污泥干化工艺比较

合集下载

污泥脱水工艺比选

污泥脱水工艺比选

污泥脱水工艺比选 Last updated on the afternoon of January 3, 20213.4.3污泥脱水工艺选择浓缩后的污泥由于含水量仍很高,体积庞大,且易腐败发臭,不利于运输和处置,所以需要进行脱水处理,这样可以降低污泥的含水率,减少污泥的体积,降低运输成本,浓缩后污泥可利用物质的含量增加(如农用的肥份、焚烧的热值等),且利于污泥的后续处置和利用。

常用的污泥脱水方法有自然干化和机械脱水两种,自然干燥是利用自然力量(如太阳能)将污泥脱水干化的一种常用方式,传统上常用的是污泥干化床。

该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区,在城市污水厂较少采用。

机械脱水是目前世界各国普遍采用的方法。

常用的脱水机械有真空过滤机、板框压滤机、带式压滤机和离心脱水机。

近年来,转筒离心机和带式压滤机得到迅速发展,作为污泥脱水的主要机种在世界各国得到广泛应用。

污泥脱水目前使用较多的有三种方式,一是板框压滤机,二是离心脱水机,三是叠螺机,四是带式压滤机,就脱水效果看,板框压滤机脱水后污泥的含水率最低,可达70%-75%,离心脱水机、叠螺机和带式压滤机相当,含水率可达75-80%左右。

就工程造价而言,板框:离心:叠螺:带式=100:70:50:40。

就造价而方言,带式压滤机的性价比最好。

现将板框压滤机、离心机、叠螺机与带式脱水机进行技术经济比较,结果见表3-3。

表3-3 污泥脱水设备比较根据分析比较与综合考虑该废水的实际情况,污泥浓缩脱水采用叠螺机。

其具有以下优点:(1)能自我清洗,不阻塞,低浓度污泥直接脱水,无很大异味;转速慢,省电,无噪音和振动;实现全自动控制,24小时无人运行。

(2)处理效果稳定,泥饼含固率都可保证在20%以上。

(3)故障率极低,操作时间短,简单容易。

(4)占地面积小,安装方便。

(5)用电量小,冲洗水少,用药量基本相当,相对运行成本低。

(6)现已国产化,进口设备的易损件部分也可在国内加工制作。

分析比较几种污泥干化工艺

分析比较几种污泥干化工艺

分析比较几种污泥干化工艺作者:黄华来源:《城市建设理论研究》2013年第31期摘要:污泥干化是污泥实现无害化、减量化、资源化处理的关键。

本文通过分析比较国内常用的几种污泥干化工艺,为污泥处置提供一些参考意见。

关键词:污泥干化无害化减量化资源化隔膜压滤组合式烟气蒸汽导热油中图分类号:[TU992.3] 文献标识码:A1前言随着世界人口的不断增长和城市化进程的飞速发展,城市污泥产量的与日俱增和环境质量标准的日益严格,污泥的处理和处置已经成为一个敏感的全球环境问题。

污泥干化焚烧是污泥无害化处置的重要方法。

污泥干化焚烧可以使污泥的体积减少到最小化(减量90%以上);可以回收能量,用于污泥自身的干化或发电供热;能够使有机物全部碳化,杀死病原体,使污泥彻底无害化。

但污水处理厂产生的污泥因含水率高,不能简单作为发电燃料应用,污泥要作为发电燃料,必须进行干化处理。

采用何种污泥干化工艺是本文分析比较的重点。

2污泥干化工艺介绍污泥干化工艺主要分机械压榨干化工艺和加热烘干干化工艺,其中机械压榨干化工艺又包含普通机械干化工艺、隔膜压滤干化工艺、组合式机械干化工艺;加热烘干干化工艺又包含烟气热干化工艺、蒸汽热干化工艺、导热油热干化工艺。

