北师大版高中数学选修2-1同步测试题 第2章 空间向量与立体几何

合集下载

最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(答案解析)

最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(答案解析)

一、选择题1.长方体1111ABCD A B C D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1A C 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形2.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .133.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .214.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( )A .0B .22C .12-D .125.如图,在长方形ABCD 中,3AB =,1BC =,点E 为线段DC 上一动点,现将ADE ∆沿AE 折起,使点D 在面ABC 内的射影K 在直线AE 上,当点E 从D 运动到C ,则点K 所形成轨迹的长度为( )A .3 B .23C .3π D .2π 6.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13 D .167.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD > D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD 8.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A 2B .2C .2±D .2±9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16010.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA ==,点,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>11.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( ) A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =--12.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.在长方体1111ABCD A B C D -中,若1AB BC ==,12AA =A 到平面11BD A 的距离为_______ .14.在空间四边形ABCD 中,E F 、分别是AB CD 、中点,且5,EF =又6,8AD BC ==,则AD 与BC 所成角的大小为____________.15.若直线l 的一个方向向量(1,3)d =,则l 与直线10x y -+=的夹角为______. 16.在平行六面体1111ABCD A B C D -中,1160BAA DAA BAD ∠=∠=∠=︒,且所有棱长均为2,则对角线1AC 的长为__________.17.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________18.已知()()()2,1,2,1,3,3,13,6,a b c λ=-=--=,若向量,,a b c 共面,则λ=_________.19.已知在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为_____.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.在三棱台ABC DEF -中,2,60AB BC DE DAB EBA ∠∠====,平面ABED ⊥平面,.ABC BC BE ⊥(1)求证:平面ABED ⊥平面BCFE ; (2)求直线DF 与平面ABF 所成角的正弦值.22.如图所示,在多面体ABCDE 中,//DE AB ,AC BC ⊥,平面DAC ⊥平面ABC ,24BC AC ==,2AB DE =,DA DC =,点F 为BC 的中点.(1)证明:EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60︒,求平面DCE 与平面ADC 所成的锐二面角的余弦值.23.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//BC AD ,AB BC ⊥,2PA =,1AB =,22AD BC ==,M 是PD 的中点.(1)求证://CM 平面PAB ; (2)求二面角M AC D --的余弦值.24.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.25.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 26.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD 的体积为36,求二面角D -AE -C 的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】以D 为坐标原点建立如图所示的空间直角坐标系,先利用向量找出截面与11A D 、AD 和AB 的交点,再过Q 作//QF MN 交11B C 于F ,过F 作//EF QM ,交1BB 于E ,即可判断截面形状. 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q AC PQ x ∴⋅=---=,解得18Qx =,即()18,0,10Q , 设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5Ny =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--, 则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1A C 垂直的长方体截面为五边形QMNEF . 故选:B.【点睛】本题考查截面的形状的判断,解题的关键是先利用向量找出截面与11A D 、AD 和AB 的交点,即可利用平面的性质找出其它点的位置.2.D解析:D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥ 作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得x =()2212x z -=-,则210x -≥解不等式可得12x ≥ 综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题.3.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则18EF ==.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.4.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.5.C解析:C 【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度. 【详解】由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是12, 如图当E 与C 重合时,4=12, 取O 为AD′的中点,得到△OAK 是正三角形.故∠K0A=3π,∴∠K0D'=23π, 其所对的弧长为1223π⨯=3π, 故选:C 【点睛】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K 的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变,属于中档题目.6.C解析:C 【分析】根据题意,以D 为坐标原点,直线1DA DC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DA DC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a b a c =⎧⎨=⎩可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n ⋅+-=== 故选C【点睛】 本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。

北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(包含答案解析)

北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(包含答案解析)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .7122.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .2303.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-4.正方体ABCD —A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为 A .0° B .45°C .60 °D .90°5.在正方体ABCD --A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( ) A .105- B .105C .155-D .1556.如图,在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .11+22+a b cB .1122a b c -+C .1122-++a b c D .1122+-a b c 7.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A .55B .52C .53D .358.在直三棱柱111ABC A B C -中,90ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .1010-B .1510-C .1010D .15109.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P ABC -中,PA ⊥平面ABC ,AB BC ⊥,且1PA AB BC ===,则二面角A PCB --的大小是( )A .30B .45︒C .60︒D .90︒10.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .455B .2C .22D .311.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD内运动,且PM 5=,则MN 长度的最小值为( )A .352-B .23-C .25-+D .332-12.在长方体1111ABCD A BC D -中,若13AC =,则111()AB AC AD AC ++⋅=( )A .0B .3C .3D .6二、填空题13.在空间直角坐标系中,点(1,2,3)关于yoz 面对称的点的坐标为__________ 14.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.15.在平面直角坐标系中,点(1,0,2)A 到点(3,4,0)B -之间的距离为__________. 16.在空间四边形ABCD 中,E F 、分别是AB CD 、中点,且5,EF =又6,8AD BC ==,则AD 与BC 所成角的大小为____________.17.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 是异面直线;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22.其中正确命题的序号是______________.(将你认为正确的命题序号都填上)18.如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为________.19.在空间直角坐标系O xyz -中,点(1,2,3)A -到原点的距离为__________. 20.正四棱柱1111ABCD A BC D -的底面边长为2,若1AC 与底面ABCD 所成角为60°,则11AC 和底面ABCD 的距离是________ 三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图,在三棱锥A BCD -中,O 、E 、F 分别为AB 、AC 、AD 的中点,DO ⊥平面ABC ,1DO =,AC BC ⊥,2AC BC =(1)求证:平面//OEF 平面BCD ;(2)求平面OEF 与平面OCD 所成锐二面角的余弦值.23.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是5719?若存在,求点M 的位置;若不存在,请说明理由.24.如图所示,在七面体ABCDEFG 中,底面ABCD 是边长为2的菱形,且60BAD ∠=︒,////BE CF DG ,BE ⊥底面ABCD ,2BE CF DG ===.(1)求证://AG 平面BCFE ;(2)在线段BC 上是否存在点M ,使得平面AGE 与平面MGE 所成锐二面角的余弦值为2114,若存在求出线段BM 的长;若不存在说明理由﹒ 25.如图.四棱柱ABCD-A 1B 1C 1D 1的底面是直角梯形,BC ∥AD ,AB AD ,AD=2BC=2,四边形ABB 1A 1和ADD 1A 1均为正方形.(1)证明;平面ABB 1A 1平面ABCD ; (2)求二面角B 1 CD-A 的余弦值.26.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==,87CF =(1)求直线CE 与平面BDE 所成角的正弦值; (2)求平面BDE 与平面BDF 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量共面定理求解. 【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-,∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩.故选:B . 【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=. 2.A解析:A 【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得. 【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++,∴22222()222AC a b c a b c a b b c a c'=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=AC '=. 故选:A . 【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算.3.C解析:C 【解析】 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值.【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||44cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.4.D解析:D 【分析】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系,利用向量1(1,0,2)B M =--,(2,0,1)CN =-的数量积为0,即可求解.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系如图所示, 设正方体1111ABCD A BC D -的棱长为2,由图可知(1,0,0)M ,1(2,0,2)B ,(2,2,0)C ,(0,2,1)N , 所以1(1,0,2)B M =--,(2,0,1)CN =-所以1cos ,0B M CN 〈〉=所以异面直线B M '与CN 所成的角为90︒.故本题正确答案为D . 【点睛】本题主要考查了异面直线所成角,属于基础题.5.B解析:B 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值. 【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,,∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.6.C解析:C 【分析】根据空间向量的运算法则,化简得到11122BM AB AD AA =-++,即可求解. 【详解】由题意,根据空间向量的运算法则,可得1111112BM BB B M AA B D =+=+1111111111111()()222222AA A D A B AA AD AB AB AD AA a b c =+-=+-=-++=-++.故选:C. 【点睛】在空间向量的线性运算时,要尽可能转化为平行四边形或三角形中,运用平行四边形法则、三角形法则,以及利用三角形的中位线、相似三角形等平面几何的性质,把未知向量转化为已知向量有直接关系的向量来解决.7.A解析:A 【解析】分析:建立空间直角坐标系,结合题意得到点的坐标,然后利用空间向量求解点面距离即可.详解:如图所示,建立空间直角坐标系,则()10,0,1A ()10,1,1D,11,0,2E ⎛⎫ ⎪⎝⎭, 据此可得:()110,1,0A D =,111,0,2A E ⎛⎫=-⎪⎝⎭, 设平面11A D E 的法向量为()111,,m x y z =,则:1110102y x z =⎧⎪⎨-=⎪⎩, 据此可得平面11A D E 的一个法向量为()1,0,2m =,而()1,1,0C ,据此有:()11,1,1AC =-,则点C 到平面11A D E 的距离为11555AC m m ⋅==. 本题选择A 选项.点睛:本题主要考查空间向量的应用,点面距离的求解等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C【分析】本题首先可以根据题意建立空间直角坐标系,然后根据2AB =以及11BC CC ==得出12,0,1AB 、()10,1,1BC =,最后根据1111cos θAB BC AB BC 即可得出结果.【详解】因为三棱柱111ABC A B C -是直三棱柱,且90ABC ∠=︒,所以可以以B 为原点、AB 为x 轴、BC 为y 轴、1BB 为z 轴构建空间直角坐标系, 如图:因为2AB =,11BC CC ==,所以()2,0,0A ,()10,0,1B ,()0,0,0B ,()10,1,1C ,故12,0,1AB ,()10,1,1BC =,设异面直线1AB 与1BC 所成角为θ, 则1111110cos θ1052AB BC AB BC , 故选:C.