苏教版八下数学测试题

合集下载

苏教版八年级上册数学 压轴题 期末复习试卷测试卷附答案

苏教版八年级上册数学 压轴题 期末复习试卷测试卷附答案
(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1) ;(2) ;(3) 的长为定值
【解析】
【分析】
苏教版八年级上册数学 压轴题 期末复习试卷测试卷附答案
一、压轴题
1.如图1所示,直线 与 轴负半轴, 轴正半轴分别交于 、 两点.
(1)当 时,求点 坐标及直线 的解析式.
(2)在(1)的条件下,如图2所示,设 为 延长线上一点,作直线 ,过 、 两点分别作 于 , 于 ,若 ,求 的长.
(3)当 取不同的值时,点 在 轴正半轴上运动,分别以 、 为边,点 为直角顶点在第一、二象限内作等腰直角 和等腰直角 ,连接 交 轴于 点,如图3.问:当点 在 轴正半轴上运动时,试猜想 的长是否为定值?若是,请求出其值;若不是,说明理由.
4.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).
(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;
(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;
(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?
(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF

苏教版数学第八单元测试卷

苏教版数学第八单元测试卷

苏教版数学第八单元测试卷一、选择题(每题2分,共20分)下列哪个数不是质数?A. 7B. 13C. 17D. 21一个正方形的边长增加2厘米,它的面积增加多少平方厘米?A. 2B. 4C. 8D. 16一个数的5倍是100,这个数是多少?A. 20B. 25C. 30D. 50下列哪个分数等于1?A. 1/2B. 2/3C. 3/4D. 4/4一个分数的分子和分母的和是20,分母是分子的4倍,这个分数是多少?A. 1/4B. 4/16C. 3/12D. 5/15下列哪个角不是平角?A. 90°B. 180°C. 270°D. 360°一个长方体的长、宽、高分别是5厘米、4厘米、3厘米,它的体积是多少立方厘米?A. 20B. 30C. 60D. 120下列哪个式子的结果最大?A. 1/2 + 1/3B. 1/3 + 1/4C. 1/4 + 1/5D. 1/5 + 1/6一个数除以3的余数是2,除以4的余数是3,这个数最小是多少?A. 11B. 12C. 13D. 14下列哪个算式的结果最接近1?A. 0.9 × 0.9B. 0.99 × 0.99C. 1.01 × 1.01D. 1.1 × 1.1二、填空题(每题2分,共20分)1.一个圆的半径是3厘米,它的周长是______厘米。

2.10的因数有______。

3.把24本练习本平均分给6个同学,每个同学分到______本。

4.5/8的分数单位是______,它有______个这样的单位。

5.一个数的3倍是90,这个数是______。

6.一个三角形的底是8厘米,高是底的2倍,它的面积是______平方厘米。

7.1吨的3/4是______千克。

8.一个正方体的棱长是a厘米,它的体积是______立方厘米。

9.一个数减去它的50%等于7.5,这个数是______。

10.小红家养了12只鸡,养的鸭的只数是鸡的3/4,小红家养了______只鸭。

苏教版二年级下册数学第八单元-数据的收集和整理(一)-测试卷加答案(培优B卷)

苏教版二年级下册数学第八单元-数据的收集和整理(一)-测试卷加答案(培优B卷)