2.1 普通机械干化工艺2.1.1工艺介绍我国常用的普通机械脱水方式为带式压滤脱水机脱水和螺旋压榨式离心机脱水。

这两种机械均为通过一级压榨过滤使初始浓度为约97%含水率的污水变成80%水分左右的污泥。

2.1.2工艺特点优点:带式压滤脱水机具有低速运行,无噪声,处理量较大;螺旋压榨式离心机处理能力相对较大,可连续运转。

缺点:带式压滤机存在现场环境差、臭味大、湿气大,易造成二次污染,而螺旋压榨离心机则电耗比较大。

通常情况下,处理100t/d的污泥,电机功率需要60kW左右。

另外,以上两种形式处理后含水率只能达到75~80%左右,不能满足污泥进锅炉焚烧的要求。

2.2隔膜压滤干化工艺2.2.1工艺介绍污水处理过程中产生的污泥通过泵输送到污泥处理池内,经过加药调质(药剂PAM和絮凝剂),搅拌处理,污泥与药剂充分反应,污泥含水率调理为95%~97%,再通过泵输送到污泥隔膜压滤机内,经过过滤压榨后,分解成45%~55%水分的干泥与滤液,干污泥可通过锅炉焚烧处理。

污泥脱水及干化工艺知识

污泥脱水及干化工艺知识

污泥脱水及干化工艺知识一、污泥概述 (1)1. 污泥的分类 (1)2. 污泥的要紧成分 (1)3. 污泥处理、处置存在的问题 (1)4. 污泥的脱水与干化 (2)二、污泥的要紧处理、处置途径 (3)1. 污泥处理、处置的工艺路线 (3)2. 污泥处置方式 (3)三、污泥浓缩 (5)1. 污泥浓缩工艺 (5)2. 污泥浓缩工艺的进展趋势 (6)四、污泥脱水 (7)1. 带式压滤脱水机 (8)2. 离心式脱水机 (10)3. 板框式压滤脱水机 (12)五、污泥干化〔干燥〕 (15)1. 污泥干化概述 (15)2. 污泥干化工艺 (16)3. 污泥干化设备 (18)1〕三通式回转圆通干燥机 (18)2〕一般回转圆通干燥机 (20)3) 间接加热式回转圆通干燥机 (21)4) 带粉碎装置的回转圆通干燥机 (21)5) 带式干燥机 (21)6〕浆叶式干燥机 (22)7〕盘式干燥机 (23)8〕蝶式干燥机 (23)9〕太阳能干燥工艺 (24)10〕流化床干燥工艺 (24)六、污泥处理处置工艺选择 (25)1. 污泥干化工艺选择 (25)2. 污泥干化-焚烧工艺选择 (25)七、污泥干化实例 (27)1. 上海石洞口污水处理厂污泥干化、焚烧工程 (27)2. 杭州市固废中心〝热干燥造粒技术〞 (28)3.意大利涡龙公司污泥涡轮干燥技术 (29)4. 德国拉文斯堡流化床系统爱雪唯斯流化床干化系统 (30)5. Andritz的EcoDry技术 (32)八、综述 (33)附1 相关信息检索关键词 (34)附2 相关资料来源 (34)污泥的产生在人类活动过程中是不可幸免的。