【点睛】本题考查异面直线所成角的求法,可借助空间向量来求解,能否合理的构建空间直角坐标系是解决本题的关键,考查计算能力,考查数形结合思想,是中档题. 9.C解析:C【分析】建立空间直角坐标系,利用空间向量法求二面角的余弦值;【详解】解:如图建立空间直角坐标系,因为1PAAB BC ===,所以()0,0,0A ,()C,22B ⎛⎫ ⎪ ⎪⎝⎭,()0,0,1P ,()0,CP =,22BC ⎛⎫=- ⎪ ⎪⎝⎭ 显然面APC 的一个法向量可以为()1,0,0n =,设面BPC 的法向量为(),,m x yz =则·0·0m CP mBC ⎧=⎨=⎩,即00z x y ⎧+=⎪⎨+=⎪⎩,令1y =则z =,1x =,所以(m = 设二面角A PC B --为θ,则1cos 21n m n m θ===⨯所以60θ=︒故选:C【点睛】本题考查利用空间向量法求二面角,属于中档题.10.D解析:D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-,由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+,01y ≤≤,当1y =时,1B P 取得最大值3.故选:D.【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.11.C解析:C【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ ,1DN MQ ==,故552NM DN MQ -=故答案选:C【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题12.D解析:D【分析】建立空间直角坐标系,利用向量的坐标运算即可求解.【详解】如图建立空间直角坐标系A xyz -,设1,,AB a AD b AA c ===,则111(,0,),(,,0),(0,,),(,,)AB a c AC a b AD b c AC a b c ====.则111(2,2,2)2AB AC AD a b c AC ++==,所以21111()2()6AB AC AD AC AC ++⋅==.故选:D【点睛】本题主要考查了向量的坐标运算,向量的模的概念,属于容易题.二、填空题13.(-123)【分析】在空间直角坐标系中点(xyz )关于平面yoz 对称的点坐标是(-xyz )【详解】在空间直角坐标系中点(123)关于平面xoy 对称的点坐标是(-123)故答案为(-123)【点睛】本解析:(-1,2,3)【分析】在空间直角坐标系中,点(x ,y ,z )关于平面yoz 对称的点坐标是(-x ,y ,z ).【详解】在空间直角坐标系中,点(1,2,3)关于平面xoy 对称的点坐标是(-1,2,3).故答案为(-1,2,3).【点睛】本题考查点的坐标的求法,是基础题,解题时要认真审题,注意空间直角坐标系的性质的合理运用.14.【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象能力运算 30【分析】先找出线面角,运用余弦定理进行求解连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E 1A DE ∴∠为异面直线1A B 与1AC 所成角在111Rt AC B 中,111AC =,1111122C E C B == 152A E ∴=, 同理可得16A D =5DE =222165530cos 652A DE +-⎝⎭⎝⎭⎝⎭∠==⨯⨯, ∴异面直线1A B 与1AC 所成角的余弦值是301030【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题. 15.【解析】故的距离为故答案为 解析:26【解析】222(13)(04)(20)26AB =-+++-,故AB 的距离为2626 16.【分析】将平移到一起利用勾股定理求得线线角为【详解】解:取中点连接中分别为的中点且同理可得且与所成的直角或锐角就是异面直线与所成角中得即异面直线与所成角等于故答案为:【点睛】方法点睛:平移法是立体几 解析:90【分析】将,AD BC 平移到一起,利用勾股定理求得线线角为90.解:取BD 中点G ,连接EG FG 、,ABD 中,,E G 分别为,AB BD 的中点,//EG AD ∴且132EG AD ==, 同理可得//,FG BC 且142FG BC ==, EG ∴与FG 所成的直角或锐角就是异面直线AD 与BC 所成角, EFG △中,3,4,5EG GF EF ===,222EG FG EF ∴+=,得90,EGF ∠=︒即异面直线AD 与BC 所成角等于90,故答案为:90.【点睛】方法点睛:平移法是立体几何中求线线角的常用方法之一,平移时通常结合三角形中位线定理把欲求的角平移到一个三角形中,然后再解三角形即可.17.①③④【分析】由题意画出图形由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心由棱锥底面积与高为定值判断③;设列出关于的函数式结合其几何意义求出最小值判断④【详解】解:对于①直线经过平解析:①③④【分析】由题意画出图形,由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设AE x =,列出PE EC +关于x 的函数式,结合其几何意义求出最小值判断④.【详解】解:对于①,直线PB 经过平面ABCD 内的点B ,而直线CE 在平面ABCD 内不过C ,∴直线PB 与直线CE 是异面直线,故①正确;对于②,当E 与D 重合时,BE AC ⊥,因为PA ⊥平面ABCD ,BE ⊂平面ABCD ,所以PA BE ⊥,又PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,BE ∴⊥平面PAC ,则BE 垂直AC ,故②错误;对于③,由题意知,四棱锥P ABCD -的外接球的球心为O 是PC 的中点,则△BCE 的面积为定值,且O 到平面ABCD 的距离为定值,∴三棱锥E BCO -的体积为定值,故③正确;对于④,设AE x =,则2DE x =-,2211(2)PE EC x x ∴+=+++-.由其几何意义,即平面内动点(,1)x 与两定点(0,0),(2,0)距离和的最小值知,其最小值为22,故④正确.故答案为:①③④.【点睛】本题考查命题的真假判断与应用,考查空间想象能力和思维能力,属于中档题. 18.【分析】以为原点分别以所在的直线为轴建立空间直角坐标系利用向量法即可求解点N 到平面的距离得到答案【详解】由题意以为原点分别以所在的直线为轴建立空间直角坐标系则可得设平面的一个法向量为则令可得所以点N 5 【分析】以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴,建立空间直角坐标系,利用向量法,即可求解点N 到平面1D EF 的距离,得到答案.【详解】由题意,以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴,建立空间直角坐标系,则13(2,0,1),(2,,2),(2,,),(0,0,2),(2,2,1)22E M N D F λλ, 可得11(0,2,0),(0,,),(2,0,1)22EF EN ED λ===-, 设平面1D EF 的一个法向量为(,,)n x y z =,则12020n EF y n ED x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,可得(1,0,2)n =, 所以点N 到平面1D EF 的距离155n ENd n ⋅===.故答案为:55.【点睛】本题主要考查了点到平面的距离的求法,以及空间中点、线、面的位置关系等知识的应用,着重考查了空间想象能力,以及推理与运算能力.19.【解析】距离14【解析】 距离222(1)2314d =-++=20.【解析】分析:确定A1C1到底面ABCD 的距离为正四棱柱ABCD ﹣A1B1C1D1的高即可求得结论详解:∵正四棱柱ABCD ﹣A1B1C1D1∴平面ABCD ∥平面A1B1C1D1∵A1C1⊂平面A1B解析:26【解析】分析:确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高,即可求得结论. 详解:∵正四棱柱ABCD ﹣A 1B 1C 1D 1,∴平面ABCD ∥平面A 1B 1C 1D 1,∵A 1C 1⊂平面A 1B 1C 1D 1,∴A 1C 1∥平面ABCD∴A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高∵正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长为2,AC 1与底面ABCD 成60°角,∴A 12=26故答案为26.点睛:本题考查线面距离,确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.三、解答题21.答案见解析【分析】先利用已知条件写出点坐标,设(0,,2)(02),(,2,2)(02)E a a F b b ≤≤≤≤,进而得到1,,,EF A A F C E B 的坐标,利用空间向量数量积的坐标表示求出1,EF A AE BF C ⋅⋅;若选① :利用空间向量数量积的坐标表示公式、空间向量垂直的性质即可求解;若选② :利用空间向量模的坐标表示公式即可得出结果;若选③ :利用空间向量夹角的性质进行求解即可.【详解】解:由题意,正方体1111ABCD A BC D -棱长为2,则1(2,0,0),(2,2,0),(2,0,2),(0,0,0),(0,2,0)A B A D C ,设(0,,2)(02),(,2,2)(02)E a a F b b ≤≤≤≤,则1(,2,0),(2,2,2),(2,,2),(2,0,2)EF b a A AE a BF b C =-=--=-=-, 所以142(),82EF A a b AE C BF b ⋅=-+⋅=-.选择①:()()DE CF DE CF +⊥-,所以22()()0,DE CF DE CF DE CF +⋅-==,得a b =,若10EF AC ⋅=得42()0a b -+=, 则1a b ==,故存在点(0,1,2),(1,2,2)E F ,满足10EF AC ⋅=,826AE BF b ⋅=-=. 选择②:因为17||2DE =,=, 得12a =, 若10EF AC ⋅=, 即42()0a b -+=, 得32b =. 故存在点130,,2,,2,222E F ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, 满足10EF AC ⋅=,825AE BF b ⋅=-=. 选择③:因为0cos ,1EF DB <〈〉<,所以EF 与DB 不共线,所以2b a ≠-,即2a b +≠,则142()0EF AC a b ⋅=-+≠, 故不存在点,E F 满足10EF AC ⋅=. 【点睛】关键点睛:建立空间坐标系,利用空间向量数量积的坐标表示、空间向量垂直的性质、空间向量模的坐标表示公式以及空间向量夹角的性质是解决本题的关键.22.(1)证明见解析;(2 【分析】(1)先证明线面平行,再利用面面平行的判定定理证明即可;(2)根据题意建立如图空间直角坐标系,利用坐标求平面OEF 与平面OCD 的法向量,再利用数量积求其夹角的余弦值,即得结果.【详解】(1)证明:依题意O 、E 、F 分别为AB 、AC 、AD 的中点,则//OE BC ,//EF CD ,OE ⊄平面BCD ,BC ⊂平面BCD ,EF ⊄平面BCD ,CD ⊂平面BCD , //OE ∴平面BCD ,//EF 平面BCD又EF OE E ⋂=,且在平面OEF 内,∴平面//OEF 平面BCD ;(2)依题意:AC BC ==CO AB ⊥,2AB =,1CO =,又DO ⊥平面ABC ,故建立如图空间直角坐标系,则(0,0,0)O ,(1,0,0)A -,(0,1,0)C ,(0,0,1)D ,11,,022E ⎛⎫- ⎪⎝⎭,11,0,22F ⎛⎫- ⎪⎝⎭,11,,022OE ⎫⎛∴=- ⎪⎝⎭,11,0,22OF ⎛⎫=- ⎪⎝⎭ 设(,,)n x y z =为平面OCD 的一个法向量,则1102211022OE n x y OF n x z ⎧⋅=-+=⎪⎪⎨⎪⋅=-+=⎪⎩取1x =,则(1,1,1)n =,又易见(1,0,0)m =为平面OEF 的一个法向量, 13cos ,3m nm n m n ⋅∴<>=== ∴平面OEF 与平面OCD 所成锐二面角的余弦值为33. 【点睛】方法点睛:求二面角的方法通常有两个方法:一是利用空间向量,建立坐标系,求得对应平面的法向量之间夹角的余弦值,再判断锐二面角或钝二面角,确定结果,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,利用垂直关系和二面角的定义,找到二面角对应的平面角,再求出二面角平面角的大小,这种解法的关键是找到平面角. 23.(1)证明见解析;(2)存在,M 为AD 边上靠近A 的四等分点.【分析】(1)先证11//B E C D ,再根据线面平行判定定理即可证明命题;(2)取BC 中点G ,根据AG ,AD ,1AA 两两互相垂直建立坐标系,设点(0,,0)M t 分别求得平面11MA B 和平面111A B D 的法向量,再由二面角公式解得t 值,从而确定M 的位置.【详解】(1)证明:连1DC ,由1B C //AD ,得11B C E //D =, 故四边形11B EDC 为平行四边形.11//B E C D =,1C D ⊂平面11CDD C ,1B E ⊂/平面11CDD C , 所以1//B E 平面11CDD C ,(2)假设M 点存在,取BC 中点G ,因为底面ABCD 是菱形,120BAD ∠=︒,所以AG BC ⊥,AG AD ⊥,又1AA ⊥面ABCD ,所以AG ,AD ,1AA 两两互相垂直.以A 为坐标原点,AG ,AD ,1AA 为正方向建立空间直角坐标系A xyz -.由2AB =,得3AG =(0,,0)M t ,其中[0,2]t ∈.1(0,0,1)A ,131,122B ⎛⎫- ⎪ ⎪⎝⎭,()10,,1A M t =-,1131,022A B ⎛⎫=- ⎪ ⎪⎝⎭. 设()1,,n x y z =为平面11MA B 的一个法向量,则1111100n A B n MA ⎧⋅=⎪⎨⋅=⎪⎩,即310220x y ty z -=⎪⎨⎪-=⎩可取()11,3,3t n =. 易知平面111A B D 一个法向量为()20,0,1n = 由1221212357cos ,19133n n n n n n t t ⋅===++‖12t =, 故M 为AD 边上靠近A 的四等分点.【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.24.(1)证明见解析;(2)存在,43BM =. 【分析】(1)根据//DG CF 和ABCD 是菱形得到//AD BC ,利用面面平行的判定定理证明. (2)取BC 中点为H ,则DA ,DH ,DG 三线两两垂直,以D 为坐标原点,以DA ,DH ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,假设存在M 满足条件,设(01)BM BC λλ=≤≤,分别求得平面AGE 的一个法向量()1111,,x n y z =和平面MGE 的一个法向量()2222,,n x y z =,利用12121221cos 14n n n n n n ⋅⋅==求解. 【详解】(1)∵//DG CF ,CF ⊂面BCFE 且DG ⊄面BCFE∴//DG 面BCFE又∵//AD BC ,BC ⊂面BCFE 且AD ⊄面BCFE∴//AD 面BCFE∵AD ⊂面ADG ,DG ⊂面ADG ,且ADDG D =∴面//ADG 面BCFE∵AG ⊂面ADG ,∴//AG 面BCFE .(2)取BC 中点为H ,则DA ,DH ,DG 三线两两垂直以D 为坐标原点,以DA ,DH ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -,假设存在M 满足条件,则(01)BM BC λλ=≤≤,由题得:()2,0,0A ,()3,0B ,()3,0C -,()3,2E ,()0,0,2G , ∵BM BC λ=, ∴点M 坐标为:()123,0λ-,∴(2,0,2)AG =-,()3,2AE =-,()21,3,2MG λ=--,()2,0,2ME λ=,设平面AGE 的一个法向量为:()1111,,x n y z =,平面MGE 的一个法向量为:()2222,,n x y z =,则111111122020n AG x z n AE x z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,令1x 11y =-,1z ,∴1(3,1n =-,同理可得21,n λ⎛⎫=- ⎪ ⎪⎝⎭,由题意得:12121243cos 147n n n n n n ⋅⋅===, 解得:23λ=或269λ=(舍), ∴43BM =. 【点睛】 方法点睛:证明两个平面平行的方法有:(1)用定义,此类题目常用反证法来完成证明;(2)用判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)根据“垂直于同一条直线的两个平面平行”这一性质进行证明;(4)借助“传递性”来完成:两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.25.(1)详见解析;(2)6. 【分析】(1)根据四边形ABB 1A 1和ADD 1A 1均为正方形,得到11,AA AB AA AD ⊥⊥,再由线面垂直的判定定理证得1AA ⊥平面ABCD ,然后利用面面垂直的判定定理证明.(2)以A 为原点,以1,,AB AD AA 分别为x ,y ,z 轴,建立空间直角坐标系,求得平面1BCD 的一个法向量为(),,m x y z =,又平面CDA 的一个法向量为()0,0,1n =,然后由cos ,m n m n m n ⋅=⋅求解.【详解】 (1)因为四边形ABB 1A 1和ADD 1A 1均为正方形.所以11,,AA AB AA AD AB AD A ⊥⊥⋂=,所以1AA ⊥平面ABCD ;又因为1AA ⊂平面ABB 1A 1,所以平面ABB 1A 1平面ABCD ;(2)以A 为原点,以1,,AB AD AA 分别为x ,y ,z 轴,建立空间直角坐标系:则()()()()10,0,0,2,1,0,0,2,0,2,0,2A C D B ,所以()()12,1,0,0,1,2CD CB =-=-,设平面1BCD 的一个法向量为(),,m x y z =, 则100m CD m CB ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y y z -+=⎧⎨-+=⎩, 令1,2,1x y z ===,则()1,2,1m =,又平面CDA 的一个法向量为()0,0,1n =, 所以16cos ,66m nm n m n ⋅===⋅, 二面角B 1CD-A 6 【点睛】 方法点睛:求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.26.(1)49;(2)13. 【分析】首先以A 为原点,建立空间直角坐标系,(1)求平面BDE 的法向量m ,利用公式sin cos ,CE m θ=<>求解;(2)求平面BDF 的法向量n ,利用公式cos ,m n <> 求解.【详解】以A 为原点,,,AB AD AE 分别为,,x y z 轴的正方向,建立空间直角坐标系,()1,0,0B ,()0,1,0D ,()0,0,2E ,()1,2,0C ,81,2,7F ⎛⎫ ⎪⎝⎭(1)设平面BDE 法向量(),,m x y z =,()1,1,0BD =-,()1,0,2BE =-,则020x y x z -+=⎧⎨-+=⎩, 令1z =,则2,2x y ==,∴()2,2,1m =,()1,2,2CE =--, 2424sin cos ,339CE m θ--+=<>==⨯ (2)设平面BDF 法向量(),,n x y z =,()1,1,0BD =-,80,2,7BF ⎛⎫= ⎪⎝⎭,则82070y z x y ⎧+=⎪⎨⎪-+=⎩, 令4x =,则4,7y z ==-∴()4,4,7n =-,8871cos cos ,393m n θ+-=<>==⋅, 因为平面BDE 与平面BDF 夹角是锐二面角,所以二面角的余弦值是13.【点睛】关键点点睛:本题是比较典型的向量坐标法解决空间角,关键是计算准确,。