苏教版二年级下册数学第八单元数据的收集和整理(一)测试卷一.选择题(共6题, 共12分)1.下面是三一班参加校运动会项目情况。

跳绳比跑步的多()人。

A.5B.4C.3D.22.二年级某班学生最喜欢的课外书情况如下。

(每人只选一种)最喜欢《西游记》的比最喜欢《十万个为什么》的多()人。

A.8B.9C.103.李明调查了五个同学的身高, 数据如下表。

下列说法不正确的是()。

A.刘玉的身高最高B.刘玉一定比其他同学吃的多C.赵兰最矮4.从下面的统计图中可以看出小熊猫有()只。

A.14B.13C.125.小明用画“正”字的方法, 统计出小轿车的数量: 正正正ㄒ, 结果是()。

A.15辆B.17辆C.20辆6.统计四月份天气时, 一个“正”表示()天。

A.1B.5C.4D.8二.判断题(共6题, 共12分)1.某面包房一天内各类面包销售量如下表。

这个面包房这一天内共销售面包24个。

()2.下图是三年级一班评选三好学生情况统计表。

刘青比王宇少5票。

()3.写“正”字可以用来统计数据。

()4.在进行数据的收集和整理时, 调查的对象不同, 得到的结论不一定不同。

()5.下表是二(2)班学生喜欢的小动物的数量情况.学生们最喜欢狗。

()6.下表是星光小学三年级学生参加课外兴趣小组的人数情况。

舞蹈小组的人数比航模小组的多4人。

( )三.填空题(共8题, 共43分)1.商家进货时, 一般根据统计数据的________来决定进各种货物的多少。

2.下面是某班同学“最爱吃的水果”调查表。

①这个班一共有()同学。

②喜欢()最多, 喜欢()的最少。

③喜欢最多的比最少的多()个人。

④从这幅图中, 你还能知道什么?⑤根据上表完成下图。

(一格代表1, 涂一涂)3.记录是调查结果的表现形式, 常见的有: ________、________、________。

4.你喜欢看电视吗?这是对二年(1)班学生看电视情况的调查统计表。

(1)看电视的时间在()范围之内的人最多。

苏教版数学八年级上册第一章第二章单元试卷及答案

苏教版数学八年级上册第一章第二章单元试卷及答案

苏教版八上数学第一章轴对称图形测试题一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个A .1个B .2个C .3个D .4个 3.已知∠AO B =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形. 4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75° 5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度.A .45°B .30°C .60°D .90°6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定 7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对 8.如图:已知∠AOP=∠BOP=15°,PC∥OA, PD⊥OA,若PC=4,则PD= ( ) A .4 B .3 C .2 D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( )A .3cm 或5cmB .3cm 或7cmC .3cmD .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.A O P AEC B D13.在Rt△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________.15.如图:等腰梯形ABCD 中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC=____________. 18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF的长.OB22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长; ② 若BC=4,求△BCD 的周长.23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ,BP=CQ ,问 △APQ是什么形状的三角形?试说明你的结论.B CD EAA CBPQ苏教版八上数学第一章轴对称图形测试题参考答案一、选择题(每小题3分,共30分)1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C 二、填空题(每小题3分,共24分)11.2 12.30°、75°、120°13.4 14.5 15.15 16.4、6 17.72°18.50°三解答题:(共46分)19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.苏教版第二章勾股定理与平方根测试题一、选择题1.下列几组数中不能作为直角三角形三边长度的是( )A .7,24,25a b c ===B . 1.5,2, 2.5a b c ===C .25,2,34a b c ===D .15,8,17a b c ===2.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是 ( ) A .9英寸(23cm ) B .21英寸(54cm ) C .29英寸(74cm ) D .34英寸(87cm ) 3.