污水处理产生的大量污泥的任意堆放和投弃对环境造成了新的污染,如何妥善处置这些污泥已成为全球共同关注的课题。

一、污泥概述污泥(sludge) 是由水和污水处理过程所产生的固体沉淀物质。

1. 污泥的分类依照其来源,污泥能够划分为:1〕市政污泥(sewage sludge),要紧指来自污水厂的污泥,这是数量最大的一类污泥。

常用污泥脱水处理技术比较

常用污泥脱水处理技术比较
从这几种常用的污泥脱水方法的研究可以看出,目前的 研究主要有三个方向,1)是改进 加热 和 传 热方 式 使 水蒸 发,如 干 化 和 焚 烧 技 术 ;2)是 改 变 污 泥 颗 粒 的 结 构 ,破 坏 菌 胶 团 表 面 的 有 机 质 疏 水 膜,如 超 声 波 处 理 技 术 ;3)是 改 变 污 泥 胶 粒 表面的双电层结构,如混凝技术。 相信随着研究的不断深入 和技术的不断成熟,这些方法将会为污泥的处理提供更多的 选择。
从处理原理来看,无机絮凝剂主要是通过中和作用促使 污泥微粒凝聚来达到分离污泥的作用,而有机絮凝剂除了中 和作用外还利用长分子链的吸附架桥作用将水中细小颗粒 吸附并纠缠在一起,更易形成较大的颗粒。 相比较而言,有机
生 絮凝剂用量少,无腐蚀性,但成本偏高。 很多处理厂为降低
污泥调质的综合费用进行大量实验,通过两种或两种以上的
术有较高要求。 适用于土地紧张的大型污水处理厂或较集 中的多个中小型污水处理厂污泥的集中处理。
2 超声波脱水技术
污泥中所含的水可分为自由水(70%)、菌胶团包含水(27%)、 毛细管水(2%)和结合水(1%)四类。 其中自由水的去除较为容 易,而毛细管水和结合水虽然较难去除,但含量很少,可忽 略不计。 菌胶团中心为固体颗粒,周围吸附了大量的微生物 极 其 代 谢 的 产 物(糖 类 、脂 类 、有 机 酸 和 蛋 白 质 等 ),这 些 吸 附
该材 料 具 有 PTFE 的 耐 腐 蚀特 性 ,稳 定性 和 力 学性 能 比 为 25~35 年,是用于永久性多层可移动屋顶结构的理想材料。
PTFE 要 好 ,同 时 又 有 对 金 属 特 有 的 较 强 粘 着 特 性 ,克 服 了 参考文献:
聚四氟乙烯对金属的不粘合性缺 陷,其平 均 线 膨胀 系 数 接近 [1] 张之秋,杨文芳.建筑膜材发展及应用现状[J].新型建筑材

污泥处理处置方法及技术比较

污泥处理处置方法及技术比较

污泥处理处置方法及技术比较一、污泥处理处置方法及技术比较污泥的处理处置有填埋、农用和焚烧等多种方法,但所有的处理处置方法应符合稳定化、无害化、减量化和力争资源化的原则。

1.污泥无害化处理研究现状和发展趋势污泥是一种由有机残片、细菌体、无机颗粒和胶体等组成的非均质体。

它很难通过沉降进行彻底的固液分离。

污水处理产生的污泥是典型的有机污泥,其特性是有机物含量高(60%~80%),颗粒细(0.02~0.2mm),密度小(1002~1006Kg/m³),呈胶体结构,是一种亲水性污泥,容易管道输送,但脱水性能差。

随着污泥水分的减少,污泥从纯液状流动到粘滞状、塑性性状、半干固体状直到纯固体状这一过程进行变化。

通常浓缩可将含水率降到85%(含水状态);含水率在70%~75%时,污泥呈柔软状态,不易流动;通常一般脱水只可降到60%~65%,此时,几乎成为固体;含水率低到35%~40%时,成聚散状态(以上是半干化状态);进一步低到10%~15%则成粉末状。

污泥处理的总目标是确保污泥中的有毒有害物质,无论是现在还是将来都不致对人类及环境造成不可接受的危害。

污泥的处理先后经过了海洋投弃、土地填埋、堆肥化、干燥和焚烧等多种处理方法,逐步走向成熟,目前污泥的焚烧在污泥的最终处置方法中占有比较大的优势。

欧洲国家目前污泥的主要处置方式为农用、填埋和焚烧。

表3-1是目前欧洲各国的污泥情况。

随着欧盟各国签订的停止向海洋投弃污泥的协议生效,各成员国已逐步停止向海洋投弃,海岸国家受此协议的限制,已纷纷转用焚烧法。

卫生填埋操作相对简单,投资费用较小,处理费用较低,适应性强。

但是其侵占土地严重,如果防渗技术不够,将导致潜在的土壤和地下水污染。

污泥卫生填埋始于20世纪60年代,污泥填埋是欧洲特别是希腊、德国、法国在前几年应用最广的处置工艺。

由于渗滤液对地下水的潜在污染和城市用地的减少等,对处理技术标准要求越来越高(例如德国从2000年起,要求填埋污泥的有机质含量下坡与5%),许多国家和地区甚至坚决反对新建填埋场。

污泥干化焚烧工艺

污泥干化焚烧工艺

污泥干化焚烧工艺1.污泥干化机理干化是为了去除污泥中的水分,提高污泥的热值,水分的去除要经历两个主要过程(1)蒸发过程:物料表面的水分汽化,由于物料表面的水蒸气压低于介质(气体)中的水蒸气分压,水分从物料表面进入介质。

