B,∴Δ=(2﹣4a)2﹣4a=0,解得:a1=,a2=1,当a=时,抛物线解析式为y=x2﹣x,联立得x2﹣x=﹣2x﹣1,解得:x1=x2=﹣2,∴B(﹣2,3)与点B在第四象限矛盾,故a=不符合题意,舍去,当a=1时,y=x2﹣4x,联立得x2﹣4x=﹣2x﹣1,解得:x1=x2=1,∴B(1,﹣3),点B在第四象限符合题意,∴a=1,∴该抛物线的函数关系式为y=x2﹣4x.(3)如图2,过点B作BQ⊥AB交抛物线于点Q,作GH∥x轴交y轴于点G,过点Q 作QH⊥GH,则∠AGB=∠BHQ=∠ABQ=90°,∴∠ABG+∠QBH=∠ABG+∠BAG=90°,∴∠QBH=∠BAG,∴△ABG∽△BQH,∴=,设Q(t,t2﹣4t),∵A(0,﹣1),B(1,﹣3),∴AG=2,BG=1,BH=t﹣1,QH=t2﹣4t+3,∴=,解得:t=1(舍去)或t=,∴BH=﹣1=,QH=()2﹣4×+3=,过点B作EF∥y轴,过点P1作P1E⊥EF,过点P2作P2F⊥EF,∵△PBQ是以PQ为斜边的等腰直角三角形,∴P1B=BQ=P2B,∵∠P1BE+∠EBQ=∠EBQ+∠QBH=90°,∴∠P1BE=∠QBH,∵∠BEP1=∠BHQ=90°,∴△BEP1≌△BHQ(AAS),∴EP1=QH=,BE=BH=,∴P1(﹣,﹣),同理可得:P2(,﹣),综上,点P的坐标为P1(﹣,﹣),P2(,﹣).1.(2022•榆阳区一模)如图,已知抛物线y=mx2+4x+n与x轴交于A、B两点,与y轴交于点C.直线y=x﹣3经过B,C两点.(1)求抛物线的函数表达式;(2)抛物线的顶点为M,在该抛物线的对称轴l上是否存在点P,使得以C,M,P为顶点的三角形是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将C(0,﹣3),B(3,0)代入y=mx2+4x+n中,∴,解得,∴y=﹣x2+4x﹣3;(2)存在点P,使得以C,M,P为顶点的三角形是等腰三角形,理由如下:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴M(2,1),对称轴为直线x=2,设P(2,t),∴MP=|t﹣1|,MC=2,CP=,①当MP=MC时,|t﹣1|=2,∴t=2+1或t=﹣2+1,∴P(2,2+1)或(2,﹣2+1);②当MP=CP时,|t﹣1|=,解得t=﹣,∴P(2,﹣);③当MC=CP时,2=,解得t=1(舍)或t=﹣7,∴P(2,7);综上所述:P点坐标为(2,2+1)或(2,﹣2+1)或(2,﹣)或(2,7).2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m的值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,∴,解得,,∴抛物线的解析式为y=﹣x2+x+8;(3)易证线BC的解析式为y=﹣x+8,向下平移5个单位得到y=﹣x+3,当y=0时,x=3,∴M(3,0),当x=0时,y=3,∴N(0,3),由题意得PD⊥MB,∵MB=8﹣3=5,D(m,﹣m+3),∴MD2=(m﹣3)2+(﹣m+3)2,BD2=(8﹣m)2+(﹣m+3)2,若△BMD是等腰三角形,可分三种情况:①当MB=MD时,∴(m﹣3)2+(﹣m+3)2=25,解得m1=3+,m2=3﹣,②当MB=BD时,∴(8﹣m)2+(﹣m+3)2=25,解得,m1=3(舍去),m2=8(舍去),③当MD+BD时,∴(8﹣m)2+(﹣m+3)2=(m﹣3)2+(﹣m+3)2,解得,m=5.5.综上所述,m的值为3+或3﹣或5.5时,△BMD是等腰三角形.3.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x 轴于点D,直线y=﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.