最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(包含答案解析)(1)

最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(包含答案解析)(1)

一、选择题1.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .230 2.长方体1111ABCD A BC D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1AC 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形3.如图,四边形ABCD 和ABEF 都是正方形,G 为CD 的中点,60DAF ∠=,则直线BG 与平面AGE 所成角的余弦值是( )A .25B 10C 15D 21 4.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6πB .4πC .3πD .2π 5.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<< 6.正方体ABCD —A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为A .0°B .45°C .60 °D .90°7.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A .2B .1C .2D .38.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定9.如图,在正方体1111ABCD A BC D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C 10.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD 内运动,且PM 5=,则MN 长度的最小值为( )A 352B .23C .25-D 33211.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( )A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =-- 12.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ;②AC BD ⊥;③AC BD =;④异面直线PM 与BD 所成的角为045.14.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.15.在空间直角坐标系中,点(1,2,3)关于yoz 面对称的点的坐标为__________ 16.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.17.设G 是三棱锥V ABC -的底面重心,用空间的一组基向量,,VA VB VC 表示向量VG =________________________18.如图,已知三棱柱111ABC A B C -中,D 是棱1BC 上一点,且12BD DC =设1,,,AB a AC b AA c ===用a ,b ,c 表示向量AD ,则AD =_____________.19.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________.20.在棱长为2的正方体△ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1、CD 的中点,则点B 到截面AMC 1N 的距离为_____.三、解答题21.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)若H 为EF 的中点,证明://GH 平面ABCD ;(2)若14=EH EF ,求直线CH 与平面ACG 所成角的正弦值. 22.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 是PD 上的点.(1)当E 是PD 的中点时,求证://PB 平面AEC ;(2)设1==PA AB ,3PC =,若直线PC 与平面AEC 所成角的正弦值为13,求PE 的长.23.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.24.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,四边形ABCD 为平行四边形,2,60AD CD ADC ︒=∠=.(1),M N 分别是1,AC BB 的中点,求证://MN 平面11A B CD(2)若12,(0)CD AA AC λλ==>,二面角1A C D C --的余弦值为55,求三棱锥11C ACD -的体积. 25.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 26.如图,在三棱柱111ABC A B C -中,已知ABC 是直角三角形,侧面11ABB A 是矩形,AB =BC =1,BB 1=2,13BC(1)证明:BC 1⊥AC .(2)E 是棱CC 1的中点,求直线B 1C 与平面ABE 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得.【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++, ∴22222()222AC a b c a b c a b b c a c '=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=85AC '=.故选:A .【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算. 2.B解析:B【分析】以D 为坐标原点建立如图所示的空间直角坐标系,先利用向量找出截面与11A D 、AD 和AB 的交点,再过Q 作//QF MN 交11B C 于F ,过F 作//EF QM ,交1BB 于E ,即可判断截面形状.【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-, ()12520500Q A C PQ x ∴⋅=---=,解得18Q x =,即()18,0,10Q ,设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5N y =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--, 则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1AC 垂直的长方体截面为五边形QMNEF .故选:B.【点睛】本题考查截面的形状的判断,解题的关键是先利用向量找出截面与11A D 、AD 和AB 的交点,即可利用平面的性质找出其它点的位置.3.C解析:C【分析】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴建立空间直角坐标系,设2AB =,利用空间向量法可求得直线BG 与平面AGE 所成角的正弦值,再利用同角三角函数的基本关系可求得结果.【详解】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴,建立如图所示的空间直角坐标系A xyz -.设2AB =,得()0,0,0A 、()2,1,0G 、()0,2,0B 、(1,3E ,则()2,1,0AG =,(3AE =,()2,1,0BG =-,设平面AGE 的法向量为(),,n x y z =, 则20230n AG x y n AE x y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,则2y =-,3z = 所以,平面AGE 的一个法向量为(1,3n =-, 从而10cos ,225n BGn BG n BG ⋅<>===⨯⋅, 故直线BG 与平面AGE 21015155⎛⎫-= ⎪ ⎪⎝⎭. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h l θ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.4.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【分析】根据题意将异面直线平移到同一平面,再由余弦定理得到结果. 【详解】根据题意将异面直线平移到同一平面中,如上图,显然α,β,(0,]2πγ∈,因为a b >,异面直线1A B 与1AD 的夹角即角1AD C ,根据三角形1AD C 中的余弦定理得到222211cos 21()a b a b aα==>++,故(0,)3πα∈,同理在三角形1A DB 中利用余弦定理得到:2221cos 222()1a a b bβ==<⋅+⋅+,故(,)32ππβ∈, 连接AC ,则AC 垂直于BD ,CE 垂直于BD ,AC 交CE 于C 点,故可得到BD 垂直于面ACE ,进而得到BD 垂直于AE ,而BD 平行于11D B .从而得到2πγ=,故αβγ<<. 故答案为A. 【点睛】这个题目考查了异面直线夹角的求法,一般是将异面直线平移到同一平面中,转化到三角形中进行计算,或者建立坐标系,求解两直线的方向向量,两个方向向量的夹角就是异面直线的夹角或其补角.6.D解析:D 【分析】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系,利用向量1(1,0,2)B M =--,(2,0,1)CN =-的数量积为0,即可求解.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系如图所示, 设正方体1111ABCD A BC D -的棱长为2,由图可知(1,0,0)M ,1(2,0,2)B ,(2,2,0)C ,(0,2,1)N , 所以1(1,0,2)B M =--,(2,0,1)CN =-所以1cos ,0B M CN 〈〉=所以异面直线B M '与CN 所成的角为90︒.故本题正确答案为D . 【点睛】本题主要考查了异面直线所成角,属于基础题.7.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++, ()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.8.A解析:A分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果. 【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q , 设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--, 设异面直线AB 与PQ 所成角为θ, 则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤32=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.9.B解析:B 【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题. 【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+2221||(11)(10)()2PN z z z =--+--+-25334z z =-+所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得22231||(1)(10)()44PQ z z z =--+--+-29338z z =-+2133()28z =-+,所以当12c =时,||PQ 取得最小值64,此时P 为线段1CA 的中点, 由于2||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B 【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.10.C解析:C 【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ ,1DN MQ ==,故552NM DN MQ -=故答案选:C 【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题11.C解析:C 【分析】由共面向量定理可得:若定点M 与点A 、B 、C 一定共面,则存在实数x ,y ,使得AM xAB yAC =+,即(1)OM x y OA xOB yOC =--++,判断标准是验证OA ,OB ,OC 三个向量的系数和是否为1,若为1则说明四点M ,A ,B ,C 一定共面,由此规则即可找出正确的条件. 【详解】由题意,,A B C 三点不共线,点O 是平面ABC 外一点, 对于A 由于向量的系数和是32,不是1,故此条件不能保证点M 在面ABC 上; 对于B ,等号右边三个向量的系数和为3,不满足四点共面的条件,故不能得到点M 与,,A B C 一定共面对于C ,等号右边三个向量的系数和为1,满足四点共面的条件,故能得到点M 与,,A B C 一定共面对于D ,等号右边三个向量的系数和为0,不满足四点共面的条件,故不能得到点M 与,,A B C 一定共面综上知,能得到点M 与,,A B C 一定共面的一个条件为C . 故选:C . 【点睛】本题考查平面向量的基本定理,利用向量判断四点共面的条件,解题的关键是熟练记忆四点共面的条件,利用它对四个条件进行判断得出正确答案,本题考查向量的基本概念,要熟练记忆.12.B解析:B 【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【详解】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=,||BP ∴==819255=, ||5tan ||3AB BP θ∴=, tan θ∴的最大值为53.故选:B . 【点睛】本题主要考查的是线面所成角,解题的关键是找到线面所成角的平面角,是中档题.二、填空题13.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④ 【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③ 【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错. 故答案为①②④ 【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型.14.【分析】画出题目描述的图形判断直线mn 的所成的角通过解三角形即可【详解】如图:α‖平面CB1D1α∩平面ABCD=mα∩平面ABA1B1=n 可知:m//CD1m//B1D1因为△CB1D1是正三角形【分析】画出题目描述的图形,判断直线m、n的所成的角,通过解三角形即可.【详解】如图:α‖平面CB1D1, α∩平面ABCD=m, α∩平面ABA1B1=n,可知:m//CD1,m//B1D1,因为△CB1D1是正三角形.所以m、n所成角就是∠CD1B1=60°则m、m所成角的正弦值为:3故选:A【点睛】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力,解决问题的关键是在空间图形中找到异面直线所成的平面角.15.(-123)【分析】在空间直角坐标系中点(xyz)关于平面yoz对称的点坐标是(-xyz)【详解】在空间直角坐标系中点(123)关于平面xoy对称的点坐标是(-123)故答案为(-123)【点睛】本解析:(-1,2,3)【分析】在空间直角坐标系中,点(x,y,z)关于平面yoz对称的点坐标是(-x,y,z).【详解】在空间直角坐标系中,点(1,2,3)关于平面xoy对称的点坐标是(-1,2,3).故答案为(-1,2,3).【点睛】本题考查点的坐标的求法,是基础题,解题时要认真审题,注意空间直角坐标系的性质的合理运用.16.【解析】∵∴∴故答案为解析:111 ,, 633【解析】∵ O G OM MG =+,12OM OA =,2,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63317.;【解析】如图所示三棱锥中点是的重心∴∴∴;∴故答案为解析:()13VA VB VC ++; 【解析】 如图所示,三棱锥V ABC -中,点G 是ABC △的重心,∴AB VB VA =-,AC VC VA =-, ∴()()()1112222AD AB AC VB VA VC VA VB VC VA =+=-+-=+-, ∴()21233AG AD VB VC VA ==+-; ∴()()11233VG VA AG VA VB VC VA VA VB VC =+=++-=++. 故答案为()13VA VB VC ++.18.【解析】试题分析:考点:平面向量基本定理解析:122333a b c ++ 【解析】 试题分析:()()111222333AD AB BD AB BC AB BC CC AB AC AB CC =+=+=++=+-+ ()21223333a b a c a b c =+-+=++考点:平面向量基本定理19.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直 解析:33【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min13(cos )33CD CD CA CDα===. 考点:1、异面直线所成的角;2、线面垂直、线线垂直.20.【分析】建立空间直角坐标系利用香炉峰能求出点B 到截面的距离得到答案【详解】如图所示建立空间直角坐标系因为棱长为2的正方体中分别是的中点所以则设平面的法向量为则取得所以点B 到截面的距离为【点睛】本题主 解析:263【分析】建立空间直角坐标系D xyz -,利用香炉峰能求出点B 到截面1AMC N 的距离,得到答案. 【详解】如图所示,建立空间直角坐标系D xyz -,因为棱长为2的正方体1111ABCD A BC D -中,,M N 分别是11,A B CD 的中点, 所以(2,0,0),(2,1,2),(0,1,0),(2,2,0)A M N B , 则(0,1,2),(2,1,0),(0,2,0)AM AN AB ==-=, 设平面AMN 的法向量为(,,)n x y z =, 则2020y z x y +=⎧⎨-+=⎩,取1x =,得(1,2,1)n =-,所以点B 到截面1AMC N 的距离为42636AB n d n⋅===.【点睛】本题主要考查了利用空间向量求解点到平面的距离问题,其中解答中建立适当的空间直角坐标系,正确求解平面的法向量,利用向量法准确计算是解答的关键,着重考查了推理与计算能力,属于中档试题.三、解答题21.(1)证明见解析;(2)63. 【分析】(1)要证明线面平行,需证明线线平行,取BC 的中点M ,连接HM ,DM ,证明四边形DGHM 是平行四边形,即可证明;(2)以点D 为原点,建立空间直角坐标系,求平面ACG 的法向量,利用线面角的向量公式求解. 【详解】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成, 所以截面AEFG 是平行四边形,则4=-=DG CF EB . 因为36==FC EB ,所以1(26)42=⨯+=HM ,且/DG HM , 所以四边形DGHM 是平行四边形,所以//GH DM .因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:如图,以D 为原点,分别以,,DA DC DG 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系D xyz -,则(4,0,0)A ,(0,4,0)C ,(0,0,4)G ,(3,4,3)H ,(4,4,0)=-AC ,(4,0,4)=-AG ,(3,0,3)=CH .设平面ACG 的法向量为(,,)n x y z =,则440440AC n x y AG n x z ⎧⋅=-+=⎨⋅=-+=⎩ ,令1x =,得()1,1,1n =.因为336cos ,||||323CH n CH n CH n ⋅+<>==⨯,所以直线CH 与平面ACG 所成角的正弦值为63. 【点睛】思路点睛:本题考查了立体几何中的线面平行的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过严密推理证明线线平行从而得线面平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 22.(1)证明见解析 ;(2)22PE =. 【分析】(1)连接BD ,使AC 交BD 于点O ,连接EO ,由//OE PB 即可证明; (2)建立空间坐标系,利用向量法求解. 【详解】(1)连接BD ,使AC 交BD 于点O ,连接EO ,因为O ,E 分别为BD ,PD 的中点, 所以//OE PB又OE ⊂平面AEC ,PB ⊄平面AEC , 所以//PB 平面AEC(2)因为PA ⊥平面ABCD ,AC ⊂平面ABCD , 所以PA AC ⊥,由1PA =,3PC =,得2AC =,因为底面ABCD 为菱形且1AB =,所以222AB BC AC +=,所以AB BC ⊥,所以底面ABCD 为正方形,从而,,AB AD AP 两两互相垂直, 分别以,,AB AD AP 为x 轴,y 轴,z 轴建立空间直角坐标系,如图,则(0,0,0)A ,(0,1,0)D ,(0,0,1)P ,(1,0,0)B ,(1,1,0)C , 不妨设(0,1,1)PE PD λλ==-,所以(0,0,1)(0,,)(0,,1)AE AP PE λλλλ=+=+-=-,(1,1,0)AC =,(1,1,1)PC =-,设平面AEC 的法向量为(,,)n x y z =,由()100n AEy z x y n AC λλ⎧⊥⎧+-=⎪⇒⎨⎨+=⊥⎩⎪⎩, 令1x =,则1y =-,1z λλ=-,所以1,1,1n λλ⎛⎫=- ⎪-⎝⎭,设直线PC 与平面AEC 所成角为α,则21sin |cos ,|||||3111PC nPC n PC n λλαλλ⋅-=〈〉==⋅⎛⎫++ ⎪-⎝⎭.由1sin 3α=,解方程得12λ=,故22PE =.【点睛】方法点睛:向量法求线面角的方法就是求出平面的法向量,然后求直线与法向量的夹角,取绝对值可得线面角的正弦值. 23.(1)22929,(2)222【分析】(1)建立空间直角坐标系,利用空间向量法求出二面角的余弦值; (2)设(),,0N x y ,即可表示出MN ,再根据//MN 平面BEF ,即可得到0m MN =,即可得到x 与y 的关系,最后根据向量的模及二次函数的性质计算可得; 【详解】解:(1)如图建立空间直角坐标系,则()0,0,0D ,()0,2,0C ,()2,2,0B ,()2,0,0A ,()0,0,2G ,()0,2,1F ,()1,0,2E ,则()1,2,2BE =--,()1,2,1FE =-,()2,0,0DA =,设面BEF 的法向量为(),,n x y z =,则22020x y z x y z --+=⎧⎨-+=⎩,令2x =,则3y =,4z =,所以()2,3,4n =,而平面CDGF 的法向量为()2,0,0DA =设平面BEF 与平面CDGF 所成二面角为θ,显然二面角为锐角,所以cos 2922n DA n DAθ===(2)设(),,0N x y ,[],0,2x y ∈,依题意30,1,2M ⎛⎫ ⎪⎝⎭,则3,1,2MN x y ⎛⎫=-- ⎪⎝⎭因为//MN 平面BEF ,所以()23162390m MN x y x y =+--=+-= 所以2MN x =又因为函数2133147422y x x =-+,对称轴为313122131324x -=-=>⨯,且开口向上, 所以函数2133147422y x x =-+在[]0,2上单调递减,所以当2y =时,minMN =,此时3,2,02N ⎛⎫ ⎪⎝⎭,所以线段MN 的最小值为2【点睛】本题考查二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 24.(1)证明见解析;(2)4. 【分析】(1)连接BD ,1B D ,在1BDB △中,利用中位线定理得1//B D MN ,进而利用线面平行判定定理即可证明;(2)建立空间直角坐标系,易知平面1AC D 的一个法向量为113,1,n λ⎛⎫= ⎪⎭,平面1C CD 的一个法向量为()20,1,0n =,利用公式求二面角余弦,可得出1λ=,从而求三棱锥体积. 【详解】解:(1)证明:如图,连接BD ,1B D∵ 四边形ABCD 为平行四边形,且M 为AC 中点, ∴M 为BD 中点,∵ 在1BDB △中, ,M N 分别是1,BD BB 的中点, ∴1//B D MN ,又∵ MN ⊄平面11A B CD ,1B D ⊂平面11A B CD , ∴//MN 平面11A B CD(2)∵2,60AD CD ADC ︒=∠=,2CD =, ∴ 在ACD △中,22212cos 164242122AC AD CD AD CD ADC =+-⋅⋅∠=+-⨯⨯⨯=, ∴ 222AC CD AD +=,即AC CD ⊥,∴ 根据题意得1,,CD CA CC 两两垂直, 建立如图所示的空间直角坐标系, 则()()()12,0,0,0,23,0,0,0,23D A C λ, 则()()12,23,0,0,23,23AD AC λ→→=-=-, 设平面1AC D 的一个法向量为()1111,,n x y z →=,∴ 11100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即11113x y y z λ⎧=⎪⎨=⎪⎩,∴ 平面1AC D 的一个法向量为113,1,n λ→⎫=⎪⎭. 易知平面1C CD 的一个法向量为()20,1,0n →=, 设θ为二面角1A C D C --的平面角,则122125cos 31n n n n θλ→→→→-⋅===++⋅. 得1λ=,所以123AA AC == 所以11111123232432C A CD D A CC V V --⎛==⨯⨯⨯= ⎝.【点睛】立体几何是高考必考问题,本题第二问考查二面角有关的问题,建立空间坐标系是解决问题比较简洁的方法,关键点在于找到或证明三条互相垂直的直线,建系时注意尽可能让点的坐标简单,然后这些问题就转化为计算问题,特别注意法向量的求解,然后利用夹角公式,求值或求参数. 25.(13102)23. 【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系.(1)写出1A B 、1C D 的坐标,计算出11cos ,A B C D <>的值,即可得出异面直线1A B 与1C D 所成角的余弦值;(2)计算出1ADC 的一个法向量的坐标,可知平面1ABA 的一个法向量为()0,1,0n =,利用空间向量法可求得平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 【详解】在直三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且AB AC ⊥,以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系. 如下图所示:则由题意知()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,4A 、()12,0,4B、()10,2,4C 、()1,1,0D .(1)()12,0,4A B =-,()11,1,4C D =--,111111310cos ,2532A B C D A B C D A B C D⋅<>===⨯⋅ 所以,异面直线1A B 与1C D 310 (2)易知平面1ABA 的一个法向量为()0,1,0n =,设平面1ADC 的法向量为(),,m x y z =,()1,1,0AD =,()10,2,4AC =,由100m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,可得0240x y y z +=⎧⎨+=⎩,令2y =-,则2x =,1z =, 所以,平面1ADC 的一个法向量为()2,2,1m =-,22cos ,33m n m n m n⋅-<>===-⋅, 因此,平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值为23. 【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.26.(1)证明见解析;(2)32114. 【分析】(1)根据题意及线面垂直的判定定理,可证明AB ⊥平面BCC 1B 1,即AB ⊥BC 1,根据勾股定理,可证明BC ⊥BC 1,即可证明BC 1⊥平面ABC ,根线面垂直的性质定理,即可得证; (2)如图建系,求得所需点的坐标,进而求得,BA BE ,1BC 向量坐标,即可求得平面ABE 的法向量m 的坐标,根据线面角的向量求法,即可求得答案. 【详解】(1)证明:因为ABC 是直角三角形,所以AB ⊥BC . 因为侧面11ABB A 是矩形,所以AB ⊥BB 1. 因为BC ∩BB 1=B ,所以AB ⊥平面BCC 1B 1, 又因为1BC ⊂平面BCC 1B 1, 所以AB ⊥BC 1.因为BC =1,BB 1=CC 1=2,13BC =, 所以22211BC BC CC +=,所以BC ⊥BC 1. 因为BC ∩AB =B ,所以BC 1⊥平面ABC . 因为AC ⊂平面ABC .所以BC 1⊥AC .(2)由(1)知,BC ,BA ,BC 1两两垂直,故以B 为坐标原点,分别以BC ,BA ,BC 1为x ,y ,z 轴正方向建立空间直角坐标系,如图所示:则B (0,0,0),C (1,0,0),A (0,1,0),1302E ⎛ ⎝⎭,,(1103B -,. (01302,1,0),BA BE =⎛ ⎝⎭=,,1BC =(2,0,3- 设面ABE 的法向量为()111m x y z =,,,由00m BA m BE ⎧⋅=⎨⋅=⎩,得11101302y x z =⎧⎪⎨=⎪⎩,,,令z 1=1,得()301m =-,,.设直线B 1C 与平面ABE 所成角的大小为θ,则11sin m B Cm B C θ⋅=⋅14==,所以直线B 1C 与平面ABE 所成角的正弦值为14. 【点睛】 解题是关键是熟练掌握线面垂直的判定和性质定理,并灵活应用,在用向量法求线面角时,法向量与直线的方向向量所成角的余弦值,即为线面角的正弦值,考查推理证明,计算求值的能力,属中档题.。

新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(含答案解析)

新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(含答案解析)