(2)扩散过程:是与汽化密切相关的传质过程。

当物料表面水分被蒸发掉形成的物料表面湿度低于物料内部湿度,此时,需要热量的推动力将水分从内部转移到表面。

上述两个过程的持续交替进行基本反映了干化的机理。

污泥干化的加热方式可以分为直接干化和间接干化。

不同的加热形式决定了不同类型的干化工艺,直接干化是将高温烟气直接引入干化器,通过气体与湿物料的接触、对流进行换热,直干化将增加污染性气体。

代表设备有流化床干燥机;间接干化是将高温烟气的热量通过热交换器传给热介质(导热油或蒸汽),热介质在一个封闭的环路中循环,与污泥没有接触。

间接干化存在一定的热损失,但需要处理的烟气量小,不会产生二次污染。

代表设备有桨叶式干燥机2.流化床干化工艺。

2.1设备结构及工作原理目前国外焚烧处理污泥的技术流派很多,但主要应用的主要是两种方法:一、流化床干化技术、二、浆叶式干化技术流化床干化工艺采用流化床干燥机。

流化床干燥机从底部到顶部基本由三部分组成:(1)风箱:用于通过气体分布板将循环气体分送到流化床装置的不同区域。

(2)中间段:通过其中的热交换器将热量传递给污泥,并使之干化。

(3)抽吸罩:使流化的干颗粒脱离循环气体,而循环气体带着污泥细粒和蒸发的水分离开干化机。

流化床干化机工作原理如图1所示。

流化床干化系统的密封设计避免系统内的气体泄漏到大气中,同时避免大气进入干化系统。

密封设计是严格安全标准的前提,通过保证系统内部的惰性气体化(<6%容积,在开机、停机和运行等不同工况)实现。

通过冷却,循环气体以及水蒸汽的温度由85℃降到60℃。

而冷却水重新循环到污水处理厂。

而经过冷却及洗涤的循环气体通过风机回到流化床内。

流化床中出来的干化颗粒则通过惰性气体回路中的振动型冷床将温度降到<40℃。

污泥干化概况

污泥干化概况

污泥干化1.不同的干化工艺为什么工艺气量不同?工艺气量的大小决定于工艺本身所采用的热交换形式。

热传导为主的系统,需要的气量小,因为气体主要起湿分离开系统的载体作用;而热对流系统则依赖气体所携带的热量来进行干燥,因此气量较大。

转鼓式干燥器的干燥依靠热对流,因此气量的大小必须满足携带热量的全部需要;流化床系统也是以热对流为主要换热手段的工艺,由于流化态的形成要求工艺气体具有更高的速度,因此总的气量需求更高;圆盘式工艺以热传导为主要手段,理论上仅需抽取蒸发量。

但是由于蒸汽在上部易于形成饱和,而下部易于形成高温、高粉尘浓度,因此,气体的流量决定了工艺的安全性和粉尘分布。

涡轮薄层干燥器是采用热对流和热传导两者并重的一种特殊工艺,气量小于纯热对流系统,大约是一个标准热对流系统的1/2-1/3。

转碟式是纯粹的热传导型干燥器,依靠碟片、主轴或热壁的热量与污泥颗粒的接触、搅拌进行换热,其中的热量来自填充在其中的导热油。

这一工艺无需气体。

2.为什么干化系统必须抽取气体形成微负压?抽取微负压的目的有两个:1)由于干化系统必须是闭环,在干化过程中,污泥中携带的某些物质被热解,形成不可凝气体,这些气体无法被冷却水冷凝,因此不断在回路中积聚,最终可能形成饱和。

不可凝气体具有可燃性,这将降低系统内粉尘爆炸下限,给干化系统带来危险,因此,避免不可凝气体在回路中的饱和是安全性的重要内容之一;2)大量工艺气体在系统内的流动依靠引风机进行,不可凝气体的积聚,将使得系统内形成超过环境压力的正压,此时,工艺气体可能提供各种可能的缝隙、出口离开回路,形成臭气泄漏,这在安全性和卫生性方面是不可接受的,因此必须通过动力装置(风机)从回路中排出,送往生物过滤器或热源装置处理掉。

3.间接干化工艺的热源-导热油锅炉如何选型?间接干化工艺是指热源与污泥无接触,换热是通过介质进行的,当这个介质为导热油时,需要使用到导热油锅炉。

导热油锅炉在我国是一种成熟的化工设备,其标准工作温度为280度,这是一种有机质为主要成份的流体,在一个密闭的回路中循环,将热量从燃烧所产生的烟气转移到导热油中,再从导热油传给介质(气体)或污泥本身。