等腰三角形腰长10cm ,底边16cm ,则面积 ( )A .296cmB .248cmC .224cmD .232cm4.三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 5.2(6)-的平方根是( )A .6-B .36C .±6D .6±6.下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和负实数两类 ( )A .1个B .2个C .3个D .4个 7.x 是2)9(-的平方根,y 是64的立方根,则=+y x( )A .3B .7C .3,7D .1,7 8.直角三角形两直角边长度为5,12,则斜边上的高( )A .6B .8C .1813D .60139.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A 、2h ab =B .2222h b a =+C .hb a 111=+ D .222111hb a =+ 10.如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .cm 2B .cm 3C .cm 4D .cm 5AE B D C 第10题图二、填空题11.下列实数(1)3.1415926 .(2)0.3 22(3)7(5)-(6)2π(7)0.3030030003...其中无理数有________,有理数有________.(填序号) 12.49的平方根________,0.216的立方根________.13的平方根________的立方根________.14.算术平方根等于它本身的数有________,立方根等于本身的数有________.15.若2256x =,则=x ________,若3216x =-,则=x ________.16.已知Rt ABC ∆两边为3,4,则第三边长________.17.若三角形三边之比为3:4:5,周长为24,则三角形面积________.18.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.19.如果0)6(42=++-y x ,则=+y x ________.20.如果21a -和5a -是一个数m 的平方根,则.__________,==m a 21.三角形三边分别为8,15,17,那么最长边上的高为________.22.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 三、计算题23.求下列各式中x 的值2(1)16490x -=;2(2)(1)25x -=;3(3)(2)8x =-;3(4)(3)27x --=.四、作图题24.在数轴上画出8-的点.25.下图的正方形网格,每个正方形顶点叫格点,请在图中画一个面积为10的正方形.五、解答题26.已知如图所示,四边形ABCD 中,3,4,13,12,AB cm AD cm BC cm CD cm ====090A ∠=求四边形ABCD 的面积.27.如图所示,在边长为c 的正方形中,有四个斜边为c 、直角边为b a ,的全等直角三角形,你能利用这个图说明勾股定理吗?写出理由.第24题图第25题图第27题图A第26题图28.如图所示,15只空油桶(每只油桶底面直径均为60cm )堆在一起,要给它盖一个遮雨棚,遮雨棚起码要多高?29.如图所示,在Rt ABC ∆中,090ACB ∠=,CD 是AB 边上高,若AD=8,BD=2,求CD .30.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).第29题图CADB第28题图苏教版八上数学第二章勾股定理与平方根参考答案一、选择题(每小题3分,共30分)1.C 2.C 3.C 4.C 5.C 6.B 7.D 8.D 9.D 10.B 二、填空题:(每空2分,共34分) 11. (4)(6)(7);(1)(2)(3)(5)12.23±,0.613.2±,214.0,1;0,1± 15.16±,-6 16.5717.24 18.直角 19.-220.2或-4;9或8121.1201722.1三、解答题:(共56分)23.(1) x=74± (2) x=6或x=-4 (3)x=-1 (4) x=024.略 25.如图 26.3627.2222222214(),22,2ab b a c ab a b ab c a b c ⨯+-=∴++-=∴+=28.h=360 29.4 30.13苏教版八上数学第三章中心对称图形(一)一.选择题1.下列图形中,是中心对称图形而不是轴对称图形的是 ( ) A .平行四边形 B .矩形 C .菱形 D .正方形2.正方形具有而菱形不一定具有的性质是 ( ) A .对角线互相垂直 B .对角线互相平分 C .对角线相等 D .对角线平分一组对角3.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是 ( ) A .8和14 B .10和14 C .18和20 D .10和344.下面说法正确的是 ( ) A .一个三角形中,至多只能有一个锐角 B .一个四边形中,至少有一个锐角 C .一个四边形中,四个内角可能全是锐角 D .一个四边形中,不能全是钝角5.一个凸n 边形的边数与对角线条数的和小于20,且能被5整除,则n 为 ( ) A .4 B .5 C .6D .5或66.如图:在□ABCD 中,AE⊥BC 于E ,AF⊥CD 于F 。

