干扰素γ及其受体与信号通路研究进展

合集下载

干扰素

干扰素

干扰素抗病毒研究进展摘要: 干扰素(IFN)是一种广谱感病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制乙肝病毒的复制;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。

它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性IFN具有毒副作用小,高剂量仅有一般生物制剂的常见反应,抗原性弱,可反复应用等优点。

随着IFN基因工程产品在临床上的推广应用,将大大提高病毒性疾病的治疗效果,具有广阔的应用。

关键词:干扰素;抗病毒活性;抗肿瘤免疫;生物学特性;1 干扰素的分类和生物学活性IFN蛋白家族基于它们的基因序列、染色体定位和受体特异性[2]分为3型,即Ⅰ型、Ⅱ型和Ⅲ型干扰素,Ⅰ型包括IFN-α、β、ω、ε、κ [3]、δ、τ、δ[4]等,但IFN-δ、τ、δ只在猪、牛、反刍动物和鼠体内检测到,在哺乳动物中IFN-α/β是多基因家族,IFN-α包括25个以上的亚型[5]。

Ⅱ型干扰素由单基因家族IFN-γ构成,又称为免疫干扰素。

Ⅲ型干扰素是一种新发现的细胞因子,与Ⅰ型干扰素关系密切,称为IFN-λ[6-7],研究认为Ⅲ型干扰素有特殊的生理学功能[8]。

干扰素本身并非直接抗病毒物质,其抗病毒作用体现在多方面。

IFN对于病毒复制的任何阶段都具有靶向作用,包括穿入、转录、RNA稳定性、翻译起始、成熟、装配和释放过程。

2 干扰素的研究意义近年来,国际反病毒和抗癌研究领域,在自然免疫调节和抗病毒物质,作为一种天然抗病毒蛋白质干扰素人类开发更多的关注。

干扰素将成为一个21世纪的反病毒,防癌,其中最广泛使用的药物之一。

α-干扰素治疗慢性乙型肝炎是目前抗病毒药物的第一选择是,对肝炎的药物治疗总有效率约为20%-30%。

IFN-γ研究进展与临床应用

IFN-γ研究进展与临床应用

IFN-γ研究进展与临床应用作者:李靖,董文学,杨美盼,等来源:《卫生职业教育》 2019年第23期李靖1,董文学2,杨美盼1,马利锋1,康龙丽1(1.西藏民族大学医学部高原相关疾病分子遗传机制与干预研究重点实验室,陕西咸阳712082;2.西藏民族大学医学部基础医学院,陕西咸阳 712082)摘要:干扰素是细胞被病毒感染时产生的一类细胞因子,调控感染后固有免疫和获得性免疫反应。

干扰素γ作为干扰素家族的一员,已被广泛应用于自身免疫疾病的治疗中。

本文概述IFN-γ的定义、结构、理化特性、来源、生物学活性、临床应用等,讨论IFN-γ的应用前景。

关键词:干扰素;IFN-γ;分子结构;作用机制;临床应用中图分类号:R593.2文献标识码:A文章编号:1671-1246(2019)23-0157-03干扰素(Interferon)由英国病毒学家Alick Isaacs和瑞士研究者Jean Lindenmann在研究病毒的干扰现象时发现,他们在鸡胚绒毛膜尿囊膜的培养液中加入流感病毒,发现产生了一类抗病毒物质,并命名为干扰素[1]。

干扰素是细胞被病毒感染时产生的一类细胞因子,调控感染后固有免疫和获得性免疫反应[2]。

国际干扰素命名委员会按干扰素的抗原特异性将其分为3型:IFN-α、IFN-β和IFN-γ,各型又因氨基酸序列的不同分为若干个亚型,IFN-γ可能有4个亚型[3]。

IFN-α和IFN-β属于Ⅰ型干扰素,为病毒或人工合成的聚核苷酸诱导白细胞产生,IFN-γ为特异性抗原(细菌、LPS)、PHA和卡介苗(BCG)等刺激T细胞产生。