污泥干化技术总结

污泥干化技术总结

工业污泥干化
工业污泥干化是指对工业生产过程中产生的污泥进行干化的过程。由于工业污泥中含有大量的重金属 、有毒有害物质和放射性物质,需要进行特殊的处理和处置。
工业污泥干化的方法主要有高温干化和低温干化两种。高温干化可以将污泥中的水分迅速蒸发,同时 还可以杀灭病菌和寄生虫卵。低温干化则是利用低温空气进行自然风干,这种方法比较经济,但干化 速度较慢。
资源化利用
干化后的污泥可作为肥料 、建筑材料等资源进行再 利用,实现资源循环利用 。
污泥干化技术的发展历程
自然干化阶段
早期的污泥干化主要采用自然 晾晒的方式,但效率低下,占
地面积大。
机械干化阶段
随着技术的发展,出现了各种 机械式干化设备,如带式干化 、转鼓干化等,提高了干化效 率。
热能干化阶段
利用外部热源提供热量进行干 化,具有更高的能量利用效率 和更低的能耗。
资源化利用
污泥干化后的产物可以作为肥料、 土壤改良剂、建材原料等,实现资 源化利用,减少对环境的压力。
智能化控制
随着物联网、大数据等技术的发展 ,污泥干化技术将逐步实现智能化 控制,提高生产效率和稳定性。
市场发展前景
市场需求增长
01
随着城市化进程的加速和污水处理量的增加,污泥干化技术的
市场需求将不断增长。
竞争格局变化
02
随着技术的进步和市场需求的增加,污泥干化技术的竞争格局
将发生变化,部分技术落后、服务不佳的企业将被淘汰。
跨国合作与交流
03
随着全球环境治理术发展的重要趋势。
技术创新与政策支持
技术创新
鼓励企业加大研发投入,推动污泥干化技术的创新发展,提高技术水平和市场竞 争力。
环保监管
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污泥干化工艺比较污泥干化(sludgedrying),通过渗滤或蒸发等作用,从污泥中去除大部分含水量的过程,一般指采用污泥干化场(床)等自蒸发设施。

污泥的处理和处置已经成为一个敏感的全球环境问题,污泥干化焚烧可以使污泥的体积减少到最小化(减量90%以上);可以回收能量,用于污泥自身的干化或发电供热;能够使有机物全部碳化,杀死病原体,使污泥彻底无害化。

但污水处理厂产生的污泥因含水率高,不能简单作为发电燃料应用,污泥要作为发电燃料,必须进行干化处理。

干化了的污泥的处理方法相较于湿污泥也灵活多样,它可以作为辅助燃料与煤混合燃烧,提供热能,做到循环利用,也可作为堆肥的辅料等。

1污泥干化所需能源比较干化的主要成本在于热能,降低成本的关键在于是否能够选择和利用恰当的热源。

干化工艺根据加热方式的不同,其可利用的能源来源有一定区别,一般来说间接加热方式可以使用所有的能源,其利用的差别仅在温度、压力和效率。

直接加热方式则因能源种类不同,受到一定限制,其中燃煤炉、焚烧炉的烟气因量大和腐蚀性污染物存在而难以使用,蒸汽因其特性无法利用。

按照能源的成本,从低到高,分列如下:烟气:来自大型工业、环保基础设施(垃圾焚烧炉、电站、窑炉、化工设施)的废热烟气是零成本能源,如果能够加以利用,是热干化的最佳能源。