【苏教版】数学八年级下学期《期中测试题》附答案

【苏教版】数学八年级下学期《期中测试题》附答案

苏教版八年级下学期数学期中测试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 若分式221xx-+有意义,则x的取值范围是()A. x≠0B. x≠-12C. x≠12D. x≠23. 下列调查方式,你认为最合适的是().A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式;B. 旅客上飞机前的安检,采用抽样调查方式;C. 了解娄底市居民日平均用水量,采用全面调查方式;D. 对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式.4. 下列各事件中,属于必然事件的是()A. 抛一枚硬币,正面朝上B. 早上出门,在第一个路口遇到红灯C. 在平面内,度量一个三角形的内角度数,其和为360°D. 5本书分放在4个抽屉,至少一个抽屉内有2本书5. 数据共40个,分为6组,第1到第四组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为()A. 4B. 10C. 6D. 86. 如果把分式xyx y-中的x、y都扩大3倍,那么分式的值()A. 扩大3倍B. 不变C. 缩小3倍D. 扩大9倍7. 某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x本素描本,列方程正确的是()A. 120240420x x-=+B.240120420x x-=+C. 120240420x x-=-D.240120420x x-=-8. 下列性质中,矩形具有而菱形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 邻边相等9. 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.245B.125C. 12D. 2410. 如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A.3 B. 13+ C.7D. 3二、填空题(本大题共8小题,每小题2分,共16分)11. 当x =_____时,分式22x x +-的值为0. 12. 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是______.13. 某种油菜籽在相同条件下发芽试验的结果如表: 每批粒数n 100 300 400 600 1000 20003000发芽的频数m 96 284 380 571 948 19022848发芽的频率m n0.9600.9470.9500.9520.9480.9510.949那么这种油菜籽发芽的概率是________(结果精确到0.01). 14. 在平行四边形ABCD 中,若∠A+∠C=100°,则∠D=_____. 15. 要使□ABCD 是菱形, 你添加条件是_______.(写出一种即可) 16. 关于x 的方程1433x mx x -=+-- 有增根,则m =_______. 17. 如图,矩形ABCD 的对角线交于点O ,点E 在线段AO 上,且DE =DC ,若∠EDO =15°,则∠DEC =______°.18. E 、F 是线段AB 上的两点,且AB =16,AE =1,BF =3,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连结PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.三、解答题(本大题共9小题,共74分)19. 化简或计算:(1)2222a ab a b a ab--÷ (2)211a a a +--20. 先化简再求值: 222142442x x x x x x x x ---⎛⎫-÷⎪++++⎝⎭,其中2240x x +-= 21. 解下列分式方程:(1)321x x =- (2)228224x x x x x +-=+-- 22. 某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了 人.②有阅读兴趣的学生占被调查学生总数的 %. ③有”其它”爱好的学生共多少人? ④补全折线统计图.23. 在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示. (1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.24. 只用无刻度的直尺作图(保留作图痕迹,不要求写作法)(1)如图1,已知∠AOB ,OA =OB ,点E 在OB 边上,其中四边形AEBF 是平行四边形,请你在图中画出∠AOB 的平分线.(2)如图2,已知E 是菱形ABCD 中AB 边上的中点,请你在图中画出一个矩形EFGH ,使得其面积等于菱形ABCD 的一半.25. 阅读下面的材料:如果函数y =f (x )满足: 对于自变量x 取值范围内的任意x 1,x 2, (1)若12x x <,都有()()12f x f x <,则称f (x )是增函数; (2)若12x x <,都有()()12f x f x >,则称f (x )是减函数. 例题: 证明函数f (x )=6(0)x x>是减函数. 证明: 设120x x <<,()()()21211212121266666x x x x f x f x x x x x x x ---=-== ∵120x x <<, ∴21120,0x x x x ->>.∴()112620x x x x ->.即()()120f x f x ->.∴()()12f x f x >. ∴函数6()(0)f x x x->是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=221x x-(x <0),例如f (-1)=22(1)1(1)⨯---=-3,f (-2)=22(2)1(2)⨯---=-54(1)计算: f (-3)= ; (2)猜想: 函数f (x )=221x x-(x <0)是 函数(填”增”或”减”);(3)请仿照例题证明你的猜想.26. 