一、选择题1.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( ) A .(0,0,2)B .(2,0,0)C .()0,2,2D .()2,2,0-2.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26B .36C .56D .133.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变; 1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个4.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .15.已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .346.如图,已知平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,12AA =, 011120A AB A AD ∠=∠=,则线段1AC 的长为( )A .2B .1C .2D .37.已知A,B,C 三点不共线,对于平面ABC 外的任一点O,下列条件中能确定点M 与点A,B,C 一定共面的是( )A .OM OA OB OC =++ B .2OM OA OB OC =-- C .1123OM OA OB OC =++ D .111236OM OA OB OC =++ 8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,2,22,2AB AD PA ===,则异面直线BC 与AE 所成的角的大小为( )A .π6B .π4C .π3D .π210.三棱柱111ABC A B C -中,侧面11BB C C 是边长为2的菱形, 1160,CBB BC ︒∠=交1BC 于点,O AO ⊥侧面11BB C C ,且 1AB C 为等腰直角三角形.若建立如图所示的空间直角坐标系Oxyz ,则点1A 的坐标为( )A .(1,3,2)-B .(3,1,1)-C .(1,2,3)-D .(2,1,3)-11.如图所示,平行六面体1111ABCD A BC D -中,以顶点A 为端点的三条棱长都为1,且两两夹角为60︒.求1BD 与AC 夹角的余弦值是( )A .33B .66C .217D 21 12.如图,在正方体1111ABCD A BC D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C二、填空题13.若△ABC 的三个顶点坐标分别为A(0,0,2),B 31-,,222⎛⎫ ⎪ ⎪⎝⎭,C(-1,0,2),则角A 的大小为_____.14.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为__________.15.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______. 16.在正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,M 为棱11A B (含端点)上的任一点,则直线ME 与平面1D EF 所成角的正弦值的最小值为_________. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.在棱长为2的正方体△ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1、CD 的中点,则点B 到截面AMC 1N 的距离为_____.19.在正方体ABCD -A 1B 1C 1D 1中,下列给出四个命题: (1)四边形ABC 1D 1的面积为1AB BC (2)11AD A B 与的夹角为60°;(3)22111111111111()3();(4)()0AA A D A B A B AC A B A D ++=⋅-=; 则正确命题的序号是______.(填出所有正确命题的序号)20.在平行六面体ABCD A B C D '-''' 中,4AB = ,3AD = ,5A A '= ,90BAD ∠=︒ ,60A AB A AD ''∠=∠=︒ ,则AC '= __________.三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图四棱锥S ABCD -,ABCD 是平行四边形,2AD BD ==,AD BD ⊥,SAD 为等边三角形,且平面SAD ⊥平面ABCD ,E 是AB 边的中点,F 是侧棱SC 上的一点.(1)是否存在这样的点F ,使得//EF 平面SAD ?若存在,请求出SFSC的值,若不存在,请说明理由;(2)在(1)的条件下,求异面直线AD 与EF 的距离.23.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AACC 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值.24.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.25.如图,在四面体ABCD 中,AB AC ⊥,AD ⊥平面ABC ,点M 为棱AB 的中点,2AB AC ==,3AD =.(Ⅰ)求直线BC 与MD 所成角的余弦值; (Ⅱ)求平面ABD 和平面BDC 的夹角的余弦值.26.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据空间向量数量积的坐标公式,即可得到答案 【详解】根据夹角余弦值cos a b a b θ⋅=对于A 若()b 0,0,2,=则-222=22a b a b ⋅⨯2cos 45︒=,故不符合条件对于B 若()b 20,0,=,则222==222a b a b⋅⨯2cos 45︒=,故符合条件 对于C 若(b 0,22,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-2=,,则21==cos 45222a b a b⋅≠︒⨯,故不符合条件 故选B 【点睛】本题考查了向量的数量积,运用公式代入进行求解,较为简单2.A解析:A 【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0),()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >26922=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A . 【点睛】本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3.C解析:C 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C , 故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥, 若1DPBC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选C . 【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.A解析:A 【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值. 【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+PBC 的面积为()2221251282BC PB a b a a ⨯⨯=-+=-+126105a ==时,面积取得最小值为26625512855⎛⎫⨯-⨯+= ⎪⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.5.C解析:C 【分析】建立空间坐标系,分别求得直线的方向向量,进而得到线线角. 【详解】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (132), B (1,3,0),1C (0,0,2) 向量()()111,3,2,-1,3,2AB BC =-=- 设异面直线夹角为θ,则1111cos =||||AB BC AB BC θ⋅=⋅14故答案为C 【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.6.A解析:A 【分析】由11AC AB BC CC =++,两边平方,利用数量积的运算法则及数量积公式能求出21AC 的值,从而可得结果. 【详解】平行六面体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形,1112,120AA A AB A AD =∠=∠=,11AC AB BC CC ∴=++,()2211AC AB BC CC ∴=++222111222AB BC CC AB CC BC CC AB BC =+++⋅+⋅+⋅114212cos120212cos12002=+++⨯⨯⨯+⨯⨯⨯+=,∴线段1AC 的长为12AC = A.【点睛】本题主要考查利用空间向量求线段的长,考查向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a =.7.D解析:D 【分析】根据点M 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案. 【详解】设OM xOA yOB zOC =++,若点M 与点,,A B C 共面,,则1x y z ++=,只有选项D 满足,.故选D. 【点睛】本题主要考查了向量的共面定理的应用,其中熟记点M 与点,,A B C 共面时,且OM xOA yOB zOC =++,则1x y z ++=是解答的关键,着重考查了分析问题和解答问题的能力.8.D解析:D 【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果. 详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.9.B解析:B 【解析】分析:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,求得(0,22,0),(1,2,1)BC AE ==,利用向量的夹角公式,即可求解.详解:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则(2,0,0),(2,22,0),(0,0,2),(0,0,0),(1,2,1)B C P A E , 则(0,22,0),(1,2,1)BC AE ==, 设异面直线BC 和AE 所成的角为θ, 则42cos ,2224BC AE BC AE BC AE⋅===⋅⋅, 所以异面直线BC 和AE 所成的角为4π,故选B.点睛:本题考查了异面直线所成的角的求解,其中把异面直线所成的角转化为向量所成的角,利用向量的夹角公式求解是解答的关键,对于对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解直线的方向向量和平面的法向量,利用向量的夹角公式求解.10.B解析:B 【分析】作1A D ⊥平面11BB C C 于点 D ,连接1B D ,1,C D OD ,则点1A 与点 D 的横纵坐标相同,点1A 竖坐标的值为1A D 的长度,由1//AA 平面 11BBC C ,得到A 和1A 到平面11BB C C 的距离相等.由 1//AD AO ,则1A 竖坐标的值为AO 的长度,由111//,OC C D OC C D OB ==,得到 11DB OC 为平行四边形,然后由1AB C 为等腰直角三角形面11BB C C 是边长为2的菱形, 160CBB ︒∠=求得坐标即可. 【详解】 如图所示,作1A D ⊥平面11BB C C 于点 D ,连接1B D ,1,C D OD , 则点1A 与点D 的横纵坐标相同,点1A 竖坐标的值为1A D 的长度, 因为111//,AA CC CC ⊂平面 111,BB C C AA ⊄平面11BB C C , 所以1//AA 平面11BB C C ,所以A 和1A 到平面11BB C C 的距离相等. 而1A D ⊥平面11,BB C C AO ⊥平面 11BB C C , 所以1A D AO =,1//A D AO , 所以1AODA 为平行四边形, 所以11//,AA OD AA OD =, 所以11//,OD CC OD CC =, 所以1OCC D 为平行四边形. 所以111//,OC C D OC C D OB ==, 所以11DB OC 为平行四边形, 所以111,,B D OC C D OB ==.而在边长为2的菱形11CC B B 中,160CBB ︒∠=, 所以113,1OC BO OC OB ===. 所以点D 的坐标为(3,1,0)-, 而1AB C 为等腰直角三角形, 所以11OA OC OB ===, 故点1A 的坐标为(3,1,1)-. 故选:B . 【点睛】本题主要考查直线,平面间的平行关系以及平面几何图形的应用,还考查了逻辑推理的能力,属于中档题.11.B解析:B【分析】以1,,AB AD AA 为空间向量的基底,表示出1BD 和AC ,由空间向量的数量积求出向量的夹角的余弦值即得. 【详解】由题意11111cos 602AB AD AB AA AD AA ⋅=⋅=⋅=⨯⨯︒=. 以1,,AB AD AA 为空间向量的基底,AC AB AD =+,111BD AD AB AD AA AB =-=+-,221111()()AC BD AB AD AD AA AB AB AD AB AA AB AD AD AA AB AD ⋅=+⋅+-=⋅+⋅-++⋅-⋅1=,222()23AC AB AD AB AB AD AD =+=+⋅+=222211111()2222BD AD AA AB AD AA AB AD AA AD AB AA AB=+-=+++⋅-⋅-⋅=,∴111cos ,3AC BD AC BD AC BD ⋅<>===⋅.∴1BD 与AC故选:B . 【点睛】本题考查用空间向量法求异面直线所成的角,解题时选取空间基底,把其他向量用基底表示,然后由数量积的定义求得向量的夹角,即得异面直线所成的角.12.B解析:B 【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题. 【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+2221||(11)(10)()2PN z z z =--+--+-25334z z =-+所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得22231||(1)(10)()44PQ z z z =--+--+-29338z z =-+2133()28z =-+所以当12c =时,||PQ 取得最小值64P 为线段1CA 的中点, 由于2||MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B 【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.二、填空题13.【分析】先写出的坐标再由向量的夹角公式求得角A 【详解】=(-100)则cosA=又因为故角A 的大小为30°填【点睛】求平面向量夹角公式:若则解析:30【分析】先写出,AB AC 的坐标,再由向量的夹角公式求得角A. 【详解】31AB -,,0,AC 22⎛⎫= ⎪ ⎪⎝⎭=(-1,0,0).则cosA=3AB?AC 211|AB|?|AC|==⨯,又因为,[0,]AB AC π∈,故角A 的大小为30°.填30.【点睛】求平面向量夹角公式:cos ,,,[0,]a b a b a b a bπ⋅=∈⋅,若111222(,,),(,,)a x y z b x y z ==,则121212222222cos ,,,[0,]x x y y z z a b a b x y z x y zπ++=∈++⋅++.14.【分析】建立如图所示的空间直角坐标系结合为等腰直角三角形求得向量的坐标利用向量的夹角公式即可求解【详解】取得中点连接因为所以因为平面平面平面平面所以平面又因为所以于是以为坐标原点建立如图所示的空间直解析:4【分析】建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,求得向量,AC PD 的坐标,利用向量的夹角公式,即可求解.【详解】取AC 得中点O ,连接OP ,OB ,因为PA PC =,所以AC OP ⊥. 因为平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC =.所以OP ⊥平面ABC ,又因为AB BC =,所以AC OB ⊥,于是以O 为坐标原点, 建立如图所示的空间直角坐标系O xyz -,结合PAC ∆为等腰直角三角形,4PA PC ==,ABC ∆为等边三角形,则()A ,()C -,(P ,)D,所以()AC =-,(2,PD =-,所以8cos ,424AC PD AC PD AC PD⋅-〈〉==⨯ 24=-,故异面直线AC 与PD 所成角的余弦值为24.【点睛】本题主要考查了利用空间向量求解异面直线所成的角,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解是解答此类问题的关键,着重考查了推理与运算能力.15.【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 解析:()1,4,1--【分析】根据空间直角坐标系中点坐标公式求结果. 【详解】 设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--. 【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题.16.【分析】建立直角坐标系设正方体边长为2求出平面的法向量为直线与平面所成角为因为所以当时取到最小值代入即可【详解】解:如图建立直角坐标系设正方体边长为2则002设平面的法向量为由得令故0由设直线与平面解析:25【分析】建立直角坐标系,设正方体边长为2,求出平面DEF 的法向量为m ,直线ME 与平面1D EF 所成角为α,2sin cos ,15m EM a α==+⋅,因为[0a ∈,2],所以当2a =时,取到最小值,代入即可.【详解】解:如图,建立直角坐标系,设正方体边长为2,AM a =, 则(2E ,0,1),(2M ,a ,2),(0D ,0,2),(2F ,2,1), 设平面DEF 的法向量为(m x =,y ,)z ,1(0,2,0),(2,0,1)EF ED ==-,由0m EF ⋅=,10m D E ⋅=,得020y x z =⎧⎨-+=⎩,令2z =,1x =,故(1m =,0,2),由(0,,1)EM a =,设直线ME 与平面1D EF 所成角为α, 22sin cos ,15m EM a α==+⋅,因为[0a ∈,2],所以当2a =时,sin α的最小值为22555=⋅, 故答案为:25.【点睛】考查立体几何中的最值问题,本题利用向量法求线面所成的角,基础题.17.2【解析】因为向量所以则解之得应填答案解析:2 【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。

北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(有答案解析)(1)

北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(有答案解析)(1)

一、选择题1.设动点P 在棱长为1的正方体1111ABCD A BC D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是( )A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭2.在四棱锥O ﹣ABCD 中,底面ABCD 是平四边形,设OA a =,OB b =,OC c =,则BD 可表示为( )A .a c b +-B .a +2b c -C .c b a +-D .a c +-2b3.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .(0,63D .()63,+∞4.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( ) A .-4B .1C .10D .115.在边长为2的菱形ABCD 中,23BD =ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 6.正方体ABCD —A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为 A .0°B .45°C .60 °D .90°7.四棱锥P ABCD -中,(2,1,3),(2,1,0),(3,1,4)AB AD AP =-=-=-,则这个四棱锥的高为( )A .55B .15C .25D .2558.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P ABC -中,PA ⊥平面ABC ,AB BC ⊥,且1PA AB BC ===,则二面角A PCB --的大小是( )A .30B .45︒C .60︒D .90︒9.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定10.如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D 311.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A 2B 3C .1D .212.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C .33D .233二、填空题13.在空间直角坐标系中,点(1,2,3)关于yoz 面对称的点的坐标为__________ 14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___.15.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC ,则二面角B ﹣AD ﹣C 的余弦值为_____.17.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________18.在直三棱柱111ABC A B C -中,若1BAC 90,AB ACAA ,则异面直线1BA 与1AC 所成的角等于_________19.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.20.正四棱柱1111ABCD A BC D -的底面边长为2,若1AC 与底面ABCD 所成角为60°,则11AC 和底面ABCD 的距离是________ 三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图,在三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,90ACB ∠=,2AC BC ==,点D 为棱BC 的中点,点E 为棱PC 上一点;(1)求直线AD 与PB 的夹角的余弦值; (2)求二面角C PA D --的余弦值; (3)若直线ED 与平面PAD 的夹角的正弦值为27,求线段CE 的长度; 23.在直三棱柱111ABC A B C -中,12AC BC CC ===,90ACB ∠=︒,点D 在棱AC 上(不同于点A ,C ),点E 为棱1CC 的中点.(1)求直线1BC 与平面1A BE 所成角的正弦值; (2)若二面角1A BE D --的余弦值为66,求线段CD 的长. 24.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.(1)证明:1//BC 平面1AD E ; (2)求直线1BC 到平面1AD E 的距离; (3)求平面1AD E 与平面ABCD 夹角的余弦值.25.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.26.如图所示,在直三棱柱111ABC A B C -中,ABC 是边长为6的等边三角形,,D E 分别为1,AA BC 的中点.(1)证明://AE 平面1BDC(2)若123CC =,求DE 与平面11ACC A 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】建立空间直角坐标系,APC ∠为锐角等价于cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,根据向量数量积的坐标运算即可求解. 【详解】如图建立空间直角坐标系:则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,1,1D B =-,()()111,1,1,,D P D B λλλλλ==-=-, ()11,01D A =-,()10,1,1D C =-,所以()()()111,01,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC D C D P λλλλλλ=-=---=---,由APC ∠为锐角得cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,所以()()22110λλλ--+->,即()()1310λλ-->,解得:103λ<<, 当0λ=时,点P 位于点1D 处,此时1APC ADC ∠=∠显然是锐角,符合题意, 所以103λ≤<, 故选:A 【点睛】关键点点睛:本题的关键点是APC ∠为锐角等价于cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,还需利用11PA D A D P =-,11PC DC D P =-求出PA 、PC 的坐标,根据向量数量积的坐标运算即可求解.2.D解析:D 【分析】作出图形,根据条件得出BD BA BC =+,再得到BA a b =-,BC c b =-,即可求解, 得到答案. 【详解】如图所示,在四棱锥O ABCD -中,底面ABCD 是平行四边形,则BD BA BC =+, 在OAB ∆中,BA OA OB a b =-=-, 在OBC ∆中,BC OC OB c b =-=-, 故选:D.【点睛】本题主要考查了向量的线性运算,以及向量的加法的几何意义,其中解答中熟记向量的运算法则是解答的关键,着重考查了推理与计算能力,属于基础题.3.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO .OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AOOB ∴==.在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C. 【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题.4.D解析:D 【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x = 故选D 【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。

最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(包含答案解析)(2)

最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(包含答案解析)(2)