温度必须高,地点必须近,否则难以利用。

燃煤:非常廉价的能源,以烟气加热导热油或蒸汽,可以获得较高的经济可行性。

尾气处理方案是可行的。

热干气:来自化工企业的废能。

沼气:可以直接燃烧供热,价格低廉,也较清洁,但供应不稳定。

蒸汽:清洁,较经济,可以直接全部利用,但是将降低系统效率,提高折旧比例。

可以考虑部分利用的方案。

燃油:较为经济,以烟气加热导热油或蒸汽,或直接加热利用。

天然气:清洁能源,但是价格最高,以烟气加热导热油或蒸汽,或直接加热利用。

2污泥干化工艺介绍目前污泥干化的工艺比较多,有带式干化、薄层干化、流化床干化、桨叶式干化等。

下面主要介绍一下带式干化、薄层干化技术。

所需能源为蒸汽。

2.1低温带式干化工艺带式干化为中低温干化(≦150℃或≦100℃),其余为高温干化(≧200℃)。

A、节能:采用热电工段多余的低温蒸汽作为热源,节省大量的热能。

B、安全:污泥本身在蒸发时温度不超过80℃,因此不存在燃烧、爆炸等危险,因此系统是很安全的。

无需对氧浓度进行控制,也无需导入惰性气体。

C、环保:采用闭环环风工艺,工艺气体在干燥设备内循环工作。

从干燥腔出来的气体先通过冷凝器将气体进行冷凝,去除水份后再进入干化机,只有少量气体(400m3/h)进入生物过滤器。

1)污泥存储与输送污泥从脱水机出来后,通过输送设备输入一台撬装式料仓(S102),料仓的体积为20m3,可缓存2天的脱水机产量。

料仓的料位采用超声波料位计(LT9210)检测,高低位时报警。

料仓底部安装有一台五螺旋湿泥输送机(C101-105),由此设备将污泥输入一台污泥泵(P102),使用多螺旋输送机的优点是可以防止污泥桥架。

P102带干运行保护器,当污泥出现缺料的状况时,定子超温,则系统进行停机并报警。

污泥的流量调节通过变频器来进行。

输送污泥输送管道采用耐压的无缝不锈钢管,管路直径为DN200,壁厚为6mm。

管路上装有在线压力检测装置,由PLC检测及控制。

当压力超过设定值时,表示管道堵塞,需要进行清理,这时停螺杆泵并报警。

2)全封闭管式面条机(GU01/02)由于污泥的性质不一样,我们选用了全封闭管式面条机。

全封闭管式面条机由污泥分配器、管式面条机、旋转刮板及清洗装置组成。

污泥泵提供1-8bar的压力,将污泥通过管路输入污泥分配器里。

在这里,污泥通过几组柔性连接管路,输入到管式面条机里,然后通过模孔挤压形成面条。

内部刮板在旋转时将面条隔断,同时清洁模孔。

当模孔出现堵塞时,管路压力升高,这时系统报警,通知操作人员关闭面条机,同时启动备用面条机。

面条机为可拆卸式,堵塞的面条机由操作人员拆卸并清洗,然后再安装上,整个过程约1小时。

3)带式干燥器T101条状污泥被从面条机GU01连续输入干燥器T1并形成均衡的堆积,并在利用热气进行烘干的同时随同输送带TM101和TM102移动。

传动带宽度为2米,为带细长孔的不锈钢板。

干燥区域被分割成2个独立的干燥模块,在每给模块里干燥气体流穿过污泥。

干燥气体向下吹并与污泥行进方向相反。

干燥器传送带TM101和TM102各通过一个0.37KW的电机驱动,并都装有扭矩传感器。

在上传送带末端污泥翻转掉在下传送带上,通过干燥腔然后再进入进料腔,在这里污泥掉进排放冷却螺旋输送机C107里。

污泥通过上传送带TM101传送通过2个模块时温度逐步上升(110℃to140℃),并将污泥加热到设定的温度(80℃)以实行蒸发过程。

然后污泥直接掉在第二个传送带上,在这里完成蒸发过程,并在通过前面几个模块时逐步降温。

最后含固率90%的干泥通过排放螺旋输送机C107进行冷却排放进入管链输送机TD100,由管链输送机输送到干污泥料仓S104,S104设置有温度和CO检测,并与氮气瓶组相连,在温度或CO浓度升高时开启电磁阀,导入氮气,确保系统安全。

最终产品在干污泥仓的堆积密度在600-700kg/m³。

可存储外运。

4)热处理过程由H104预热的干燥气体由进气鼓风机V-101通过混合室和个一个节气阀输入第1号模块。

再通过抽气鼓风机V-102抽出,做横向循环。

同时热风在每个腔室内通过循环鼓风机VT101-102做纵向循环,在每个腔室内有一个热交换器(HT-101-102),通入的0.45MPa的蒸汽将循环风进行加热,热风再对污泥进行干燥。