因此,干扰素γ(IFN-γ)作为干扰素家族的一员,也是一类多功能、活性高的细胞因子。

1 IFN-γ概述1.1 IFN-γ的分子结构ISG(干扰素基因)为编码IFN-γ的基因,位于人类12号染色体(12q24.1),长6 kb,基因中包含3个内含子和4个外显子。

IFN-γ由146个氨基酸组成,其活性形式为二聚体结构,由两个完全相同的多肽链组合而成,多个内部螺旋(螺旋E、螺旋F)将两部分紧密地连在一起,保持其生物学活性,并确保Ⅱ型干扰素与Ⅰ型干扰素有最低程度的同源性。

干扰素研究进展

干扰素研究进展
达 , 增 强 MHCI类 分 子 的 表 达 而 抑 制 MHCⅡ类 分 子 表 达 。 I N 是 由 活 化 T细 胞 和 N 细 胞 受 有 丝 分 裂 或 特 异 性 抗 F 一 K
蛋 白质 为干 扰 素 (ne eo , ) 。现定 义为 : 扰素 诱 导 itr rnI ] f NF 干 剂 作用 于 活细胞 后 , 由细胞 产 生 的一 种蛋 白质 , 当它 再作 用 于其 他 细胞 时 .使 其 他 细胞 立 即获 得抗 病 毒 和抗 肿瘤 等 多
方 面 的 免 疫 力 l。近 半 个 世 纪 以 来 , 扰 素 的 研 究 一 直 是 病 3 ] 干
毒 学 、 胞 学 、 子 生 物学 、 细 分 临床 医 学 、 免疫 学 、 瘤 学 等 相 肿 关领 域 的热 点 .特别 是 近几 年来 ,随着 干 扰素 在 一些 疾 病 ( 肝 、 肝 ) 肿 瘤 的 治疗 方 面取 得 了较 好 的效 果 [6, 乙 丙 及 4]人 -
K e rd :ntreo dee to r s a h p gese y wo s i e r n; tc in;e e r r r s s f e o
干 扰素 是一 组 具有 多 种功 能 的免 疫 活性 蛋 白质 ,主要 是 糖 蛋 白 , 抗 病毒 、 有 抗肿 瘤 和 免疫 调 节等 作 用 …。早在 2 0
Ab t a tI tr r n wi n i v r s n n i t mo n t e n t n . o o ie s s a eb t t ame t u c me . t a e o s r c : e f o t a t iu da t u r do h r u c i s f r me d s a e v etr r t n to s i h sb c me n e h - a — a f o . s h e e o aI s ac os o . h e e r h p o r s f n ef r n w 8r v e d i h s a e . e r h h t t T eI s a c r g e s I t r o a e iwe t i p p r e l p _ c e n