一、选择题1.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若AB =4,AC =6,BD =6,则线段CD 的长为( )A .29B .10C .241D .2132.在四棱锥O ﹣ABCD 中,底面ABCD 是平四边形,设OA a =,OB b =,OC c =,则BD 可表示为( )A .a c b +-B .a +2b c -C .c b a +-D .a c +-2b3.如图,在几何体111ABC A B C -中,ABC ∆为正三角形,111////AA BB CC ,1AA ⊥平面ABC ,若E 是棱11B C 的中点,且1112AB AA CC BB ===,则异面直线1A E 与1AC 所成角的余弦值为( )A 13B 213C .2613D 2264.已知在平行六面体1111ABCD A B C D -中,过顶点A 的三条棱所在直线两两夹角均为60︒,且三条棱长均为1,则此平行六面体的对角线1AC 的长为( )A 3B .2C 5D 65.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD > D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD 6.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个 ①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等;③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形 ( ) A .1B .2C .3D .47.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .88.已知正方体1111ABCD A B C D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A .55B .52C .53D .359.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35+C .45+D .422+10.如图,在棱长为2的正方体1111ABCD A B C D -中,点E F 、分别是棱AB 、BC 的中点,则点1C 到平面1B EF 的距离等于( )A .23B .223C .233D .4311.已知平行六面体1111ABCD A B C D -中,11114A E AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1212.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C .33D .233二、填空题13.如图,在矩形ABCD 中,4,2AB AD ==,E 为AB 的中点.将ADE 沿DE 翻折,得到四棱锥1A DEBC -.设1A C 的中点为M ,在翻折过程中,有下列三个命题:①总有BM ∥平面1A DE ; ②线段BM 的长为定值;③存在某个位置,使DE 与1A C 所成的角为90°. 其中正确的命题是_______.(写出所有正确命题的序号)14.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ; ②AC BD ⊥;③AC BD =;④异面直线PM 与BD 所成的角为045. 15.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___.16.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且 22EF =,现有如下四个结论: ①AC BE ⊥;②//EF 平面ABCD ;③三棱锥A BEF -的体积为定值; ④异面直线,AE BF 所成的角为定值. 其中正确结论的序号是______.17.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.18.已知在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为_____.19.在正方体ABCD -A 1B 1C 1D 1中,下列给出四个命题: (1)四边形ABC 1D 1的面积为1AB BC (2)11AD A B 与的夹角为60°;(3)22111111111111()3();(4)()0AA A D A B A B AC A B A D ++=⋅-=; 则正确命题的序号是______.(填出所有正确命题的序号)20.在平行六面体ABCD A B C D '-''' 中,4AB = ,3AD = ,5A A '= ,90BAD ∠=︒ ,60A AB A AD ''∠=∠=︒ ,则AC '= __________. 三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,ABC 是边长为6的等边三角形,D ,E 分别为AA 1,BC 的中点.(1)证明:AE //平面BDC 1;(2)若123AA =DE 与平面BDC 1所成角的正弦值.22.如图,在四棱锥P ABCD -中,6π∠=CAD ,且321,2AD CD PA ABC ===,和PBC 均是等边三角形,O 为BC 的中点.(I )求证:PO ⊥平面ABCD ; (Ⅱ)求CB 与平面PBD 所成角的正弦值.23.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.24.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD DC =,F ,G 分别是PB ,AD 的中点.(Ⅰ)求证:GF ⊥平面PCB ;(Ⅱ)求平面PAB 与平面PCB 的夹角的大小;(III )在线段AP 上是否存在一点M ,使得DM 与平面ADF 所成角为30︒?若存在,求出M 点坐标,若不存在,请说明理由.25.如图,在四棱锥P ABCD -中,已知ABCD 是平行四边形,60DAB ∠=,AD AB PB ==,PC PA ⊥,PC PA =.(1)求证:BD ⊥平面PAC ; (2)求二面角A PB C --的余弦值.26.如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,//AB CD ,60DAB ∠=︒,2AB AD CD ==,侧面PAD ⊥底面ABCD ,且PAD △为等腰直角三角形,90APD ∠=︒.(Ⅰ)求证:AD PB ⊥;(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】CD CA AB BD =++,利用数量积运算性质可得2222222CD CA AB BD CA AB CA BD AB BD =+++++.根据CA AB ⊥,BD AB ⊥,可得0CA AB =,0BD AB =,由60︒二面角可得;cos120CA BD CA BD =︒,代入计算即可得出. 【详解】解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,1cos12066182CA BD CA BD =︒=-⨯⨯=-.∴222264621852CD =++-⨯=, ∴213CD =.故选:D . 【点睛】本题考查了利用向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题2.D解析:D 【分析】作出图形,根据条件得出BD BA BC =+,再得到BA a b =-,BC c b =-,即可求解, 得到答案. 【详解】如图所示,在四棱锥O ABCD -中,底面ABCD 是平行四边形,则BD BA BC =+, 在OAB ∆中,BA OA OB a b =-=-, 在OBC ∆中,BC OC OB c b =-=-, 故选:D.【点睛】本题主要考查了向量的线性运算,以及向量的加法的几何意义,其中解答中熟记向量的运算法则是解答的关键,着重考查了推理与计算能力,属于基础题.3.C解析:C【解析】 【分析】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与AC 1所成角的余弦值 【详解】以C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴, CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 设AB =AA 1=CC 1=2BB 1=2,则A 1(3,1,2),A (310,,),C 1(0,0,2),B 1(0,2,1),E (0,1,32), 1A E =(3-,0,12-),1AC =(3-,﹣1,2),设异面直线A 1E 与AC 1所成角为θ,则cosθ1111226131384A E AC A E AC ⋅===⋅⋅. ∴异面直线A 1E 与AC 1所成角的余弦值为2613. 故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.4.D解析:D 【分析】由()2211+BC CC ,AC AB =+根据已知条件能求出结果【详解】∵()2211+BC CC AC AB =+=222111222AB BC CC AB BC AB CC BC CC +++⋅+⋅+⋅=1+1+1+2×1×1×cos60°+2×1×1×co s60°+2×1×1×cos60°=6. ∴AC =. 故选D . 【点睛】这个题目考查了向量的点积运算和模长的求法;对于向量的题目一般是以小题的形式出现,常见的解题思路为:向量基底化,用已知长度和夹角的向量表示要求的向量,或者建系实现向量坐标化,或者应用数形结合.5.D解析:D 【分析】由题意逐一考查所给的说法是否正确即可. 【详解】因为空间任两向量平移之后可共面,所以空间任意两向量均共面,选项A 错误; 因为a b =仅表示a 与b 的模相等,与方向无关,选项B 错误;因为空间向量不研究大小关系,只能对向量的长度进行比较,因此也就没有AB CD >这种写法,选项C 错误;∵0AB CD +=,∴AB CD =-,∴AB 与CD 共线,故AB //CD ,选项D 正确. 本题选择D 选项. 【点睛】本题主要考查向量平移的性质,向量模的定义的理解,向量共线的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.6.A解析:A 【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时, 设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的,综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键.7.A解析:A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2i AB A P B B +⋅,最后根据棱长为1以及i AB BP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A. 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.8.A解析:A 【解析】分析:建立空间直角坐标系,结合题意得到点的坐标,然后利用空间向量求解点面距离即可.详解:如图所示,建立空间直角坐标系,则()10,0,1A ()10,1,1D ,11,0,2E ⎛⎫ ⎪⎝⎭, 据此可得:()110,1,0A D =,111,0,2A E ⎛⎫=- ⎪⎝⎭, 设平面11A D E 的法向量为()111,,m x y z =,则:1110102y x z =⎧⎪⎨-=⎪⎩, 据此可得平面11A D E 的一个法向量为()1,0,2m =,而()1,1,0C ,据此有:()11,1,1AC =-,则点C 到平面11A D E 的距离为11555AC m m⋅==. 本题选择A 选项.点睛:本题主要考查空间向量的应用,点面距离的求解等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B 【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C 设(),,0M a b ,04,04a b ≤≤≤≤(2,,23MP a b ∴=--,(),4,0MC a b =--•0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-=M ∴为底面ABCD 内以()12O ,为圆心,以5r =为半径的圆上的一个动点 则点M 到直线AB 的最远距离为41535-+=+ 故选B 【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题10.D解析:D 【分析】建立空间直角坐标系,找到平面1B EF 的法向量,利用向量法求点到平面的距离求解即可. 【详解】以1D 为坐标原点,分别以11D A ,11D C ,1D D 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则1(2,2,0)B ,1(0,2,0)C ,(2,1,2)E ,(1,2,2)F .设平面1B EF 的法向量为(,,)n x y z =,1(0,1,2)B E =-1(1,0,2)B F =-则1100n B E n B F ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x z -+=⎧⎨-+=⎩令1z =,得(2,2,1)n =. 又11(2,0,0)BC =-,∴点1C 到平面1B EF 的距离1122|||243||221n B C h n ⋅-===++,故选:D . 【点睛】本题用向量法求点到平面的距离,我们也可以用等体积法求点到平面的距离,当然也可以找到这个垂线段,然后放在直角三角形中去求.11.B解析:B 【分析】根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-.故选:B . 【点睛】本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.12.B解析:B 【分析】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭.易知平面1ACD 的法向量为()1,1,1n =,计算夹角得到答案. 【详解】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭. 根据1,n AC n AD ⊥⊥得到平面1ACD 的法向量为()1,1,1n =,11,1,22DE ⎛⎫= ⎪⎝⎭,故22cos 3n DE n DEα⋅==⋅,故1sin 3α=, 直线DE 与平面ACD 1所成角θ,满足1cos sin 3θα==. 故选:B .【点睛】本题考查了线面夹角,意在考查学生的空间想象能力和计算能力.二、填空题13.①②【分析】取D的中点N连接MNEN根据四边形MNEB为平行四边形判断①②假设DE⊥C得出矛盾结论判断③【详解】取D的中点N连接MNEN 则MN为△CD的中位线∴MN∥CD且MN=CD又E为矩形ABC解析:①②【分析】取1A D的中点N,连接MN,EN,根据四边形MNEB为平行四边形判断①,②,假设DE⊥1A C得出矛盾结论判断③.【详解】取1A D的中点N,连接MN,EN,则MN为△1A CD的中位线,∴MN∥12CD,且MN=12CD又E为矩形ABCD的边AB的中点,∴BE∥12CD,且BE=12CD∴MN∥BE,且MN=BE即四边形MNEB为平行四边形,∴BM∥EN,又EN⊂平面A1DE,BM⊄平面A1DE,∴BM∥平面1A DE,故①正确;由四边形MNEB为平行四边形可得BM=NE,而在翻折过程中,NE的长度保持不变,故BM的长为定值,故②正确;取DE的中点O,连接1A O,CO,由1A D =1A E 可知1A O ⊥DE , 若DE ⊥1A C ,则DE ⊥平面1A OC , ∴DE ⊥OC ,又∠CDO =90°﹣∠ADE =45°, ∴△OCD 为等腰直角三角形,故而CD 2=OD ,而OD 12=DE 2=,CD =4,与CD 2=OD 矛盾,故DE 与1A C 所成的角不可能为90°. 故③错误.故答案为①②.【点睛】本题考查命题真假,线面平行的判定,线面垂直的判定与性质,空间想象和推理运算能力,属于中档题.14.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④ 【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③ 【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错. 故答案为①②④ 【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型.15.90°【分析】对该方程两边分别平方即可得到即可【详解】则∴α与β所成角的大小为90°故答案为90°【点睛】本题考查了向量模去绝对值问题可以通过对向量模平方去掉绝对值即可解析:90° 【分析】对该方程两边分别平方,即可得到0αβ⋅=,即可. 【详解】αβαβ+=-222222ααββααββ∴+⋅+=-⋅+则0αβ⋅=∴α与β所成角的大小为90° 故答案为90° 【点睛】本题考查了向量模去绝对值问题,可以通过对向量模平方,去掉绝对值,即可.16.①②③【分析】根据平面可判断①;根据可判断②;利用体积公式判断③;设用向量法求出的夹角的范围判断④【详解】连接由可知平面而平面故①正确;由且平面平面可得平面故②正确;三棱锥的体积为定值故③正确;建立解析:①②③ 【分析】根据AC ⊥平面11BB D D 可判断①;根据11//B D BD 可判断②;利用体积公式判断③;设11D E a =,用向量法求出,AE BF 的夹角的范围判断④. 【详解】连接BD ,由AC BD ⊥,1AC DD ⊥,可知AC ⊥平面11BB D D , 而BE ⊂平面11BB D D ,AC BE ∴⊥,故①正确; 由//EF BD ,且EF ⊄平面ABCD ,BD ⊂平面ABCD , 可得//EF 平面ABCD ,故②正确;1132A BEF BEFV SAC -=⋅ 112211232=⨯=, ∴三棱锥A BEF -的体积为定值,故③正确;建立坐标系如图所示;设1102D E a a ⎛=≤≤ ⎝⎭,则()1,0,0A ,()1,1,0B,,,122E a ⎛⎫ ⎪ ⎪⎝⎭,11,122F ⎫++⎪⎪⎝⎭,21,,122AE a ⎛⎫∴=- ⎪ ⎪⎝⎭,211,,12222BF a a ⎛⎫=-- ⎪ ⎪⎝⎭, 设异面直线,AE BF 所成的角为θ, 则cos a AE BFAE BFa θ⋅==⋅=2232222a a a ⎛⎫-+=-+ ⎪ ⎪⎝⎭ ∴当0a =时,cos θ取得最大值2,θ∴的最小值为30,即异面直线,AE BF 所成的角不为定值,故④错误;故答案为:①②③ 【点睛】本题考查了线面垂直的性质定理、线面平行的判定定理、三棱锥的体积公式以及空间向量法求异面直线所成的角,综合性比较强,属于中档题.17.【解析】【分析】设出点的坐标根据题意列出方程组从而求得该点到原点的距离【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以所以故该点到原点的距离为故填【点睛】本题主要考查了空间中点的坐标与应用空间 解析:2【解析】 【分析】设出点的坐标(,,)x y z ,根据题意列出方程组,从而求得该点到原点的距离. 【详解】设该点的坐标(,,)x y z因为点到三个坐标轴的距离都是1所以221x y +=,221y z +=,221x z +=, 所以22232x y z ++=2,【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.18.【分析】建立空间直角坐标系得到相关点的坐标后求出直线AE 的方向向量=(011)和平面A1ED1的法向量然后利用向量的共线可得直线AE 与平面A1ED1垂直于是得所求角为【详解】以D 为原点以DADCDD 解析:90【分析】建立空间直角坐标系,得到相关点的坐标后,求出直线AE 的方向向量AE =(0,1,1)和平面A 1ED 1的法向量()0,1,1n =,然后利用向量的共线可得直线AE 与平面A 1ED 1垂直,于是得所求角为90. 【详解】以D 为原点,以DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系, 则A (1,0,0),E (1,1,1),A 1(1,0,2),D 1(0,0,2), 于是AE =(0,1,1),1A E =(0,1,-1),11A D =(-1,0,0). 设平面A 1ED 1的法向量为(),,n x y z =,则1110,0,n A E y z n A D x ⎧⋅=-=⎪⎨⋅=-=⎪⎩得,0,y z x =⎧⎨=⎩令1z =,得()0,1,1n =. 所以AE ∥n ,故直线AE 与平面A 1ED 1垂直,即所成角为90°. 故答案为90° 【点睛】本题考查空间位置关系的向量解法,将几何问题转化为数的运算的问题处理,解题的关键是建立适当的空间直角坐标系、正确地求出直线的方向向量和平面的法向量,由于解题时需要进行数的运算,因此还要注意计算的准确性.19.(1)(3)(4)【分析】结合正方体图形分别对四个命题进行判断【详解】⑴由面故所以四边形的面积为正确⑵是等比三角形又因为异面直线与所成的夹角为但是向量的夹角为故错误⑶由向量的加法可以得到则故正确⑷由解析:(1) (3) (4) 【分析】结合正方体图形,分别对四个命题进行判断 【详解】⑴由AB ⊥面11BB CC ,故1AB BC ⊥,所以四边形11ABC D 的面积为1AB BC 正确 ⑵1ACD 是等比三角形,160AD C ∠∴=︒,又因为11A B D C ,∴异面直线1AD 与1A B 所成的夹角为60︒,但是向量11AD A B 与的夹角为120︒,故错误⑶由向量的加法可以得到111111AA A D A B AC ++=,()221113AC A B =,则 ()()2211111113AA A D A B A B ++=,故正确⑷111111A B A D D B -=,由11D B ⊥面11AC C ,故111D B AC ⊥,可得111)0AC D B ⋅=,故正确 【点睛】本题主要考查的是用向量的知识和方法研究正方体中的线线位置关系以及夹角和面积,用到向量的加减法,夹角及向量的数量积,熟练掌握正方体中的线线位置关系及夹角与向量的有关知识方法是做好本题的关键。

新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(2)