PLC通过检测腔室内的温度来控制蒸汽调节阀的开度,循环风机使干燥气体在模块里循环以保持每个模块里所需的温度,并确保气流以1m/秒的速度均匀地穿过干燥器传送带。

每个腔室内均安装有一个温度探头(TT9270-9273),用以检测腔室内的温度,如果其中任何一个探头检测到温度超过设定的值,则紧急冷却水电磁阀SV101打开进行喷淋,同时系统停机并报警。

2.2卧式薄层干化工艺卧式薄层干化机主要由外壳,转子&叶片,驱动装置三大部分组成,外壳为压力容器,其壳体夹套间可注入蒸汽或导热油作为污泥干燥工艺的热媒,材质为欧标的耐高温锅炉钢;内筒壁作为与污泥接触的传热部分,提供主要的换热面积以及形成污泥薄层的载体,其材质有多种材料可选,其中Naxtra-700高强度结构钢覆层材料广泛适用于市政/化工行业污泥,防腐、耐磨性优于其他材料;转子为一根整体的空心轴,其特殊的加工工艺可以确保转子在受热的同时高速转动时不产生挠度,始终使叶片与内筒壁的距离保持5-10mm,在转子的转动及叶片的涂布下,进入干化机的污泥会均匀的在内壁上形成一个动态的薄层,污泥薄层不断的被更新,在向出料口推进的过程中不断的被干燥!1)机械脱水后的污泥经机械脱水达到15%含固率,由螺旋输送器输送至污泥缓冲料仓。

2)污泥缓冲给料仓中的污泥由污泥给料泵连续送入干化机,污泥给料泵变频控制,24小时连续运行。

3)进入卧式薄层干化机中的污泥被转子分布于热壁表面,转子上的浆叶在对热壁表面的污泥反复翻混的同时,向前输送到出泥口。

在此过程中,污泥中水分被蒸发。

卧式薄层干化机由带加热层的圆筒形壳体、壳体内转动的转子和转子的驱动装置三部分组成。

利用10barg的饱和蒸汽作为热媒。

干化机各部分材质根据污泥性质和干化机使用年限确定,本方案暂定的配置为:加热层采用内衬耐磨高强度结构钢复层材质的碳钢结构。

其他与污泥接触的不加热部分采用不锈钢316L。

4)自卧式薄层干化机产出的含固率满足设计要求的干污泥进入污泥冷却器,污泥产品通过冷却器壳体内流动的冷却水进行冷却。

冷却后的污泥根据业主要求输送到干污泥料仓等待后续外运处理。

5)干化过程中产生的废蒸汽在干化机内部与污泥逆向运动,由污泥进料口上方的蒸汽管口排出,进入冷凝器。

冷凝器使用喷淋水对尾气进行降温,其中一些不凝气进入液滴分离器进行分离。

降温后的尾气约50℃,通过风机进入臭气处理系统进行处理。

6)自干化系统排出的废气约为系统水蒸发量的5-10%,废气引风机使整个干化系统处于负压状态,这样可以避免臭气及粉尘的溢出。

由于本工艺废气量很小,可直接通入污水场现有臭气处理装置进行处理。

7)卧式薄层污泥干化工艺可通过污泥中的蒸发水自实现系统内惰性化的要求。

采用新鲜水/低压蒸汽作为紧急情况下干化系统的惰性化介质。

1) 低能耗---系统热能消耗最低;2) 热回收---如有需要,可回收80%左右的热量。

3) 尾气处理---尾气产生量极少,处理简单,费用低。

4) 长寿命设计和低维护要求:低维护---转动设备数量最少;低磨损---更低的外缘线速度,约10m/s,低转速决定了低磨损;防腐蚀---与介质接触的非加热部件采用不低于SS316的材质;高耐磨---与介质接触的加热部件采用特殊高耐磨钢覆层。

1) 适用于多种不同种类污泥。

2) 不受污泥含水率限制,无需返混,产出任一含固率污泥。

3) 固体载荷低,排空时间短,启停方便。

4) 排放尾气量少,粉尘量低,不需要定期冲洗。

污泥的干化处理势在必行,污泥干化工艺也很丰富,希望以后学习接触更多的工艺,再做进一步介绍。

相关文档
最新文档