【发现问题】爱好数学的小强在做作业时碰到这样的一道题目: 如图①,在△ABC 中,AB =8,AC =6,E 为BC 中点,求AE 的取值范围. 【解决问题】(1)小强经过多次的尝试与探索,终于得到解题思路: 在图①中,作AB 边上的中点F ,连接EF ,构造出△ABC 的中位线EF ,请你完成余下的求解过程.【灵活运用】(2)如图②,在四边形ABCD 中,AB =8,CD =6,E 、F 分别为BC 、AD 中点,求EF 的取值范围. (3)变式: 把图②中的A 、D 、C 变成在一直线上时,如图③,其它条件不变,则EF 的取值范围为 . 【迁移拓展】(4)如图④,在△ABC 中,∠A =60°,AB =4,E 为BC 边的中点,F 是AC 边上一点且EF 正好平分△ABC的周长,则EF= .27. 如图①,将正方形ABOD 放在平面直角坐标系中,O 是坐标原点,点D 的坐标为(2,3), (1)点B 的坐标为 ;(2)若点P 为对角线BD 上的动点,作等腰直角三角形APE ,使∠P AE =90°,如图②,连接DE ,则BP 与DE 的关系(位置与数量关系)是 ,并说明理由;(3)在(2)的条件下,再作等边三角形APF ,连接EF 、FD ,如图③,在 P 点运动过程中当EF 取最小值时,此时∠DFE = °;(4)在(1)的条件下,点 M 在 x 轴上,在平面内是否存在点N ,使以 B 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形及中心对称图像概念分析选项即可得解答.【详解】解: 轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形绕对称中心旋转180度后两部分重合.A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,是中心对称图形.故正确;D、不是轴对称图形,不是中心对称图形.故错误.故选: C.【点睛】本题考查的是中心对称图形与轴对称图形的概念: 轴对称图形沿对称轴折叠后可重合,中心对称图形绕对称中心旋转180度后两部分重合.2. 若分式221xx-+有意义,则x的取值范围是()A. x≠0B. x≠-12C. x≠12D. x≠2【答案】B【解析】【分析】根据分式有意义的条件即可求出答案.【详解】解: 分式221xx-+有意义,则210x+≠,∴1-2x≠,故选: B.【点睛】本题考查分式有意义的条件,即分母不为0.3. 下列调查方式,你认为最合适的是().A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式;B. 旅客上飞机前的安检,采用抽样调查方式;C. 了解娄底市居民日平均用水量,采用全面调查方式;D. 对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式.【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解: A、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式;故A错误;B、旅客上飞机前的安检,采用全面调查方式;故B错误;C、了解娄底市居民日平均用水量,采用抽样调查方式;故C错误;D、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查方式;故D正确;故选: D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 下列各事件中,属于必然事件的是()A. 抛一枚硬币,正面朝上B. 早上出门,在第一个路口遇到红灯C. 在平面内,度量一个三角形的内角度数,其和为360°D. 5本书分放在4个抽屉,至少一个抽屉内有2本书【答案】D【解析】【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解: A、抛一枚硬币,正面朝上,是随机事件,不符合题意;B、早上出门,在第一个路口遇到红灯,是随机事件,不符合题意;C、在平面内,度量一个三角形的内角度数,其和为180°,不可能是360°,是不可能事件,不符合题意;D、5本书分放在4个抽屉,至少一个抽屉内有2本书,是必然事件,符合题意;故选: D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 数据共40个,分为6组,第1到第四组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为 ( ) A. 4 B. 10C. 6D. 8【答案】D 【解析】第5组的频数为40×0.1=4; ∴第6组的频数为40-(10+5+7+6+4)=8. 故本题选D . 6. 如果把分式xyx y-中的x 、y 都扩大3倍,那么分式的值( ) A. 扩大3倍 B. 不变C. 缩小3倍D. 扩大9倍【答案】A 【解析】33333x y xyx y x y⨯=⨯--,分式的值扩大3倍.故选A.7. 某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x 本素描本,列方程正确的是( )A. 120240420x x -=+ B.240120420x x -=+ C. 120240420x x -=- D.240120420x x-=- 【答案】A 【解析】 【分析】根据题意可知第二次买了(x +20)本素描本,然后根据”第二次购买比第一次购买每本优惠4元”列出分式方程即可.【详解】解: 由题意可知: 120240420x x -=+ 故选A .【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.8. 下列性质中,矩形具有而菱形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 邻边相等【答案】A【解析】【分析】根据矩形和菱形的性质即可做出选择;【详解】解: (A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选A.【点睛】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.9. 