【解答】解:(1)对于直线y=﹣x+3,令y=0,即﹣x+3=0,解得:x=3,令x=0,得y=3,∴B(3,0),C(0,3),∵A为x轴负半轴上一点,且OA=OB,∴A(﹣1,0).将点A、B的坐标分别代入y=﹣x2+bx+c中,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(3)存在.如图2,∵点P在x轴上,∴设P(m,0).∵C(0,3),D(1,0),∴由勾股定理,得:CD2=OC2+OD2=32+12=10,PD2=(m﹣1)2,CP2=OP2+OC2=m2+32=m2+9,分为三种情况讨论:①当CD=PD时,CD2=PD2,即10=(m﹣1)2,解得m1=1+,m2=1﹣,此时点P的坐标为(1+,0)或(1﹣,0);②当CD=CP时,CD2=CP2,即10=m2+9,解得m1=﹣1,m2=1(不符合题意,舍去),此时点P的坐标为(﹣1,0);③当PC=PD时,PC2=PD2,即m2+9=(m﹣1)2,解得m=﹣4,此时点P的坐标为(﹣4,0).综上所述,在x轴上存在点P,使得△PDC为等腰三角形,满足条件的点P的坐标为(1+,0)或(1﹣,0)或(﹣1,0)或(﹣4,0).4.(2022•鞍山模拟)抛物线与坐标轴交于A(﹣1,0)、B(4,0)、C(0,4),连接AC、BC.(1)求抛物线的解析式;(3)如图2,点E是抛物线上第一象限内对称轴右侧的一点,连接EC,点D是抛物线的对称轴上的一点,连接ED、CD,当△CED是以点E为顶点的等腰直角三角形时,直接写出点E的横坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线y=ax2+bx+c过A(﹣1,0),B(4,0),C(0,4)三点,∴.解得:.∴抛物线对应的二次函数的解析式为y=﹣x2+3x+4;(2)设G(x,﹣x2+3x+4),∵S△BHG=S△ABG﹣S△ABH,S△AHC=S△ABC﹣S△ABH,△BHG与△AHC的面积差为1,∵A(﹣1,0)、B(4,0),∴AB=5,(3)∵y=﹣x2+3x+4,∴抛物线对称轴为x=﹣=,,点E分别作EM⊥y轴于M,作EN⊥EM,过点D作DN⊥EN,垂足为N,∴∠CME=∠DNE=90°,∠MEN=90°,∵△CED是以点E为顶点的等腰直角三角形,∴∠CED=90°,∴∠CEM+∠MED=∠DEN+∠MED=90°,CE=DE,∴∠CEM=∠DEN,∴△EMC≌△END(AAS),∴CM=DN,设E(m,﹣m2+3m+4)(m>),∴4﹣(﹣m2+3m+4)=m﹣,∴m=或(不合题意,舍去),∴点E的横坐标为.5.(2022•渭滨区模拟)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣3,0),B(4,0)代入y=ax2+bx+4,∴,解得,∴抛物线的表达式为:;(2)存在点Q,使得以A,C,Q为顶点的三角形是等腰三角形,理由如下:令x=0,则y=4,∴点C(0,4),∵A(﹣3,0)、C(0,4),∴AC=5,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+4,设点M(m,0),则点Q(m,﹣m+4),①当AC=CQ时,过点Q作QE⊥y轴于点E,连接AQ,∵CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:舍去负值),∴点;②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或m=0(舍去0),∴点Q(1,3);③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:舍去);综上所述,点Q的坐标为(1,3)或.31。