γ干扰素的抗病机制及临床应用

γ干扰素的抗病机制及临床应用

γ干扰素的抗病机制及临床应用γ干扰素(gamma interferon,以下简称γ干扰素)是一种重要的免疫调节因子,对机体的抗病能力具有关键作用。

本文将探讨γ干扰素的抗病机制及其在临床中的应用。

一、γ干扰素的抗病机制1. 免疫调节作用γ干扰素可促进免疫系统的活化,增强巨噬细胞、T淋巴细胞和自然杀伤细胞的杀伤活性。

它能增强巨噬细胞吞噬效果,提高抗体依赖性细胞毒性(ADCC)反应,抑制病毒复制,并增强细胞介导的免疫反应。

2. 抑制炎症反应γ干扰素能抑制多种炎症因子的产生,包括肿瘤坏死因子(TNF-α)、白细胞介素-1(IL-1)、白细胞介素-6(IL-6)等。

它通过抑制炎症反应的发生和进一步发展,减轻组织损伤和疾病的严重程度。

3. 促进细胞凋亡γ干扰素可以通过多个途径促使肿瘤细胞发生凋亡。

它能够激活凋亡相关的信号通路,抑制肿瘤细胞的增殖和生存,从而达到抑制肿瘤发展的效果。

4. 抗病毒作用γ干扰素在抵抗病毒感染方面具有重要作用。

它能够抑制病毒的复制和传播,增强抗病毒免疫反应,提高机体的抗病毒能力。

临床应用于治疗乙型肝炎、丙型肝炎等病毒感染性疾病时,显示出明显的疗效。

二、γ干扰素的临床应用1. 肿瘤治疗γ干扰素能够通过多种机制抑制肿瘤的生长和转移。

它可激活免疫细胞,增强免疫杀伤效应,对多种实体肿瘤显示出一定的抑制作用。

此外,γ干扰素还能通过抑制血管生成和改变肿瘤细胞的凋亡信号通路来影响肿瘤的生长和进展。

2. 感染性疾病治疗γ干扰素在感染性疾病的治疗中具有广泛的应用前景。

它可以增强机体的抗病毒能力,抑制病毒的复制和传播,加速疾病的康复。

临床上常用于治疗乙型肝炎、丙型肝炎等病毒感染性疾病,也可用于治疗结核病、艾滋病等疾病的辅助治疗。

3. 免疫性疾病治疗γ干扰素可以调节机体的免疫反应,对于某些免疫性疾病具有治疗效果。

例如,对于类风湿关节炎、克罗恩病等自体免疫性疾病,γ干扰素可通过调节免疫系统功能,减轻病情,改善患者的生活质量。

干扰素的研究进展

干扰素的研究进展

干扰素的研究进展摘要:干扰素是细胞和机体受到病毒感染, 或者受核酸、细菌内毒素和促细胞分裂素等作用后, 由受体细胞分泌的一种广谱抗病毒糖蛋白。

它具有广谱抗病毒、抗肿瘤和免疫调节等活性的细胞,能通过多种机制影响肿瘤细胞功能,促进免疫细胞的活性。

近半个世纪以来, IFN 一直是病毒学、细胞学、分子生物学、临床医学、免疫学和肿瘤学等相关领域的研究热点。

干扰素基因序列研究结果表明, 该序列早在5亿-10亿年前就存在于生命细胞的基因序列中, 是生物体内一种古老的保护因子。

关键词:干扰素;基本性质;作用机制干扰素是在用灭活的病毒处理鸡胚以后发现的, 即灭活的病毒可以诱导干扰素的产生。

能够诱生干扰素的物质很多, 一般称他们为干扰素诱生剂,主要包括:(1)活病毒、灭活的病毒及其产物, 如双链RNA;(2)其他病原微生物及其产物, 如细菌和细菌脂多糖;(3)有丝分裂原等;(4)特异性免疫诱导剂。

第一类物质诱生干扰素最有效,后两种主要诱生II型干扰素,即IFN-γ。

IFN-α和IFN-ω主要由白细胞产生,IFN-B主要由成纤维细胞产生,尽管在适宜的诱导情况下,大部分的人类细胞都能够产生这几种干扰素。

而IFN-γ主要由活化的T 细胞产生。

α、β、ω和γ等几种干扰素主要由诱生剂诱导产生。

IFN-κ在静息状态下表皮角化细胞和先天性免疫系统的细胞(如单核细胞和树突状细胞)中有表达, IFN-γ、IFN-β、病毒与双链RNA 诱导会使IFN-κ表达显著增强[1]。