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. 245B.125C. 12D. 24【答案】A【解析】【分析】【详解】解: 如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=12AC=12×8=4,BO=12BD=12×6=3,由勾股定理的,22AO BO+2243+,∵DH⊥AB,∴S菱形ABCD =AB•DH=12AC•BD,即5DH=12×8×6,解得DH=245.故选A.【点睛】本题考查菱形的性质.10. 如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A. 3B. 13+C. 7D. 3【答案】C 【解析】 【分析】设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,则'BO 即为PO +PB 的最小值,易证△ABO 为等边三角形,过点A 作AH ⊥BO 于H ,求出AH OO =',然后利用勾股定理求出BO 即可.【详解】解: 如图,设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,∵P 为AE 中点, ∴点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO , ∴OP OP =',∴PO +PB =BP O P BO +='', ∵四边形ABCD 是矩形,∠AOD =120°, ∴OA =OB ,∠AOB =60°,∴△AOB 为等边三角形, ∴AB =BO =4,过点A 作AH ⊥BO 于H ,∴AH =,∵MN ∥BD ,点H 关于MN 的对称点为A ,点O 关于MN 的对称点为'O ,∴AH OO =='OO BD ⊥',∴BO ='即PO +PB 故选: C .【点睛】本题考查了利用轴对称求最短路径,矩形的性质,三角形中位线定理,等边三角形的判定及性质,勾股定理的应用,通过作辅助线,得出'BO 为PO +PB 的最小值是解题关键.二、填空题(本大题共8小题,每小题2分,共16分)11. 当x =_____时,分式22x x +-的值为0. 【答案】-2 【解析】 【分析】根据分式的意义可得到x ﹣2≠0,即x ≠2,根据题意分式值为0可知x+2=0,解得x =﹣2,符合题意. 【详解】由分子x+2=0,解得x =﹣2, 而x =﹣2时,分母x ﹣2=﹣2﹣2=﹣4≠0. 所以x =﹣2.【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题. 12. 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是______. 【答案】1000 【解析】 【分析】根据样本容量的定义进行分析即可,样本容量: 一个样本包括的个体数量叫做样本容量.【详解】解: 某市有16000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,样本容量是1000.故答案为: 1000.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握各个量的定义.13. 某种油菜籽在相同条件下发芽试验的结果如表:那么这种油菜籽发芽的概率是________(结果精确到0.01).【答案】0.95【解析】【分析】根据表格求得频率的平均数,结合频率估计概率的知识即可得解.【详解】油菜籽发芽的频率的平均数为: 0.9600.9470.9500.9520.9480.9510.9497++++++≈0.95.故答案为0.95.【点睛】本题考查利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解此题的关键.14. 在平行四边形ABCD中,若∠A+∠C=100°,则∠D=_____.【答案】130°【解析】【分析】【详解】解: 由平行四边形对角相等可得∠A=∠C,又因∠A+∠C=100°,所以∠A=∠C=50°.根据平行四边形的邻角互补可求的∠D=130°.考点: 平行四边形的性质.15. 要使□ABCD是菱形,你添加的条件是_______.(写出一种即可)【答案】AD=AB (答案不唯一)【解析】【分析】添加的条件是AD=AB,根据菱形的判定定理: 有一组邻边相等的平行四边形是菱形,即可推出结论.【详解】解: ∵四边形ABCD 是平行四边形,AD =AB , ∴平行四边形ABCD 是菱形, 故答案为: AD =AB .【点睛】本题主要考查对菱形的判定的理解和掌握,能灵活运用菱形的判定进行推理是解此题的关键.此题是一个开放性题目,也可选用别的邻边相等来作为添加条件. 16. 关于x 的方程 1433x mx x -=+-- 有增根,则m =_______. 【答案】2 【解析】 【分析】首先解分式方程,进而利用分式方程有增根得出关于m 的方程,解之求得m 的值即可. 【详解】解: 方程1433x mx x -=+--两边同时乘以(x -3),得: 1=4(3)x m x -+-, 解得: 113mx -=, ∵方程有增根, ∴30x -=,即3x =, ∴1133m-=, 解得: 2m =, 故答案为: 2.【点睛】本题考查了分式方程的增根,解决增根问题的步骤: ①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17. 如图,矩形ABCD 的对角线交于点O ,点E 在线段AO 上,且DE =DC ,若∠EDO =15°,则∠DEC =______°.【答案】55 【解析】 【分析】设∠DEC =x ,由DE =DC 可得∠DCE =x ,根据四边形ABCD 为平行四边形,AC 、BD 为对角线,则∠ODC =∠DCE =x ,进而得到∠DOE =∠OCD +∠ODC =2x ,再有∠EDO =15°,△DOE 内角和为180°,建立等式解x 即可.【详解】解: 设∠DEC =x , ∵DE =DC , ∴∠DCE =x ,∵四边形ABCD 为矩形, ∴∠ODC =∠DCE =x ,∴∠DOE =∠OCD +∠ODC =2x , ∵△DOE 内角和为180°, ∴215180x x ++︒=︒, 解得: 55x =︒, 即∠DEC =55︒, 故答案为: 55.