初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思

初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思

《平行四边形存在性问题》教学设计执教者学情分析本节课是在已经进行过一轮复习,也适当做了一些往年的中考试卷,对于基础知识学生掌握的还是不错的,但对于综合性的题目却感觉困难,特别是动点问题。

对于这类问题存在以下几种情况:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。

2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。

3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。

针对以上情况,我希望通过本节课的学习,一方面帮助学生树立信心,让他们明白所谓的综合题都是由诸多小知识点组成的,所谓的动态问题可以变为“静”来解决,通过代数解决几何问题另一方面通过例题讲解让学生掌握解决这类题目的解题策略。

效果分析针对学生面临的困难:首先,我在教学时注意层次性,讲究循序渐进,由浅入深,由易到难,不要一步到位,逐步过渡。

其次,注意所选例题的典型性,选了最具代表性的两类动点问题产生的平行四边形形存在性问题,一类一个例题,这样就可由一题推及一类,让学生可触类旁通,达到举一反三的效果。

教学时注重这几个方面:1、利用几何画板动态画图,让学生体会点在运动过程中,图形会跟着发生变化。

在变化的过程中抓住某一瞬间,化“动”为“静”,使其构成平行四边形,再利用所学知识解决问题。

2、注重板书。

通过清晰的板书让学生一目明了如何分析平行四边形存在性问题。

3、注重数学思想方法的渗透。

数学思想方法是数学学科的精髓,是数学素养的重要内容之一,在数学教学和探究活动中始终体现这些数学思想方法,动点问题也不例外,因此,在数学教学中应特别注重这些思想方法的渗透,因为只有让学生充分掌握领会这种思维,才能更有效地运用所学知识,形成求解动点问题的能力。

动点问题中主要体现方程思想,数形结合思想,分类讨论思想等。

方程思想,大多数动点问题到最后都转化为方程形式,然后利用方程来求解。

数形结合思想,动点问题中,所研究的量的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

二次函数与几何综合类存在性问题课件

二次函数与几何综合类存在性问题课件

03
注意答案的完整性和规 范性;
04
在解答过程中,注意逻 辑的严密性和推理的准 确性。
02
二次函数与几何综合类存在
性问题的类型
以二次函数为背景的存在性问题
总结词
这类问题主要考察二次函数的性质,如开口方向、对称轴、顶点等,以及这些 性质在几何图形中的应用。
详细描述
这类问题通常会给出二次函数的一般形式,如$f(x) = ax^2 + bx + c$,然后要 求求解满足某些条件的点或线。例如,求函数$f(x) = x^2 - 2x$在$x$轴上的交 点,或求函数$f(x) = x^2 - 2x$的对称轴等。
3. 将代数结果和几何结果相互印证,得出最终结论。
04
二次函数与几何综合类存在
性问题的实例分析
实例一
总结词
利用抛物线的性质和点到直线距离公式,求出最小值。
详细描述
设抛物线方程为 $y = ax^2 + bx + c$,直线方程为 $y = mx + n$。首先,将抛线上的点 $(x, y)$ 到直线的距离表示为 $d = frac{|ax^2 + bx + c - mx - n|}{sqrt{m^2 + 1}}$。然后,利用抛物线的 性质和极值定理,求出 $d$ 的最小值。
实例三
总结词
利用双曲线的性质和点到直线距离公 式,求出最小值。
详细描述
设双曲线方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$,直线方程为 $y = mx + n$。首先,将双曲线上的点 $(x, y)$ 到直线的 距离表示为 $d = frac{|mx - y + n|}{sqrt{m^2 + 1}}$。然后,利用双曲线的性质和极值定理 ,求出 $d$ 的最小值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数在几何方面的应用——存在性问题一、 教学目标:知识与技能:通过本节课的专题学习体会二次函数与几何的综合应用,培养学生综合运用知识的技能,提高学生分析问题解决问题的能力。

过程与方法:利用数形结合思想,把“数”与“形”结合起来,互相渗透.同时熟练运用分类讨论的思想、方程的思想等各种数学思想方法。

情感态度与价值观:鼓励学生要知难而上,敢于挑战,激发学生学习数学的兴趣。

二、 教学重点、难点重点:二次函数与三角形、四边形、存在性问题综合应用;利用各种数学思想方法解决问题。

难点:二次函数与三角形、四边形、存在性问题的分析和解决。

教学方法:自主探索、合作交流。

教学手段:运用多媒体教学 三、 教学过程:类型一 特殊三角形的存在、探究问题【方法指导】1.探究等腰三角形的存在、探究问题时,具体方法如下:(1)若为存在问题,则先假设存在,再进行下一步;若为探究问题,则直接进行下一步; (2)当所给条件中没有说明哪条边是等腰三角形的底,哪条边是等腰三角形的腰时,要对其进行分类讨论,假设某两条边相等,得到三种情况;(3)设未知量,求边长.在每种情况下,直接或间接设出所求点的坐标(若所求的点在抛物线上时,该点的坐标可以设为(c bx ax x ++2,);若所求的点在对称轴上时,该点的坐标可以设为(ab2-,y ),并用所设点坐标表示出假设相等的两条边的长或第三边的长; (4)计算求解.根据等腰三角形的性质或利用勾股定理或相似三角形的性质列等量关系式,根据等量关系求解即可.探究等边三角形的存在、探究问题时,可以先求出该三角形为等腰三角形时的情况,然后求腰和底相等时的情况即可.2.探究直角三角形的存在、探究问题时,具体方法如下:(1)若为存在问题,则先假设存在,再进行下一步;若为探究问题,则直接进行下一步;(2)当所给的条件不能确定直角顶点时,分情况讨论,分别令三角形的某个角为90°; (3)设未知量,求边长,在每种情况下,直接或间接设出所求点的坐标(若所求的点在抛物线上时,该点的坐标可以设为(c bx ax x ++2,);若所求的点在对称轴上时,该点的坐标可以设为(ab2-,y ),利用所设点的坐标分别表示出三边的长,用勾股定理进行验证并求解. 【范例解析】例1(2013铜仁)如图,已知直线y =3x -3分别交x 轴、y 轴于A 、B 两点,抛物线y =x 2+bx +c 经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与A 点不重合). (1)求抛物线的解析式; (2)求△ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使△ABM 为等腰三角形?若不存在,请说明理由;若存在,求出点M 的坐标. ◆例题分层解析:(1)根据直线解析式求出点A 及点B 的坐标,然后将点A 及点B 的坐标代入抛物线解析式,可得出b 、c 的值,求出抛物线解析式.(2)由(1)求得的抛物线解析式,可求得点C 的坐标,继而求出AC 的长度,代入三角形面积公式即可计算.(3)根据点M 在抛物线对称轴上,可设点M 的坐标为(-1,m ),分三种情况讨论:①MA =BA ,②MB =BA ,③MB =MA ,求出m 的值后即可得出答案. ◆解题方法点析:根据题中要求,抓住形成等腰三角形的条件,采用分类讨论的思想,对三种可能性一一求解,做到不重、不漏。