一、选择题1.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .42.若直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,则1l 与2l 的位置关系是( ) A .12l l ⊥B .12l l C .1l 、2l 相交不垂直 D .不能确定3.阅读材料:空间直角坐标系O ﹣xyz 中,过点P (x 0,y 0,z 0)且一个法向量为=(a ,b ,c )的平面α的方程为a (x ﹣x 0)+b (y ﹣y 0)+c (z ﹣z 0)=0;过点P (x 0,y 0,z 0)且一个方向向量为d =(u ,v ,w )(uvw≠0)的直线l 的方程为000x x y y z z u v w---==,阅读上面材料,并解决下面问题:已知平面α的方程为x+2y ﹣2z ﹣4=0,直线l 是两平面3x ﹣2y ﹣7=0与2y ﹣z+6=0的交线,则直线l 与平面α所成角的大小为( ) A .arcsin 1414 B .arcsin 421C .arcsin51442D .arcsin123773774.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,1AB AC AA ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为6π,当1B M 最小时,AMB ∠=( )A .512π B .3πC .4π D .6π 5.在边长为2的菱形ABCD 中,23BD =ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π6.设平面α的一个法向量为1(1,2,2)n =-,平面β的一个法向量为2(2,4,)n k =--,若//αβ,则k = ( )A .2B .-4C .-2D .47.在四面体O-ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG=3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .111,,444⎛⎫⎪⎝⎭B .333,,444⎛⎫⎪⎝⎭ C .111,,333⎛⎫⎪⎝⎭D .222,,333⎛⎫⎪⎝⎭8.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±9.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .810.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A 2B 3C 5D 611.如图所示,五面体ABCDE 中,正ABC ∆的边长为1,AE ⊥平面,ABC CD AE ∥,且12CD AE =.设CE 与平面ABE 所成的角为,(0)AE k k α=>,若ππ[,]64α∈,则当k 取最大值时,平面BDE 与平面ABC 所成角的正切值为( )A .22B .1C .2D .312.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .12二、填空题13.如图,已知正三棱柱111ABC A B C -中,12AB AA ==,,M N 分别为1,CC BC 的中点,点P 在直线11A B 上且满足111().A P A B R λλ=∈若平面PMN 与平面ABC 所成的二面角的平面角的大小为45,则实数λ的值为______.14.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点的坐标是______. 15.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______. 16.如右图,AO ⊥平面α,点0为垂足,BC ⊂平面α,BC OB ⊥,若π4ABO ∠=,π6COB ∠=,则 tan BAC ∠=__________.17.如图所示,三棱锥O ABC -中,OA a =,OB b =,OC c =,点M 在棱OA 上,且2OM MA =,N 为BC 中点,则MN =__________.(用a ,b ,c 表示)18.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.19.已知(1,1,0)a =,(1,0,2)b =-,若ka b +和3a b -相互垂直,则k =________. 20.已知60︒ 的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知1AB = ,2AC = ,3BD = ,则线段CD 的长为__________.三、解答题21.在①()()DE CF DE CF +⊥-,②17||2DE =,③0cos ,1EF DB <<这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体1111ABCD A BC D -中,以D 为坐标原点,建立空间直角坐标系D xyz -.已知点1D 的坐标为()0,0,2,E 为棱11D C 上的动点,F 为棱11B C 上的动点,___________,试问是否存在点E ,F 满足1EF AC ⊥?若存在,求AE BF ⋅的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.22.如图四棱锥S ABCD -,ABCD 是平行四边形,2AD BD ==,AD BD ⊥,SAD 为等边三角形,且平面SAD ⊥平面ABCD ,E 是AB 边的中点,F 是侧棱SC 上的一点.(1)是否存在这样的点F ,使得//EF 平面SAD ?若存在,请求出SFSC的值,若不存在,请说明理由;(2)在(1)的条件下,求异面直线AD 与EF 的距离.23.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ; (2)求二面角11B AC C --的大小.24.如图.四棱柱ABCD-A 1B 1C 1D 1的底面是直角梯形,BC ∥AD ,AB AD ,AD=2BC=2,四边形ABB 1A 1和ADD 1A 1均为正方形.(1)证明;平面ABB 1A 1平面ABCD ; (2)求二面角B 1 CD-A 的余弦值.25.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.26.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,PA PD ⊥,PA PD =.(1)求证:平面PAB ⊥平面PCD ;(2)若1BC =,2AD CD ==,求二面角A PC B --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解. 【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=,与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=, 31(1,1,2)A B =,此时1231143A B A B ⋅=-+=,42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个. 故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2.A解析:A 【分析】求出直线1l 、2l 的方向向量数量积为0,由此得到1l 与2l 的位置关系. 【详解】由题意,直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,2640a b ⋅=-+-=,∴1l 与2l 的位置关系是12l l ⊥.故选A . 【点睛】本题主要考查了两直线的位置关系的判断,考查直线与直线垂直的性质等基础知识,着重考查运算求解能力,属于基础题.3.B解析:B 【分析】先根据两个平面的方程,求出平面交线的方向向量,结合已知平面的方程确定平面的法向量,然后求解. 【详解】平面α的法向量为n =(1,2,﹣2),联立方程组3270260x y y z --=⎧⎨-+=⎩,令x =1,得y =﹣2,z =2,令x =3,得y =1,z =8,故点P (1,﹣2,2)和点Q (3,1,8)为直线l 的两个点,∴PQ =(2,3,6)为直线l 的方向向量, ∵44cos ,3721||||PQ n PQ n PQ n ⋅-<>===-⨯ ,∴直线l 与平面α所成角的正弦值为421,故选B . 【点睛】本题主要考查直线和平面所成角的正弦,属于信息提供题目,理解题中所给的信息是求解关键.4.B解析:B 【分析】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出AMB ∠的大小. 【详解】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系, 设1=1AB AC AA ==,设CN b =,BM a =,则(1N ,0,)b ,(0M ,1,)a ,(0A ,0,0),(0B ,1,0),(0AM =,1,)a ,(1AN =,0,)b , 设平面AMN 的法向量(n x =,y ,)z ,·0·0AM n y az AN n x bz ⎧=+=⎨=+=⎩,取1z =,得(n b =-,a -,1), 平面ABC 的法向量(0m =,0,1),平面AMN 与平面ABC 所成(锐)二面角为6π, 2||cos6||||m n m n a π∴==+, 解得22331a b +=,∴当|1|B M 最小时,0b =,33BM a ==,1tan 333AB AMB BM ∴∠===, 3AMB π∴∠=.故选B .【点睛】本题考查角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.C解析:C 【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC ﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案. 【详解】 如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱,故2R ==因此,三棱锥A ﹣BCD 的内切球的表面积为222443R πππ=⨯=. 故选C . 【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.6.D解析:D 【分析】根据平面平行得法向量平行,再根据向量平行坐标表示得结果. 【详解】因为//αβ,所以12122//24n n k-==--,,解之得4k =,应选答案D 【点睛】本题考查向量平行坐标表示,考查基本求解能力,属基础题.7.A解析:A 【分析】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,利用空间向量的运算法则求得131114444OG OG OA OB OC ===++,即得(x,y,z). 【详解】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,1(2AE AB AC =+)=1(2OB -2OA OC +), 121(33AG AE OB ==-2OA OC +).因为OG =31GG =3(1OG OG -), 所以OG=34OG 1. 则1133(44OG OG OA AG ==+)=31211114333444OA OB OA OC OA OB OC ⎛⎫+-+=++ ⎪⎝⎭ .故答案为A 【点睛】(1)本题主要考查空间向量的运算法则和基底法,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 如果三个向量,,a b c 不共面,那么对于空间任意一个向量p ,存在一个唯一的有序实数组,,x y z 使p xa yb zc =++.我们把{},,x y z 叫做空间的一个基底,其中,,a b c 叫基向量.8.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b ⨯===+,化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.9.A解析:A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2i AB A P B B +⋅,最后根据棱长为1以及i AB BP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅,故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A. 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.10.A解析:A 【解析】解:由题意可知:()1,1,b a t t t -=---- , 则:()()()222211322b a t t t t -=--+-+-=+≥ ,即b a - 的最小值是2 . 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.11.C解析:C 【详解】分析:建立空间直角坐标系,利用直线CE 与平面ABE 所成的角,求解k 的最大值,进而求解平面BDE 和平面ABC 的一个法向量,利用向量所成的角,求解二面角的余弦值,进而求得正切值,得到结果.详解:如图所示,建立如图所示的空间直角坐标系O xyz - ,则31(0,1,0),(0,0,),(0,1,),(,0)22kA D E kB ,取AB 的中点M,则3,0)4M ,则平面ABE 的一个法向量为33(,0)44CM =,由题意sin 2CE CM CE CMα⋅==⋅又由ππ[,]64α∈,所以1sin 22α≤=≤k ≤≤,所以k 当k =BDE的法向量为(,,)n x y z =,则02310222n DE y z n BEx y z ⎧⋅=-=⎪⎪⎨⎪⋅=++=⎪⎩, 取(3,1n =--,由平面ABC 的法向量为(0,0,1)m =, 设平面BDE 和平面ABC 所成的角为θ,则3cos 3n m n m θ⋅==⋅,所以sin 3θ=tan θ= C.点睛:本题考查了空间向量在立体几何中的应用,解答的关键在于建立适当的空间直角坐标系,求解直线的方向向量和平面的法向量,利用向量的夹角公式求解,试题有一定的难度,属于中档试题,着重考查了学生的推理与运算能力,以及转化的思想方法的应用.12.B解析:B 【分析】根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-.故选:B . 【点睛】本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.二、填空题13.【分析】从二面角的大小入手利用空间向量求解【详解】以N 为坐标原点NCNA 所在直线分别为x 轴y 轴建立空间直角坐标系如图则由可得设为平面的一个法向量则即令可得易知平面ABC 的一个法向量为因为平面与平面所 解析:2-【分析】从二面角的大小入手,利用空间向量求解. 【详解】以N 为坐标原点,NC,NA 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图则()()()()()10,0,0,1,0,1,1,0,0,3,0,3,2N M B A A - ,由111A P AB λ=可得()11111133,2NP NA A P NA A B NA AB λλλλ=+=+=+=-, ()1,0,1NM =,设(),,n x y z =为平面PMN 的一个法向量,则00n NM n NP ⎧⋅=⎨⋅=⎩,即)03120x z x y z λλ+=⎧⎪⎨--+=⎪⎩, 令1z =-,可得()()321,,131n λλ⎛⎫+=- ⎪ ⎪-⎝⎭,易知平面ABC 的一个法向量为()0,0,1m =. 因为平面PMN 与平面ABC 所成的二面角的平面角的大小为45,所以1cos45n mn m n ⋅︒==,即2n =,所以21211231λλ+⎛⎫++= ⎪-⎝⎭,解得2λ=-. 【点睛】本题主要考查空间向量的应用,利用二面角求解参数.二面角的求解和使用的关键是求解平面的法向量,把二面角转化为向量的夹角问题.14.【分析】根据对称关系确定点的坐标【详解】∵在空间直角坐标系中点关于轴对称的点的坐标为∴点关于轴对称的点的坐标为【点睛】本题考查空间直角坐标系点对称关系考查基本分析求解能力属基础题 解析:()2,1,4---【分析】根据对称关系确定点的坐标. 【详解】∵在空间直角坐标系中,点(),,x y z 关于x 轴对称的点的坐标为(),,x y z --, ∴点()2,1,4-关于x 轴对称的点的坐标为()2,1,4---. 【点睛】本题考查空间直角坐标系点对称关系,考查基本分析求解能力,属基础题.15.【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 解析:()1,4,1--【分析】根据空间直角坐标系中点坐标公式求结果. 【详解】 设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--. 【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题.16.【解析】因为平面平面所以根据三垂线定理可得:设因为所以所以在中有并且所以【解析】因为AO ⊥平面α,BC ⊂平面α,BC OB ⊥, 所以根据三垂线定理可得:BC AB ⊥. 设2OB =, 因为π4ABO ∠=,π6COB ∠=,所以2OA =,AB =BC =所以在ABC △中有BC AB ⊥,并且AB =BC =,所以tan BC BAC AB ∠==17.【解析】解析:211322a b c -++【解析】MN MA AB BN =++11()32OA OB OA BC =+-+ 21()32OA OB OC OB =-++-211322OA OB OC =-++211322a b c =-++.18.2【解析】因为向量所以则解之得应填答案解析:2 【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。

(常考题)北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(含答案解析)