【点睛】本题为三角形和四边形综合,主要考查矩形四边形对角线互相平分,等腰三角形等边对等角,三角形外角等于不相邻两内角之和等知识点.18. E 、F 是线段AB 上的两点,且AB =16,AE =1,BF =3,点G 是线段EF 上的一动点,分别以AG 、BG 为斜边在AB 同侧作两个等腰直角三角形,直角顶点分别为D 、C ,如图所示,连接CD 并取中点P ,连结PG ,点G 从E 点出发运动到F 点,则线段PG 扫过的图形面积为______.【答案】36 【解析】 【分析】分别延长AD 、BC 相交于点H ,连接PH ,EH ,FH ,易证四边形DGCH 为矩形,且P 为矩形DGCH 的对角线交点,即P 为HG 中点,过P 作MN ∥AB 分别交EH 、FH 与M 、N ,所以MN 为△HEF 的中位线,即点P 的运动轨迹即为MN ,所以GP 扫过的图形即为梯形MEFN ,再根据已知线段求出梯形MEFN 的面积即可. 【详解】解: 分别延长AD 、BC 交于点H ,连接PH ,EH ,FH ,∵△ADG、△GCB为等腰直角三角形,∴∠DGA=∠CGB=45°,∴∠DGC=90°,∴AH∥GC,又∵∠HCG=90°,∴∠HCG=∠DGC=90°,∴DG∥HB,∴四边形DGCH为矩形,∵点P未DC中点,∴点G、P、H三点共线,且P为HG的中点,过P作MN∥于AB分别交EH、FH与M、N,∴MN为△HEF的中位线,且MN即为点P的运动轨迹,∴GP扫过的图形即为梯形MEFN,∵AB=16,AE=1,BF=3,∴EF=16-1-3=12,∴162MN EF==,过点H作HO垂直AB于O,∴182HO AB==,∴梯形的高为: 184 2⨯=,∴14(612)362MEFNS=⨯⨯+=梯形,即线段PG扫过的图形面积为36,故答案为: 36.【点睛】本题为动点问题,考查了等腰直角三角形的性质,三角形中位线定理,平行四边形的判定和性质等知识点.解题的关键是寻找点P 的运动轨迹.三、解答题(本大题共9小题,共74分)19. 化简或计算:(1)2222a ab a b a ab--÷ (2)211a a a +--【答案】(1)b a b +;(2)11a -- 【解析】 【分析】(1)利用提公因式法和公式法进行因式分解,然后进行乘除计算约分即可;(2)同分母化后利用利用平方差公式展开,进行计算即可.【详解】(1)解: 2222a ab a b a ab--÷=2()()()a ab aba ab a b -⨯-+ =ba b+; (2)解: 211a a a +--=2(1)(1)11a a a a a +---- =2211a a a ---=11a -- 【点睛】本题考查分式的运算,涉主要考查公式法和提取公因式法分解因式,熟练掌握完全平方差公式的运用是此题的关键. 20. 先化简再求值: 222142442x x x x x x x x ---⎛⎫-÷⎪++++⎝⎭,其中2240x x +-=【答案】212x x +,14【解析】 【分析】利用公式法和提取公因式法将第一个式子进行化简,观察化简后的式子,将第二个等式变形求得224x x +=,在通过整体代入求得原式的结果.【详解】解: 原式=2212[](2)(2)4x x x x x x x --+-⨯++-=22(2)(2)(1)2[](2)(2)4x x x x x x x x x x -+-+-⨯++-=242(2)4x x x x x -+⨯+- =212x x+, ∵2240x x +-=, ∴224x x +=, ∴原式=14. 【点睛】本题考查分式的化简求值,利用提公因式法和公式法因式分解,再通过整体代入求值.熟练掌握完全平方公式,平方差公式是解答本题的关键. 21. 解下列分式方程:(1)321x x =- (2)228224x x x x x +-=+-- 【答案】(1)x =-2;(2)无解 【解析】 【分析】(1)等式两边同时乘(1)x x -,得32(1)x x =-,再解此一元一次方程即可;(2)等式两边同乘24x -,得2(2)(2)8x x x --+=,解此方程即可. 【详解】(1)解:321x x=-,等式两边同时乘(1)x x -, 得: 32(1)x x =-, 解得: 2x =-检验: 当x =-2时,x (x -1)≠0,x =-2是原方程的解; (2)解:228224x x x x x +-=+--, 等式两边同乘24x -, 得: 2(2)(2)8x x x --+=222(44)8x x x x --++=612x -=解得: 2x =-,检验: 当x =-2时,(x +2)(x -2)=0,x =-2是增根, 故: 原方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是”转化思想”,把分式方程转化为整式方程求解.需要注意解分式方程一定要验根.22. 某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了 人.②有阅读兴趣的学生占被调查学生总数的 %. ③有”其它”爱好的学生共多少人? ④补全折线统计图.【答案】①200;②30%;③20;④详见解析 【解析】【分析】①由折线统计图可以看出爱好运动的人数是40人,由扇形统计图看出爱好运动的人数占抽样人数的20%,根据百分数除法的意义,用爱好运动的数除以所占的百分率就是被抽样调查的人数;②用有阅读兴趣的学生数(从折线统计图可以看出)除以被调查总人数(①已求出));③把被调查的总人数看作单位”1”,用1减去有阅读兴趣、运动兴趣、娱乐兴趣人数所的百分率就是其它兴趣学生人数所占的百分率;根据百分数乘法的意义,用总人数乘其它爱好人数所占的百分率就是有”其它”爱好的学生人数;④根据百分数乘法的意义,用总人数乘爱好娱乐人数所占的百分率求出爱好娱乐人数,即可补全折线统计图.【详解】解: ①40÷20%= 200 人,即这次调研,一共调查了200人,故答案为: 200;②60÷200= 30 %即有阅读兴趣的学生占被调查学生总数的30%,故答案为: 30%;③1-20%-40%-30%=10%200×10%=20(人)即有”其它”爱好的学生共20人,故答案为: 20;④200×40%=80(人)爱好娱乐的80人,”其它”爱好的20人,补全折线统计图如下:【点睛】此题是考查如何从折线、扇形统计图中获取信息,并根据所获取的信息被折线、扇形统计图和进行有关计算.23. 