IFN-κ表达的这些特点是和角化细胞的防御功能相适应的。

IFN-τ不能被病毒等诱生剂诱生, 仅仅在怀孕早期的一个特定时间由滋养层细胞表达, 它们的主要功能是为怀孕的完成做准备[2,3]。

Lin it in主要在骨髓、肾脏表达, 也不需要诱导, 主要活性是抑制淋巴系细胞的生成, 对骨髓系细胞和红细胞前体则没有抑制作用[4]。

IFN-K在正常的血液、脑、胰腺等不同的组织中都有低水平的表达, 也可以被病毒或者干扰素等诱导表达[5,6],。

干扰素研究进展

干扰素研究进展

干扰素研究进展刘占通;舒畅;刘金娥;崔保安【摘要】干扰素具有广谱抗病毒、抗肿瘤的活性以及强大的免疫调节作用,现已成为病毒学、细胞学、分子生物学、临床医学、免疫学、肿瘤学等相关领域的研究热点.本文就干扰素基因结构、作用机理及其基因工程等方面研究进展作一综述.【期刊名称】《中国兽药杂志》【年(卷),期】2006(040)010【总页数】4页(P35-38)【关键词】干扰素;作用机理;基因工程【作者】刘占通;舒畅;刘金娥;崔保安【作者单位】河南农业大学河南省动物性食品安全重点实验室,河南郑州,450002;河南省兽药监察所,河南郑州,450008;河南农业大学河南省动物性食品安全重点实验室,河南郑州,450002;河南农业大学河南省动物性食品安全重点实验室,河南郑州,450002;河南农业大学河南省动物性食品安全重点实验室,河南郑州,450002【正文语种】中文【中图分类】R978.7干扰素(Interferon,IFN)是由英国科学家 I-saacs于1957年利用鸡胚绒毛尿囊膜研究流感病毒干扰现象时首先发现的[1]。

它是人和动物细胞受到病毒感染,或者受核酸、细菌内毒素、促细胞分裂素等作用后,由受体细胞分泌的一种具有高度生物学活性的糖蛋白。

干扰素被发现时,人们以为其抗病毒活性为其唯一特性,随着研究的不断深入,人们逐渐发现IFN除了具有抗病毒活性外,还具有免疫调节、抗肿瘤等生物学功能。

近几年来,随着干扰素在一些病毒性疾病、肿瘤性疾病的治疗方面取得良好疗效,科研工作者越来越重视干扰素的基因结构、作用机理、基因工程等方面的研究。

干扰素在生物体中普遍存在,而且同一生物体中存在着多种类型的干扰素。

目前,一般将干扰素分为I型和II型两类,I型干扰素主要包括IFN-α和IFN-β,II型只包括IFN-γ。

IFN-α主要由白细胞产生,IFN-β主要由成纤维细胞产生,它们具有相似的生物学活性,结合相同的细胞受体。

IFN-γ主要由T细胞和NK细胞产生,其理化性质及生物学活性与I型干扰素明显不同,如I型干扰素能够耐受pH 2.0的酸处理,而II型干扰素在pH 2.0的酸性条件下很快失活[2]。

巨噬细胞M1M2极化的信号通路研究进展

巨噬细胞M1M2极化的信号通路研究进展

巨噬细胞M1M2极化的信号通路研究进展一、本文概述巨噬细胞,作为免疫系统的关键组成部分,通过其M1和M2两种极化状态,在调节免疫反应和维持组织稳态中发挥着至关重要的作用。

近年来,对巨噬细胞M1M2极化信号通路的研究日益深入,这不仅有助于我们理解巨噬细胞在疾病发生发展中的作用,也为开发新型免疫治疗策略提供了理论依据。

本文旨在综述巨噬细胞M1M2极化的信号通路研究进展,重点关注相关的信号分子、调控机制和信号通路间的交互作用,以期为后续研究提供全面的参考和启示。

二、M1极化的信号通路巨噬细胞M1极化,也称为经典活化,主要受到微生物产物如脂多糖(LPS)和干扰素γ(IFN-γ)的诱导。

这一过程涉及一系列复杂的信号转导级联反应,最终导致M1表型的形成。

在M1极化过程中,核因子κB(NF-κB)和信号转导与转录激活因子1(STAT1)是两个关键的转录因子。

LPS通过与Toll样受体4(TLR4)结合,激活NF-κB信号通路。

这一通路的激活导致NF-κB从细胞质转移到细胞核,进而启动一系列与M1极化相关的基因表达,包括炎症细胞因子(如TNF-α、IL-1β和IL-6)和趋化因子。

同时,干扰素γ(IFN-γ)通过与IFN-γ受体结合,激活STAT1信号通路。

激活的STAT1进入细胞核,与干扰素刺激基因(ISGs)的启动子结合,促进这些基因的表达,进一步推动M1极化过程。

除了NF-κB和STAT1信号通路外,丝裂原活化蛋白激酶(MAPK)信号通路也在M1极化过程中发挥重要作用。

MAPK家族包括细胞外信号调节激酶(ERK)、c-Jun氨基末端激酶(JNK)和p38 MAPK等成员。

这些激酶在LPS和IFN-γ的刺激下被激活,进一步调控下游基因的表达,从而参与M1极化的调控。

M1极化的信号通路涉及多个关键转录因子和信号转导通路的交互作用。

这些通路共同调控M1极化过程中的基因表达,使巨噬细胞能够迅速应对感染等外来刺激,发挥免疫防御功能。

干扰素的研究进展

干扰素的研究进展

畜牧与饲料科学Http://www.xmysl.cn●干扰素的研究进展银晓,关平原(内蒙古农业大学动物科学与医学学院,内蒙古呼和浩特010018)干扰素是人和动物细胞受到适宜的刺激产生的一种微量的、具有高度生物学活性的糖蛋白。