一、选择题1.已知三棱锥P ABC -的所有棱长均为2,点M 为BC 边上一动点,若AN PM ⊥且垂足为N ,则线段CN 长的最小值为( ) A .2133- B .2733-C .73D .12.长方体1111ABCD A BC D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1AC 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形3.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .44.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,1AB AC AA ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为6π,当1B M 最小时,AMB ∠=( )A .512π B .3πC .4π D .6π 5.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26B .36C .56D .136.在边长为2的菱形ABCD 中,23BD =,将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .πC .23π D .2π 7.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A .255B .55C .45D .18.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±9.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A .2B .3C .5D .610.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD内运动,且PM 5=,则MN 长度的最小值为( )A .352-B .23-C .25-+D .332-12.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.若平面α的一个法向量为()n 122=,,,A(1,0,2),B(0,-1,4),A ∉α,B ∈α,则点A 到平面α的距离为__________.14.已知平面向量()21,3m =+a 与()2,m =b 是共线向量且0⋅<a b ,则=b __. 15.如右图,AO ⊥平面α,点0为垂足,BC ⊂平面α,BC OB ⊥,若π4ABO ∠=,π6COB ∠=,则 tan BAC ∠=__________.16.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).17.已知向量,,a b c 是空间的一个单位正交基底,向量,,a b a b c +-是空间的另一个基底.若向量m 在基底,,a b c 下的坐标为()1,2,3,则m 在基底,,a b a b c +-下的坐标为 _________18.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.19.正四棱柱1111ABCD A BC D -的底面边长为2,若1AC 与底面ABCD 所成角为60°,则11AC 和底面ABCD 的距离是________20.三棱锥V-ABC 的底面ABC 与侧面VAB 都是边长为a 的正三角形,则棱VC 的长度的取值范围是_________.三、解答题21.如图,四棱锥P ABCD -的底面为直角梯形,且AB AD ⊥,BC //AD ,BC AB =112AD ==,10PA PD ==,平面PAD ⊥平面ABCD ,点M 为棱PD 上动点.(1)当M 为PD 的中点时,平面PAB ⋂平面PCD =l ,求证:l //平面ACM ; (2)是否存在点M 使二面角M AC D --的余弦值为2211,若存在,请确定M 的位置;若不存在,请说明理由.22.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 为菱形,60BCD ∠=︒,,PD CD E =为CD 的中点.(1)求证:平面PBE ⊥平面PCD . (2)求二面角B PC D --所成角的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.24.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,CF CP λ=且满足BF AC ⊥,求二面角F AB P --的余弦值.25.如图,在正方体1111ABCD A BC D -中,E 为11C D 的中点,F 为11B C 的中点.(1)求证://EF 平面ABCD ;(2)求直线1B D 与平面BDEF 所成的角的正弦值.26.如图,在多面体EF ABCD -中,AD //BC ,CD //EF ,1AD DC DE ===,2BC EF ==,2CDE CDA π∠=∠=.(1)若M 为EF 中点,求证:CD ⊥BM ; (2)若二面角A DC E --的平面角为3π,求直线AE 与平面EFB 所成角的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】取PA 中点O ,得点N 在以O 为球心,半径为1的球面上,进一步可得N 的轨迹为一段圆弧,设点O 在平面PBC 的投影点为1O ,则点N 在以1O 为圆心的圆弧上,可得当点N 在1CO 上时,CN 取最小值,求解三角形计算得答案. 【详解】解:取PA 中点O ,AN PM ⊥,∴点N 在以O 为球心,半径为1的球面上,又点N 在平面PBC 上,故N 的轨迹为一段圆弧, 设点O 在平面PBC 的投影点为1O , 且点1(O PS S ∈为BC 中点), 则点N 在以1O 为圆心的圆弧上,3PS AS ==,设A 到PS 的距离为h ,则221132(3)122h ⨯⨯=⨯⨯-,即263h =,得163OO =,21631()33PO =-=,22213PS =-=由N 在PS 上时,求得133NO =,求解Rt △1CO S ,得2212313213CO ⎛⎫=+ ⎪ ⎪=⎝⎭, 则当点N 在1CO 上时,CN 取最小值2133-, 故选:A .【点睛】本题考查空间中点、线、面间的距离计算,考查空间想象能力与思维能力,考查运算求解能力,解答的关键是弄清动点的轨迹;2.B解析:B 【分析】以D 为坐标原点建立如图所示的空间直角坐标系,先利用向量找出截面与11A D 、AD 和AB 的交点,再过Q 作//QF MN 交11B C 于F ,过F 作//EF QM ,交1BB 于E ,即可判断截面形状. 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q A C PQ x ∴⋅=---=,解得18Q x =,即()18,0,10Q ,设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5N y =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--, 则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1AC 垂直的长方体截面为五边形QMNEF . 故选:B.【点睛】本题考查截面的形状的判断,解题的关键是先利用向量找出截面与11A D 、AD 和AB 的交点,即可利用平面的性质找出其它点的位置.3.C解析:C 【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解. 【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=, 31(1,1,2)A B =,此时1231143A B A B ⋅=-+=, 42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个. 故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.B解析:B 【分析】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出AMB ∠的大小.【详解】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系, 设1=1AB AC AA ==,设CN b =,BM a =,则(1N ,0,)b ,(0M ,1,)a ,(0A ,0,0),(0B ,1,0),(0AM =,1,)a ,(1AN =,0,)b , 设平面AMN 的法向量(n x =,y ,)z ,·0·0AM n y az AN n x bz ⎧=+=⎨=+=⎩,取1z =,得(n b =-,a -,1), 平面ABC 的法向量(0m =,0,1),平面AMN 与平面ABC 所成(锐)二面角为6π, 22||1cos6||||1m n m n a b π∴==++, 解得22331a b +=,∴当|1|B M 最小时,0b =,33BM a ==,1tan 333AB AMB BM ∴∠===, 3AMB π∴∠=.故选B .【点睛】本题考查角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.A解析:A【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0), ()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >26922=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A .【点睛】 本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.6.C解析:C【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC ﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案.【详解】如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱长的63,故662126R ==. 因此,三棱锥A ﹣BCD 的内切球的表面积为226244(3R πππ=⨯=. 故选C .【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.7.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+PBC 的面积为(122BC PB ⨯⨯==126105a ==时,面积取得最小值为=,故选A. 【点睛】 本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值. 8.C解析:C【解析】 分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a ba b a b ⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b ⨯===+,化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.9.A解析:A【解析】解:由题意可知:()1,1,b a t t t -=---- ,则:(b a t -=--= ,即b a -本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.10.A解析:A【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果.【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q ,设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--,设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.故选:A【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.C解析:C【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=可得1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ =,1DN MQ ==,故552NM DN MQ =--=-故答案选:C【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题12.B解析:B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值.【详解】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=,||BP ∴==819255=, ||5tan ||3AB BP θ∴=, tan θ∴的最大值为53. 故选:B .【点睛】本题主要考查的是线面所成角,解题的关键是找到线面所成角的平面角,是中档题.二、填空题13.【分析】利用点到直线的距离公式借助平面的法向量利用公式即可求解【详解】由题意平面的一个法向量为且则所以点A 到平面的距离为【点睛】本题主要考查了点到平面的距离的求法其中解答中熟记空间向量在几何问题中的解析:13【分析】 利用点到直线的距离公式,借助平面的法向量,利用公式,即可求解.【详解】由题意,平面α的一个法向量为,,(1)22n =,且(1,0,2),(0,1,4),,A B A B αα-∉∈,则(1,1,2)BA =-,所以点A 到平面α的距离为1131BA n d n ⋅+===+. 【点睛】本题主要考查了点到平面的距离的求法,其中解答中熟记空间向量在几何问题中的应用,以及点到直线的距离公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题. 14.【解析】∵向量与是共线向量∴∴或∵∴即∴则∴故答案为解析:【解析】∵向量(21,3)a m =+与(2,)b m =是共线向量∴(21)6m m += ∴32m =或2m =- ∵0a b ⋅<∴(21)230m m +⨯+<,即27m <-∴2m =-,则(2,2)b =-∴22(b =+=故答案为15.【解析】因为平面平面所以根据三垂线定理可得:设因为所以所以在中有并且所以【解析】因为AO ⊥平面α,BC ⊂平面α,BC OB ⊥, 所以根据三垂线定理可得:BC AB ⊥.设2OB =,因为π4ABO ∠=,π6COB ∠=,所以2OA =,AB =BC =所以在ABC △中有BC AB ⊥,并且AB =3BC =,所以tan BC BAC AB ∠== 16.【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出异面直线AM 与B1C 所成的角【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体ABCD ﹣解析: 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AM 与B 1C 所成的角.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),M (2,1,2),B 1(2,2,2),C (0,2,0),AM =(0,1,2),1BC =(﹣2,0,2), 设异面直线AM 与B 1C 所成的角为θ, cosθ11410558AM B CAM B C ⋅===⨯⋅. ∴θ105arccos =. ∴异面直线AM 与B 1C 所成的角为arccos105. 故答案为:105arccos .【点睛】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.17.【解析】由题意可知:即在基底下的坐标为 解析:31,,322⎛⎫- ⎪⎝⎭【解析】由题意可知:()()3123322m a b c a b a b c =++=+--+ , 即m 在基底,,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭ . 18.(003)【解析】试题分析:设由题意所以解得考点:两点间的距离公式 解析:(0,0,3)【解析】 试题分析:设,由题意,所以,解得考点:两点间的距离公式 19.【解析】分析:确定A1C1到底面ABCD 的距离为正四棱柱ABCD ﹣A1B1C1D1的高即可求得结论详解:∵正四棱柱ABCD ﹣A1B1C1D1∴平面ABCD ∥平面A1B1C1D1∵A1C1⊂平面A1B 解析:26. 【解析】分析:确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高,即可求得结论. 详解:∵正四棱柱ABCD ﹣A 1B 1C 1D 1, ∴平面ABCD ∥平面A 1B 1C 1D 1,∵A 1C 1⊂平面A 1B 1C 1D 1,∴A 1C 1∥平面ABCD∴A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高∵正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长为2,AC 1与底面ABCD 成60°角,∴A 1A=22tan60°=26故答案为26.点睛:本题考查线面距离,确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.20.【解析】分析:设的中点为连接由余弦定理可得利用三角函数的有界性可得结果详解:设的中点为连接则是二面角的平面角可得在三角形中由余弦定理可得即的取值范围是为故答案为点睛:本题主要考查空间两点的距离余弦定 解析:3)a【解析】分析:设AB 的中点为D ,连接,,VD CD VC ,由余弦定理可得22233cos 22VC a a VDC =-∠,利用三角函数的有界性可得结果.详解:设AB 的中点为D ,连接,,VD CD VC ,则2VD VC == VDC ∠是二面角V AB C --的平面角,可得0,1cos 1VDC VDC π<∠<-<∠<,在三角形VDC 中由余弦定理可得,2222cos VC VDC ⎫⎫=+-∠⎪⎪⎪⎪⎝⎭⎝⎭ 2233cos 22a a VDC =-∠22030VC a VC <<⇒<<,即VC 的取值范围是(),为故答案为().点睛:本题主要考查空间两点的距离、余弦定理的应用,意在考查空间想象能力、数形结合思想的应用,属于中档题. 三、解答题21.(1)证明见解析;(2)M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为11. 【分析】(1)延长,AB DC 交于Q ,连接PQ ,PQ 即为直线l ,证明//MC PQ 即可得线面平行; (2)取AD 的中点O ,连接OP ,OC ,分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz .设DM DP λ=,利用空间向量法求二面角的余弦,由已知余弦值可求得λ,即存在.【详解】(1)延长,AB DC 交于Q ,连接PQ .则易知PQ 为平面PAB 与平面PCD 的交线, 即:PQ 与l 重合.由题意,在ADQ △中://BC AD ,且12BC AD =, 故C 为DQ 的中点.又∵M 为PD 的中点,∴//MC PQ . 又∵MC ⊂平面ACM ,PQ ⊄平面ACM , ∴//PQ 平面ACM ,即//l 平面ACM .(2)取AD 的中点O ,连接OP ,OC ,由题意可得:OP AD ⊥,OC AD ⊥. 又∵平面PAD ⊥平面ABCD ,则OP ⊥平面ABCD ,∴分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz . 则()0,1,0A -,()1,0,0C ,()0,1,0D ,()0,0,3P ,()0,1,3DP =-,()0,2,0AD =,()1,1,0AC =∵M 在棱PD 上,不妨设()()0,1,30,,3DM DP λλλλ==-=-, 其中01λ≤≤.∴AM AD DM =+()()0,2,00,,3λλ=+-()0,2,3λλ=-, 设平面MAC 的一个法向量为(),,m x y z =,则00m AM m AC ⎧⋅=⎨⋅=⎩即()2300y z x y λλ⎧-+=⎨+=⎩,令2z λ=-解得:3y λ=-,3x λ=.即()3,3,2m λλλ=--. 又∵平面ACD 的一个法向量()0,0,1m =. ∴()()()222222cos ,332m n λλλλ-<>==+-+-23λ=. 所以,M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为2211. 【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补). 22.(1)证明见详解;(27【分析】(1)证出BE DC ⊥,PD BE ⊥,由线面垂直的判定定理证出BE ⊥平面PCD ,再由面面垂直的判定定理即可证明.(2)以D 为原点,以,,DF DC DP 为,,x y z 轴,建立空间直角坐标系,求出平面PDC 一个法向量以及平面PBC 的一个法向量,利用空间向量的数量积即可求解. 【详解】 (1)连接BD ,由四边形ABCD 为菱形,60BCD ∠=︒, 则BD AD BC ==, 又E 为CD 的中点,BE DC ∴⊥,PD ⊥平面ABCD ,且BE ⊂平面ABCD ,PD BE ∴⊥,PD DC D ⋂=,所以BE⊥平面PCD ,BE ⊂平面PBE ,∴平面PBE ⊥平面PCD .(2)取AB 的中点F ,连接DF ,则DF DC ⊥,以D 为原点,以,,DF DC DP 为,,x y z 轴,建立空间直角坐标系,如图:设1PD CD ==,则()0,0,1P ,()0,1,0C,1,02B ⎫⎪⎪⎝⎭,F ⎫⎪⎝⎭, 32DF ⎛⎫= ⎪ ⎪⎝⎭,()0,1,1PC =-,31,122PB ⎛⎫=- ⎪ ⎪⎝⎭,由DF DC ⊥,DF DP ⊥,DC DP D ⋂=,所以DF ⊥平面PDC ,即32DF ⎛⎫= ⎪ ⎪⎝⎭为平面PDC 一个法向量,设平面PBC 的一个法向量为(),,n x y z =,则00nPC n PB ⎧⋅=⎨⋅=⎩,即01022y z x y z -=⎧+-=⎪⎩, 令1y =,可得1z =,x =3,1,1n ⎛⎫= ⎪ ⎪⎝⎭设二面角B PC D --所成角为θ,且为锐角,11cos cos ,1n DF n DF n DFθ⋅=====所以二面角B PC D --所成角的余弦值为7. 【点睛】 思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内;(2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错. (3)利用数量积验证垂直或求平面的法向量. (4)利用法向量求距离、线面角或二面角. 23.(1)点E 是PD 的中点,详见解析;(2. 【分析】(1)点E 是PD 的中点,连接BD 交AC 与点O ,连接OE ,由中位线定理得到//OE PB ,再利用线面平行的判定定理证明.(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,分别求得平面PAC 的一个法向量()111,,m x y z =,平面ACE 的一个法向量()222,,n x y z =,设二面角P AC E --为θ,由cos m n m nθ⋅=⋅求解.【详解】(1)点E 是PD 的中点,如图所示:连接BD 交AC 与点O ,连接OE , 所以//OE PB ,又PB ⊄平面AEC ,OE ⊂平面AEC , 所以//PB 平面AEC .(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,则()()()()40,0,2,0,0,0,2,3,0,0,3,0,0,1,3P A C D E ⎛⎫ ⎪⎝⎭,所以()()42,3,0,0,0,2,0,1,3AC AP AE ⎛⎫=== ⎪⎝⎭,设平面PAC 的一个法向量为()111,,m x y z =,则00m AC m AP ⎧⋅=⎨⋅=⎩,即 11123020x y z +=⎧⎨=⎩,令 1113,2,0x y z ==-=,则()3,2,0m =- 设平面ACE 的一个法向量为()222,,n x y z =,则00n AC n AE ⎧⋅=⎨⋅=⎩,即 2221230403x y y z +=⎧⎪⎨+=⎪⎩, 令 22233,2,2x y z ==-=,则33,2,2n ⎛⎫=- ⎪⎝⎭,设二面角P AC E --为θ, 所以213cos 61m n m nθ⋅==⋅,所以sin θ=. 【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.24.(1)证明见解析;(23 【分析】(1)建立空间直角坐标系,得出点的坐标,根据向量垂直的坐标表示可得证; (2)根据线面角的空间向量求解方法,可得答案;(3)由CF CP λ=,01λ≤≤.,由向量垂直的坐标表示,求得λ,再运用二面角的空间向量求解方法,可得答案. 【详解】解:(1)证明 依题意,以点A 为原点建立空间直角坐标系(如图).可得()()()()1,0,0,2,2,0,0,2,0,0,0,2B C D P .由E 为棱PC 的中点,得()1,1,1E 向量()0,1,1BE =,()2,0,0DC =,故0BE DC ⋅=, 所以BE DC ⊥.(2)向量()1,2,0BD =-,()1,0,2PB =-. 设(),,n x y z =为平面PBD 的法向量.则00n BD n PB ⎧⋅=⎨⋅=⎩即2020x y x z -+=⎧⎨-=⎩,不妨令1y =,得()2,1,1n =为平面PBD 的一个法向量, 于是有23cos ,3||||62n BE n BE n BE ⋅〈〉===⋅⨯. 所以直线BE 与平面PBD 所成角的正弦值为33. (3)向量()1,2,0BC =,()2,2,2CP =--,()2,2,0AC =,()1,0,0AB =. 由点F 在棱PC 上,CF CP λ=,01λ≤≤.故()12,22,2BF BC CF BC CP λλλλ=+=+=--.由BF AC ⊥,得0BF AC ⋅=,因此()() 212 2220λλ-+-=,解得34λ=.即113,,222BF ⎛⎫=- ⎪⎝⎭,设()1,,n x y z =为平面FAB 的法向量,则110 0n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩,即01130222x x y z =⎧⎪⎨-++=⎪⎩. 不妨令1z =,得()10,3,1n =-为平面FAB 的一个法向量. 取平面ABP 的法向量()20,1,0n =,则:12121233101010c 1os ,n n n n n n ⋅=-⋅==-⨯知,二面角F AB P --是锐角,所以其余弦值为31010.【点睛】求二面角的方法:1、几何法:做出二面角的平面角,运用解三角形的知识求解二面角的大小;2、建立空间直角坐标系,运用空间向量的数量积运算求得二面角的大小,运用此方法时,注意判断二面角的范围.25.(1)证明见解析;(2)39. 【分析】(1)证明//EF BD ,可得证线面平行;(2)以D 为坐标原点,向量DA ,DC ,1DD 方向分别为x 、y 、z 轴建立如图所示空间直角坐标系,用向量法求得线面角的正弦. 【详解】(1)证明:连11B D∵几何体1111ABCD A BC D -为正方体,∴11//EF B D ∵11//BD B D ,∴//EF BD∵//EF BD ,BD ⊂平面ABCD ,EF ⊄平面ABCD ∴//EF 平面ABCD(2)以D 为坐标原点,向量DA ,DC ,1DD 方向分别为x 、y 、z 轴建立如图所示空间直角坐标系令2AB =,可得点D 的坐标为()0,0,0,点1B 的坐标为()2,2,2, 点B 的坐标为()2,2,0,点E 的坐标为()0,1,2()12,2,2DB =,()2,2,0DB =,()0,1,2DE =设平面BDEF 的法向量为(),,m x y z =,有22020DB m x y DE m y z ⎧⋅=+=⎨⋅=+=⎩,取2x =,2y =-,1z =可得()2,2,1m =-由12DB m ⋅=,1||23DB =||3m =, 有13cos ,323DB m ==⨯故直线1B D 与平面BDEF 所成的角的正弦值为39. 【点睛】方法点睛:本题考查用空间向量法求直线与平面所成的角.求线面角的方法:(1)几何法,通过作证算三个步骤求解,即作出直线与平面所成的角,并证明,然后计算出这个角.(2)空间向量法:建立空间直角坐标系,用空间向量法求角,即求出平面的法向量,由直线的方向向量与平面的法向量余弦值的绝对值等于线面角的正弦值求解. 26.(1)证明见解析;(2)6π. 【分析】(1)连接MC ,可证明CD ⊥平面BCM ,即可得到CD ⊥BM ; (2)利用向量法求线面角即可. 【详解】 (1)连接MC ,有//CD ME 且CD ME =,则四边形CDEM 是平行四边形, 所以//CM DE ,又因为2CDE π∠=,所以CM CD ⊥,由已知易得CD BC ⊥, 又BCCM C =,所以CD ⊥平面BCM ,所以CD BM ⊥.(2)以D 为坐标原点,射线DA 方向为x 轴,射线DC 方向为y 轴,建立空间直角坐标系如图:()()13131,0,0,,,2,1,022A E F B ⎛⎛ ⎝⎭⎝⎭, 132AE ⎛=- ⎝⎭,在平面BEF 中,()330,2,0,,1,2EF EB ⎛== ⎝⎭,设该平面一个法向量为(),,n x y z =, 则0·033·002y n EF n BE x z ⎧=⎧=⎪⎪⇒⎨⎨==⎪⎪⎩⎩, 取(1,0,3n =, 设线面角为θ, 则1sin |cos ,|||2n AE n AE n AEθ⋅===⋅, 所以直线AE 与平面EFB 夹角6π. 【点睛】关键点点睛:涉及线面角的向量求法,首先建立合适的空间直角坐标系, 写出点的坐标,得到向量,求出平面的法向量,代入线面角正弦的公式即可求解.。

新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(含答案解析)(2)