◆解 析 :(1): ∵直线y =3x -3分别交x 轴、y 轴于A 、B 两点, ∴可得A (1,0),B (0,-3),把A 、B 两点的坐标分别代入y =x 2+bx +c 得: 1+b +c =0 解得 b =2c =-3, c =-3,∴抛物线解析式为y =x 2+2x -3;(2)令y =0得:0=x 2+2x -3, 解得:x 1=1,x 2=-3,则C 点坐标为:(-3,0), AC =4,故可得S △ABC = AC·OB = ×4×3=6;存在,理由如下:抛物线的对称轴为:x =-1,假设存在M (-1,m )满足题意,分三种情况讨论:①当MA =AB 时,解得:m =±6,∴M 1(-1,6),M 2(-1,-6); ②当MB=BA 时,解得:m =0或m =-6 ,∴M 3(-1,0),M 4(-1,-6)(不合题意舍去);③当MA =MB 时,, 解得:m =-1,∴M 5(-1,-1).答:共存在四个点M 1(-1,6)、M 2(-1,-6)、M 3(-1,0)、M 5(-1,-1)使△ABM 为等腰三角形.类型二 特殊四边形的存在、探究问题【方法指导】平行四边形的存在、探究问题,具体方法如下:(1)若为存在问题,则先假设存在,再进行下一步;若为探究问题,则直接进行下一步; (2)设出点坐标,求边长.直接或间接设出所求点的坐标(若所求的点在抛物线上时,该点的坐标可以设为(c bx ax x ++2,);若所求的点在对称轴上时,该点的坐标可以设为(ab2-,y ),若所求的点在已知直线y =kx +b 上时,该点的坐标可以设为(x ,kx +b ),并用所设点坐标表示出平行四边形某两条边的长(常利用相似三角形性质或勾股定理求解);(3)建立关系式,并计算;若四边形的四点位置已经确定,则直接利用四边形的边的性质进行计算;若四边形四点位置不确定,需分情况讨论:① 当已知边为平行四边形的某条边时,画出所有的符合条件的图形后,利用平行四边形对边相等进行计算;②当已知边为平行边形的对角线时,画出所有符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算.1212===对于特殊四边形的存在、探究问题,也会以探究菱形、矩形、正方形来设题,解题方法如下:(1)若为存在问题,则先假设存在,再进行下一步;若为探究问题,则直接进行下一步; (2)设出点坐标,求边长.(同上面例1的方法)(3)若四边形的四点位置已经确定,则直接利用四边形的边的性质进行计算;若四边形的点位置不确定,需分情况讨论:探究菱形的存在、探究问题时分两类:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标.一般会用到菱形的对角线互相垂直平分、四边相等等性质列关系式; 探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.探究正方形:利用正方形对角线互相平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解. 【范例解析】例2-1(2014济宁)如图,抛物线y = x 2+bx +c 与x 轴交于A (5,0)、B (-1,0)两点,过点A 作直线AC ⊥x 轴,交直线y =2x 于点C ; (1)求该抛物线的解析式;(2)求点A 关于直线y =2x 的对称点A ′的坐标,判定点A ′是否在抛物线上,并说明理由; (3)点P 是抛物线上一动点,过点P 作y 轴的平行线,交线段CA ′于点M ,是否存在这样的点P ,使四边形PACM 是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. ◆例题分层分析(1)将A 、B 两点坐标代入抛物线解析式中得到方程组,然后求解方程组即可.(2)求点A ′的坐标,需过点A ′作A ′E ⊥x 轴于点E ,再求A ′E 和OE 的长,可以通过△A ′EA 和△OAC 相似,求出AE 和A ′E ,得出点A ′的坐标. (3)点M 在线段CA ′上,设出直线CA ′的解析式,代入点A ′、点C 坐标可得解析式,点P在抛物线上可设点P (x , x 2-x - ),则M (x , x + ),点M 在点P 上方,可求MP ,再由MP =AC 求出合适的x 的值,则可得P 点坐标. ◆解题方法点析平行四边形、矩形、菱形、正方形等特殊四边形,是近年中考的热点问题之一,掌握它14542543414们的概念,了解它们之间的关系,掌握有关的性质和判定是解决这类问题大关键。