自被发现以来,由于其广谱抗病毒活性、抗肿瘤作用以及强大的免疫调节活性而成为免疫学、病毒学、细胞学、分子生物学、临床医学、肿瘤学等相关领域的研究热点。

随着对其研究的不断深入,在其基因结构、作用机理、体外重组表达以及临床应用等方面取得了巨大突破。

1干扰素的分类及一般特性在20世纪60年代,人们根据IFN的来源以及其对酸耐受程度将干扰素分为Ⅰ型和Ⅱ型2类。

迄今为止,Ⅰ型干扰素已发现IFN-α、IFN-β、IFN-ω、IFN-κ、IFN-τ、IFN-δ6种类型,而Ⅱ型却只发现IFN-γ1种。

人们还发现IFN-α存在着多种结构序列不同的亚型,分别命名为α1、α2、α3等,目前已鉴定IFN-α的亚型至少有23种。

最近新发现的IFN-λ被认为是一族新的干扰素,国际最新分类标准里将它命名为Ⅲ型干扰素,它分为3种亚型,分别为IFN-λ1、IFN-λ2和IFN-λ3。

干扰素的分子量为20~100kD,不能通过普通透析膜,但可通过滤器,比病毒颗粒小。

干扰素一般在56℃、30min不被灭活,-20℃可长期保存。

Ⅰ型干扰素耐酸,在pH值为2.0~10.0中很稳定。

Ⅱ型干扰素有严格的种属特异性,不耐酸,不耐热,在pH值为2.0时极易破坏,在56℃、30min即被破坏。

干扰素一般由150~160个氨基酸组成,含17种氨基酸。

干扰素的一般特性是:①干扰素属于分泌性蛋白;②干扰素是诱生蛋白;③干扰素具有广谱性。

2干扰素的分子结构IFN-α各亚型均含有165~166个氨基酸残基,结构相似,无糖基,分子量约为19kD左右,不同种属之间的同源性为70%左右。

IFN-α分子含有4个半胱氨酸(Cys),在第99和199位半胱氨酸之间形成2个分子内二硫键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的细 胞 中 , J A K 1结合 基 序 L P K S位 于 I F N G R1的 2 6 6 — 2 6 9位 氨基 酸残 基处 ,也 称 为 b o x 1 基 序 ,组 成 型地 与 J AK 1 激 酶 结合 ,在 信 号转 导过 程 中能 够被 J A K1 激 酶
假激酶结构域 , 假激酶结构域没有催化潘 眭。J A K 1 和
M y D 8 8所联系的 N F — K B途径等[ 1 6 1 。
3 J A K — S T A T信 号 通 路 的主 要 组成 因 子
3 . 1 Je)
作用具有种属特异性 ,许多人一 鼠I F N G R嵌合受体 的
除J A K— S T A T 1途 径 外 , I F N 3 , 还 能 激 活 MA P激 酶 途 径 , P I 3 一 K途 径 , R a f — ME K— MA P K 途 径 以及 经 由
活化 , I R F 1的表 达量 也低 , 进 而诱 导 细胞 的增殖 ㈣。 因 此, 细 胞 表面 I F N G R 2表达 量 的 多少 决 定 了 I F N  ̄ / 是诱 导 细胞 凋亡 还是诱 导 细胞增 殖n 0 1 , 这种 机制 可 能有 助 于 T h l 细胞和 T h 2细胞之 间表 型的相 互转 换 , 有利于 T h l 细 胞和 T h 2细胞 之 间细胞 数量 的平 衡 。
括 七 个成员 : S T A T I 、 S T A T 2 、 S T A T 3 、 S T A T 4 、 S T A T 5 A、
称为 b o x l 基序和 b o x 2 基序 ,在信号转导过程 中 I F N —
G R 2不 发 生 酪 氨酸 磷 酸化 【 3 1 ; S T A T 1 结合基序 Y DK P H 位于 I F N G R 1的 4 4 0 — 4 4 4位 氨 基 酸 残 基处 , Y 4 4 0处 的