一、选择题1.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .212.若直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,则1l 与2l 的位置关系是( ) A .12l l ⊥B .12l l C .1l 、2l 相交不垂直 D .不能确定3.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( ) A .-4B .1C .10D .114.已知长方体1111ABCD A BC D -的底面AC 为正方形,1AA a =,AB b =,且a b >,侧棱1CC 上一点E 满足13CC CE =,设异面直线1A B 与1AD ,1A B 与11D B ,AE 与11D B 的所成角分别为α,β,γ,则 A .αβγ<<B .γβα<<C .βαγ<<D .αγβ<<5.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .16.已知在平行六面体1111ABCD A BC D -中,过顶点A 的三条棱所在直线两两夹角均为60︒,且三条棱长均为1,则此平行六面体的对角线1AC 的长为( )A 3B .2C 5D 67.已知A,B,C 三点不共线,对于平面ABC 外的任一点O,下列条件中能确定点M 与点A,B,C一定共面的是( ) A .OM OA OB OC =++ B .2OM OA OB OC =-- C .1123OM OA OB OC =++ D .111236OM OA OB OC =++ 8.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22C .13D .169.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A .55B .52C .53D .3510.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35C .45+D .422+11.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个12.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A .2B .3C .1D .2二、填空题13.已知正方体1111ABCD A BC D -的棱长为4,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111D C B A 内,点Q 在线段1A N 上,若25PM =,则PQ 的最小值为______.14.若非零向量,αβ满足αβαβ+=-,则α与β所成角的大小为___.15.已知四棱锥P ABCD -的底面ABCD 是边长为2的正方形,5PA PD ==,平面ABCD ⊥平面PAD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是__________.16.已知平面向量()21,3m =+a 与()2,m =b 是共线向量且0⋅<a b ,则=b __. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.19.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 .20.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为__________.三、解答题21.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小.22.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,E 为PD 中点.(1)求证:BD ⊥平面PAC ; (2)求二面角P AC E --的余弦值;23.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD . (2)求二面角B AE C --的余弦值.24.如图,四棱锥S ABCD -中,底面ABCD 是梯形,//AB CD ,90ADC ∠=︒,3AD =,22SD CD AB ===,点E ,F 分别是BC ,SD 的中点.(1)求证://EF 平面SAB ;(2)若SB SC =,2EF =,求二面角B SC D --的余弦值.25.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AB BC CA AA ===,D 为AB 的中点.(1)求证:1//BC 平面1DAC ;(2)求平面1DAC 与平面11AAC C 所成的锐二面角....的余弦值. 26.已知三棱锥,A BCD ABD -和BCD △是边长为2的等边三角形,平面ABD ⊥平面BCD(1)求证:AC BD ⊥;(2)设G 为BD 中点,H 为ACD △内的动点(含边界),且//GH 平面ABC ,求直线GH 与平面ACD 所成角的正弦值的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.2.A解析:A 【分析】求出直线1l 、2l 的方向向量数量积为0,由此得到1l 与2l 的位置关系. 【详解】由题意,直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,2640a b ⋅=-+-=,∴1l 与2l 的位置关系是12l l ⊥.故选A . 【点睛】本题主要考查了两直线的位置关系的判断,考查直线与直线垂直的性质等基础知识,着重考查运算求解能力,属于基础题.3.D解析:D 【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x = 故选D 【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。

(常考题)北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测(有答案解析)

一、选择题1.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若AB =4,AC =6,BD =6,则线段CD 的长为( )A 29B .10C .241D .2132.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .43.正方体1111ABCD A BC D -的棱长为a ,点M 在1AC 且112AM MC =,N 为1B B 的中点,则MN 为( )A .216aB .66aC .156aD .153a 4.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD >D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD5.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等;③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形( )A .1B .2C .3D .46.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1607.正方体1111ABCD A BC D -中,点E ,F 分别是棱,CD BC 上的动点,且2BF CE =,当三棱锥1C C EF -的体积取得最大值时,记二面角1111,,C EF C C EF A A EF A ------的平面角分别为,,αβγ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .βγα>>8.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( )A .2B .3C .5D .69.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定 10.如图,在正方体1111ABCD A BC D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C 11.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11AC 和11AB 的中点,当AE 和BF 所成角的余弦值为710时,AE 与平面11BCC B 所成角的正弦值为( )A 15B 15C 5D 512.在平面直角坐标系中,()2,3A -、()32B -,,沿x 轴将坐标平面折成60︒的二面角,则AB 的长为( )A 2B .211C .32D .42二、填空题13.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ;②AC BD ⊥;③AC BD =;④异面直线PM 与BD 所成的角为045.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为,则的最大值为 . 15.已知空间向量(1,0,0)a =,13(,,0)22b =,若空间向量c 满足2c a ⋅=,52c b ⋅=,且对任意,x y R ∈,()()00001(,)c xa yb c x a y b x y R -+≥-+=∈,则c =__________. 16.如图所示,三棱锥O ABC -中,OA a =,OB b =,OC c =,点M 在棱OA 上,且2OM MA =,N 为BC 中点,则MN =__________.(用a ,b ,c 表示)17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x =__________.18.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,则实数λ=_________.19.已知平面α的一个法向量为()2,1,3n =--,()3,2,1M -,()4,4,1N ,其中M α∈,N α∉,则点N 到平面α的距离为__________.20.正三棱锥底面边长为1,侧面与底面所成二面角为45°,则它的全面积为________三、解答题21.如图.四棱柱ABCD-A 1B 1C 1D 1的底面是直角梯形,BC ∥AD ,AB AD ,AD=2BC=2,四边形ABB 1A 1和ADD 1A 1均为正方形.(1)证明;平面ABB 1A 1平面ABCD ;(2)求二面角B 1 CD-A 的余弦值.22.如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==,87CF =(1)求直线CE 与平面BDE 所成角的正弦值;(2)求平面BDE 与平面BDF 夹角的余弦值.23.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.24.如图,三棱台111ABC A B C -中,,30AB BC ACB ︒⊥∠=,侧面11ACC A 为等腰梯形,11112224AC AA AC C C ====,13A B =.(1)求证:1AC A B ⊥.(2)求直线1BC 与平面11ACC A所成角的正弦值. 25.如图,在三棱锥P ABC -中,PAC △为等腰直角三角形,90APC ∠=︒,ABC 为正三角形,D 为AC 的中点,2AC =.(1)证明:PB AC ⊥;(2)若三棱锥P ABC -的体积为33,求二面角A PC B --的余弦值. 26.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD 3,求二面角D -AE -C 的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】CD CA AB BD =++,利用数量积运算性质可得2222222CD CA AB BD CA AB CA BD AB BD =+++++.根据CA AB ⊥,BD AB ⊥,可得0CA AB =,0BD AB =,由60︒二面角可得;cos120CA BD CA BD =︒,代入计算即可得出.【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,1cos12066182CA BD CA BD =︒=-⨯⨯=-. ∴222264621852CD =++-⨯=,∴213CD =故选:D .【点睛】本题考查了利用向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题2.C解析:C【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解.【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=,与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=,31(1,1,2)A B =,此时1231143A B A B ⋅=-+=,42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个.故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A【分析】建立空间直角坐标系,写出各个点的坐标,利用坐标关系求得线段的长度.【详解】建立如图所示的空间直角坐标系则N(a ,a ,12a),C 1(0,a ,a ),A (a ,0,0) 因为11AM MC 2=所以11AM AC 3= 所以113DM DA AC =+ ()()1211,0,0,,,,3333a a a a a a a ⎛⎫=+-= ⎪⎝⎭所以121,,336MN DN DM a a a ⎛⎫=-= ⎪⎝⎭所以222121213366MN a a a a ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以选A【点睛】本题考查了空间直角坐标系的简单应用,利用坐标求得线段长度,属于基础题. 4.D解析:D【分析】由题意逐一考查所给的说法是否正确即可.【详解】因为空间任两向量平移之后可共面,所以空间任意两向量均共面,选项A 错误; 因为a b =仅表示a 与b 的模相等,与方向无关,选项B 错误;因为空间向量不研究大小关系,只能对向量的长度进行比较,因此也就没有AB CD >这种写法,选项C 错误;∵0AB CD +=,∴AB CD =-,∴AB 与CD 共线,故AB //CD ,选项D 正确. 本题选择D 选项.【点睛】本题主要考查向量平移的性质,向量模的定义的理解,向量共线的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时,设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的, 综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键. 6.D解析:D【解析】设直四棱柱1111ABCD A BC D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC ,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.7.A解析:A【分析】设正方体的棱长为2,CE a =,则22CF a =-,列出三棱锥1C C EF -的体积关系式,可知当12a =时,1C C EF V -取得最大值,以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用法向量求出,,αβγ的余弦值,根据余弦值的大小关系可得结果.【详解】以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系: 设正方体的棱长为2,CE a =,则22CF a =-,由0222a <-≤,得01a ≤<,11C C EF C CEF V V --=113CEF CC S =⨯⨯△211211(22)2()32324a a a ⎡⎤=⨯-⨯=--+⎢⎥⎣⎦, 所以当12a =时,1C C EF V -取得最大值16. 此时,3(2,0,0),(020),(00)2A C E ,,,,,(1,2,0)F ,11(2,0,2),(0,2,2)A C , 1(1,,0)2EF =,1(1,0,2)C F =-,1(1,2,2)A F =--, 设平面1C EF 的法向量为111(,,)m x y z =,平面1A EF 的法向量为222(,,)n x y z =,则100m EF m C F ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x y x z ⎧+=⎪⎨⎪-=⎩,取11x =,则1112,2y z =-=,所以1(1,2,)2m =-, 100n EF n A F ⎧⋅=⎪⎨⋅=⎪⎩,即22222102220x y x y z ⎧+=⎪⎨⎪-+-=⎩,取21x =则2252,2y z =-=-,所以5(1,2,)2n =--,取平面CEF 和平面AEF 的法向量为1(0,0,2)AA =, 由图可知,,,αβγ均为锐角,则cos α=11||||||m AA m AA⋅=21=, ||cos ||||m n m n β⋅==5|14|+-=, 11||cos =||||n AA n AAγ⋅==, 所以cos cos cos αβγ<<,根据余弦函数在(0,)2π内单调递减,可得αβγ>>.故选:A 【点睛】本题考查了三棱锥的体积公式,考查了二面角的向量求法,考查了运算求解能力,属于中档题.8.A解析:A 【解析】解:由题意可知:()1,1,b a t t t -=---- ,则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.9.A解析:A 【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果. 【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q , 设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--, 设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减,所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°. 故选:A 【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.10.B解析:B 【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题. 【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+||(1PN ==所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得||PQ ===所以当12c =时,||PQ 取得最小值4P 为线段1CA 的中点, 由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B 【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.11.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为710,求出12tAA ==.由此能求出AE 与平面11BCC B 所成角α的正弦值. 【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则31,,(0,0,0),,22A E t B F t ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭,(AE =-,12,)t ,3(BF =12,)t , AE ∵和BF 所成角的余弦值为710,2221||||72|cos ,|10||||11t AE BF AE BF AE BF t -∴<>===+, 解得2t =.∴(2AE =-,12,2), 平面11BCC B 的法向量(1,0,0)n =,AE ∴与平面11BCC B 所成角α的正弦值为:3||152sin 10||||5AE n AE n α===. 故选:B .【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.D解析:D 【分析】作AC x ⊥轴于C ,BD x ⊥轴于D ,则AB AC CD DB =++,两边平方后代入数量积即可求得2||AB ,则AB 的长可求. 【详解】如图,()2,3A -,()3,2B -,作AC x ⊥轴于C ,BD x ⊥轴于D ,则()2,0C -,()3,0D ,3AC ∴=,5CD =,2DB =,沿x 轴把坐标平面折成60︒的二面角,CA ∴<,60DB >=︒,且0AC CD CD DB ⋅=⋅=,222||()AB AB AC CD DB ∴==++222222AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅19254232322⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭.42AB ∴=即AB 的长为 故选:D . 【点睛】本题主要考查了空间角,向量知识的运用,考查学生的计算能力,属于中档题.二、填空题13.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④ 【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③ 【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错. 故答案为①②④ 【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型.14.【详解】建立坐标系如图所示设则设则由于异面直线所成角的范围为所以令则当时取等号所以当时取得最大值考点:1空间两直线所成的角;2不等式解析:25【详解】建立坐标系如图所示.设1AB =,则11(1,,0),(,0,0)22AF E =.设(0,,1)(01)M y y ≤≤,则1(,,1)2EM y =-,由于异面直线所成角的范围为(0,]2π,所以22112(1)22cos 115451144yy y y θ-+-==⋅++⋅++.2222(1)81[]14545y y y y -+=-++, 令81,19y t t +=≤≤,则281161814552y y t t+=≥++-,当1t =时取等号. 所以22112(1)12222cos 511555451144yy y y θ-+-==≤⨯=⋅++⋅++,当0y =时,取得最大值.考点:1、空间两直线所成的角;2、不等式.15.【分析】设空间向量由已知条件可得的值由对任意得:进而得到答案【详解】解:空间向量设空间向量空间向量又由对任意则故故答案为:【点睛】本题考查的知识点是空间向量的数量积运算空间向量的模属于中档题 解析:22【分析】设空间向量(),,c m n z =,由已知条件可得m 、n 的值,由对任意x ,y R ∈,00|()||()|1c xa yb c x a y b -+-+=得:||1z =,进而得到答案. 【详解】 解:空间向量(1,0,0)a =,13(,22b =, 设空间向量(),,c m n z =,2c a ⋅=,52c b ⋅=,2m ∴=,1522m = 2m ∴=,3n =,∴空间向量()2,3,c z =,又由对任意x ,y R ∈,()()001c xa yb c x a y b -+≥-+=, 则||1z =,故(22c =+=故答案为:【点睛】本题考查的知识点是空间向量的数量积运算,空间向量的模,属于中档题.16.【解析】解析:211322a b c -++【解析】MN MA AB BN =++11()32OA OB OA BC =+-+ 21()32OA OB OC OB =-++-211322OA OB OC =-++211322a b c =-++.17.2【解析】因为向量所以则解之得应填答案解析:2 【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《空间向量与立体几何》同步测试题
1、空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则
−→
−AB +)(2
1
+=
2、直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB = b ,1CC = c , 则1A B =
3、已知A 、B 、C 三点不共线,平面ABC 外的任一点O ,能确定点M 与点A 、B 、C 一定共面的是( )
A .OC O
B OA OM ++= B .O
C OB OA OM --=2
C .OM 3121++
= D .OM 3
1
3131++= 4、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅,则
△BCD 是( )
A .钝角三角形
B .直角三角形
C .锐角三角形
D .不确定 5、在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( )
A . 0
B .1
C . 2
D .3
6、已知向量a 和c 不共线,向量b ≠0,且()()⋅⋅=⋅⋅a b c b c a ,d =a +c ,则,〈〉d b = .
7、已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m ,n 的夹角为 .
8、已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k= 9、知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是
10、向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为
11、已知△ABC 的三个顶点A (3,3,2),B (4,-3,7),C (0,5,1),BC 边上的中线长为
12、已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =
,则点的坐标

13、若平面α与β的法向量分别是a =(1,0,-2),b =(-1,0,2),则平面α与平面β的
关系是
14、已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是
15、已知直线l 1的方向向量a =(2,4,x ),直线l 2的方向向量b =(2,y,2),若|a |=6,且a⊥b ,则x +y 的值是( )
16、已知平面α上的两个向量a =(2,3,1),b =(5,6,4),则平面α的一个法向量为( ) A .(1,-1,1) B .(2,-1,1) C .(-2,1,1) D .(-1,1,-1)
17、已知正方体ABCD ­A 1B 1C 1D 1,E ,F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是
18、已知在棱长为a 的正方体ABCD ­A ′B ′C ′D ′中,E 是BC 的中点.则直线A ′C 与DE 所
成角的余弦值为________.
19、正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别是A 1D 1、A 1C 1的中点.则异面直线AE 与CF 所成角的余
弦值为_______
20、正方体ABCD ­A 1B 1C 1D 1中,O 为侧面BCC 1B 1的中心,则AO 与平面ABCD 所成角的正弦值为_______
21、正方体ABCD ­A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为_______
22、已知三棱锥P ­ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =1
2
AB ,N 为AB 上一点,AB =4AN ,
M ,S 分别为PB ,BC 的中点.证明:CM ⊥SN .
23、在正四棱柱ABCD ­A 1B 1C 1D 1中,AB =2,AA 1=4,E 为BC 的中点,F 为CC 1的中点. (1)求EF 与平面ABCD 所成的角的余弦值;(2)求二面角F ­DE ­C 的余弦值.
24、如图,已知点P 在正方体ABCD ­A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.
(1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小.
C
25、如图,四棱锥P ­ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,PA =
AB =2,点E 是棱PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若AD =1,
求二面角B ­EC ­D 的平面角的余弦值.
26、如图,四边形ABCD 是直角梯形,∠ABC =∠BAD =90°,
SA ⊥平面ABCD , SA =AB =BC =1,AD =12
. (1)求SC 与平面ASD 所成的角余弦; (2)求平面SAB 和平面SCD 所成角的余弦.
27、如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600
,PA=AC=a ,PB=PD=a 2,点E 在
PD 上,且PE:ED=2:1.
(1)证明PA ⊥平面ABCD ;(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小
28、如图,在四棱锥P ABCD -中,PA ⊥底面ABCD AC AB ⊥,AD DC ⊥,60DAC ∠= ,2PA AC ==,1AB
=,点E 在棱PC 上,且
DE PB ⊥.
(1)求CE 的长;(2)求二面角A PB C --的正弦值.
29、如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中
14,2,3,1AB BC CC BE ====。

(1)求BF 的长;(2)求点C 到平面1AEC F 的距离.
E
D
C
B
P
A。

相关文档
最新文档