本题就是利用平行四边形的性质,对边相等,然后转化为函数或方程来求解。

◆解 析(1) ∵y = x 2+bx +c 与x 轴交于A (5,0)、B (-1,0)两点,∴ 0= ×52+5b +c b =- 10= -b +c , c = - ,∴抛物线的解析式为y = x 2-x - ;(2)过点A ′作A ′E ⊥x 轴于点E ,AA ′与OC 交于点D ,∵点C 在直线y =2x 上,∴点C (5,10), ∵点A 和A ′关于直线y =2x 对称, ∴OC ⊥AA ′,A ′D =AD . ∵OA =5,AC =10,∴OC∵S △OAC = OC·AD = OA·AC , ∴AD∴AA ′=,在Rt △A ′EA 和Rt △OAC 中,∵∠A ′AE +∠A ′AC =90°,∠ACO +∠A ′AC =90°,∴∠A ′AE =∠ACO . 又∵∠A ′EA =∠OAC =90°,∴Rt △A ′EA ∽Rt △OAC ,∴ , 即∴A ′E =4,AE =8,∴OE =AE -OA =8-5=3, ∴点A ′的坐标为(-3,4),当x =-3时,y = ×(-3)2+3- =4, ∴点A ′在该抛物线上;(3)存在.理由:设直线CA ′的解析式为y =kx +b ,代入点A ′(-3,4)和C (5,10),则 -3k +b =4 k = 5k +b =10, b =, ∴直线CA ′的解析式为y = x + . 141414145454==22510'A E AE ==''A E AE A A OA AC OC ==145434254342541454设点P 的坐标为(x , x 2-x - ),则点M 为(x , x + ). ∵PM ∥AC ,∴要使四边形PACM 是平行四边形,只需PM =AC .又∵点M 在点P 的上方,∴( x + )-( x 2-x - )=10. 解得x 1=2,x 2=5(不合题意,舍去),∴把x =2代入抛物线解析式得,y =- ,∴当点P 运动到(2,- )时,四边形PACM 是平行四边形.例2-2(2013郴州)如图,在四边形AOCB 中,AB ∥OC ,∠AOC =90°,AB =1,AO =2,OC =3,以O 为原点,OC 、OA 所在直线为轴建立坐标系.抛物线顶点为A ,且经过点C .点P 在线段AO 上由A 向点O 运动,点Q 在线段OC 上由C 向点O 运动,QD ⊥OC 交BC 于点D ,OD 所在直线与抛物线在第一象限交于点E . (1)求抛物线的解析式;(2)点E ′是E 关于y 轴的对称点,点Q 运动到何处时,四边形OEAE ′是菱形? (3)点P 、Q 分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t 秒,当t 为何值时,PB ∥OD ? ◆例题分层分析(1)根据顶点式将A 、C 代入解析式求出a 的值,进而得出二次函数解析式;(2)利用菱形的性质得出AO 与EE ′互相垂直平分,利用E 点纵坐标得出x 的值,进而得出BC ,EO 直线解析式,再利用两直线交点坐标求法得出Q 点坐标,即可得出答案;(3)首先得出△APB ∽△QDO ,进而得出APDQ =ABQO ,求出m 的值,进而得出答案. ◆解题方法点析:利用菱形的性质两条对角线互相垂直或四边相等关系转化为方程解决,也可以转化为等腰三角形问题解决。

相关文档
最新文档