J A K — S T A T信号通路在调控免疫反应 中具有重要
作用 , 该信 号 通路 的失 调 与 多种 免 疫 系统 紊乱 有 关 , 其 信号 的 强弱 、动 力 学关 系 及特 异 性在 多 个水 平 受 到 不
信. 电, 技 术
干 扰 素调 节 因子 I R F 1的大 量表 达 ,进 而 激 发 细 胞 凋
亡; 相反 , 低 水平 的 I F NG R 2只能缓 慢 地诱 导 S T A T 1的
2 0 1 5 年( 第4 4 卷) 第 7期
J AK 1 磷 酸化 而被 激活诱 导 I F N G R1 靠 近羧 基端 的酪氨 酸磷 酸化 使 S T A T 1 与I F N GR 1 结 合并 被 J A K 2磷 酸化 , 磷酸 化 的 S T A T 1组 装 成 二 聚 体 进 入 细 胞 核 与 G A S ( g a m ma a c t i v a t e d s e q u e n c e )序 列 T r N C N N N A A结 合 启 动下 游 目标基 因的转 录 ,从 而 激 活细 胞 的免 疫应 答 【 7 _ 。
I F N G R 1 的胞内区域含有与激酶 J A K 1 和信号转导
与转 录调节 因子 S T A T 1 结合 的结 构域 ,而 I F N G R 2的 胞 内区域 则含有 与激 酶 J A K 2结 合 的 区域 , 用 以参 与 信 号转 导【 “ 】 。I F N  ̄ / : I F N G R1和 I F N G R1 : I F N G R 2的 相 互
研究表明配体与受体复合物相互作用 的种属特异性 主
要 取决 于受 体 的胞 外 区 。 I F N G R1和 I F N G R 2缺少 内在 的酪 氨 酸激 酶 活 性 ,
J A K s 是一类非受体酪氨酸激酶家族 ,包括 J A K 1 、
J AK 2 、 J A K 3和 T Y K 2四个 成员 ,分子 量 在 1 3 0 K D a 左
S T A T 5 B和 S T A T 6 , 均 含有一个 S H2 结 构域 ( S R C h o m o l — o g y 2 d o m a i n ) ,参 与 S T A T s 的活化和二 聚化 ;一个 D N A
酪氨酸在信号转导过程中发生磷酸化 ,使 S T A T 1 能与
右, J A K 1 、 J A K 2 、 T Y K 2 广 泛表达 , J A K 3仅在 免疫细胞
中表达 i t 7 ] , J A K s 都包 含 一个 保守 的激 酶 结构 域 和 一个
I F N G R信号的传递依赖于 J A K 1 和J A K 2 激酶[ 2 1 。在人
J A K 2参与 I F N  ̄ / 信 号通 路 ,而 J A K1和 T Y K 2则 参 与 I 型I F N的信 号 通路[ 8 1 。
3 . 2 S T A T s ( S i g n a l t r a n s d u c e r a n d a c t i v a t o r o f t r a n —
受 体结合 ㈣,而 4 4 1 — 4 4 4处的氨基酸残基则决定 了
I F N G R1 与 S T A T 1的结 合 特 异 性 ㈣; I F N G R1 第 2 7 0 —
结合结构域 ; 一个位于羧基端的转录激活结构域旧。
4 J A K — S T A T信 号 通 路 的调 控
磷酸化翻 ; 而J A K 2的结合基序则位于 I F N G R 2 胞 内区
的2 6 3 P P S I P 2 6 7和 2 7 0 I E E Y L 2 7 4氨基 酸 残基 处 , 也
s c r i p t i o n)
S T A T s 是 一 类 信 号 转 导 和转 录激 活 因 子 家 族 包
相关文档
最新文档