在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示. (1)求证: △ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.【答案】(1)证明见解析(2)菱形【解析】分析: (1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF 是菱形,根据对角线垂直的平行四边形是菱形即可判断;详证明: (1)∵四边形ABCD 是正方形,∴AB=AD ,∴∠ABD=∠ADB ,∴∠ABE=∠ADF ,在△ABE 与△ADF 中AB AD ABE ADF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ADF.(2)如图,连接AC ,四边形AECF 是菱形.理由: 在正方形ABCD 中,OA=OC ,OB=OD ,AC ⊥EF ,∴OB+BE=OD+DF ,即OE=OF ,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.点睛: 本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.24. 只用无刻度的直尺作图(保留作图痕迹,不要求写作法)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,其中四边形AEBF是平行四边形,请你在图中画出∠AOB的平分线.(2)如图2,已知E是菱形ABCD中AB边上的中点,请你在图中画出一个矩形EFGH,使得其面积等于菱形ABCD的一半.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)根据平行四边形的性质可知∠AOB的平分线必定经过平行四边形的中心即对角线的交点.所以先作平行四边形的对角线,再作∠AOB的平分线;(2)直接利用菱形的性质将其分割进而得出各边中点即可得出答案.【详解】解: (1)如图所示: AD即为∠AOB的角平分线;(2)如图2所示: 四边形EFMN即为菱形.【点睛】此题主要考查了平行四边形的性质以及复杂作图,关键是熟练掌握平行四边形的性质、菱形的判定,找出作图的方法.25. 阅读下面的材料:如果函数y =f (x )满足: 对于自变量x 的取值范围内的任意x 1,x 2,(1)若12x x <,都有()()12f x f x <,则称f (x )是增函数;(2)若12x x <,都有()()12f x f x >,则称f (x )是减函数.例题: 证明函数f (x )=6(0)x x>是减函数. 证明: 设120x x <<,()()()21211212121266666x x x x f x f x x x x x x x ---=-== ∵120x x <<,∴21120,0x x x x ->>.∴()112620x x x x ->.即()()120f x f x ->.∴()()12f x f x >. ∴函数6()(0)f x x x->是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=221x x -(x <0),例如f (-1)=22(1)1(1)⨯---=-3,f (-2)=22(2)1(2)⨯---=-54(1)计算: f (-3)= ;(2)猜想: 函数f (x )=221x x -(x <0)是 函数(填”增”或”减”);(3)请仿照例题证明你的猜想.【答案】(1)79-;(2)减;(3)详见解析 【解析】【分析】 (1)根据题目中函数,将3x =-代入f (x )=221x x -(x <0),即可求解f (-3)的值;(2)取2x =-,代入函数f (x )=221x x -(x <0),求得f (-2)的值,结合(1)比较f (-3)和f (-2)的大小,再根据材料信息进行判断即可; (3)根据题目中例子的证明方法,结合(1)和(2)可证明猜想成立.【详解】解: (1)计算: f (-3)=22(3)1(3)⨯---=79-, 故答案为: 79-; (2)由(1)知,f (-3)=79-, 当2x =-时,f (-2)=22(2)15(2)4⨯--=--, ∵320-<-<,(3)(2)f f ->-,∴猜想: 函数f (x )=221x x -(x <0)是减函数 故答案为: 减; (3)证明: 设120x x <<,121222122121()()x x f x f x x x ---=- =211212212()[2()]()x x x x x x x x --+, ∵120x x <<,∴210x x ->,120x x >,120x x +<, ∴211212212()[2()]0()x x x x x x x x --+>,即12())0(f x f x ->,∴12()()f x f x >,∴函数f (x )=221x x-(x <0)是减函数,猜想得证. 【点睛】本题考查函数的概念,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的性质解答.26. 【发现问题】爱好数学的小强在做作业时碰到这样的一道题目: 如图①,在△ABC 中,AB =8,AC =6,E 为BC 中点,求AE 的取值范围.【解决问题】(1)小强经过多次的尝试与探索,终于得到解题思路: 在图①中,作AB 边上的中点F ,连接EF ,构造出△ABC 的中位线EF ,请你完成余下的求解过程.【灵活运用】(2)如图②,在四边形ABCD 中,AB =8,CD =6,E 、F 分别为BC 、AD 中点,求EF 的取值范围.(3)变式: 把图②中的A 、D 、C 变成在一直线上时,如图③,其它条件不变,则EF 的取值范围为 .【迁移拓展】(4)如图④,在△ABC 中,∠A =60°,AB =4,E 为BC 边的中点,F 是AC 边上一点且EF 正好平分△ABC 的周长,则EF = .【答案】(1)详见解析;(2)1<EF <7;(3)17EF <<;(4)EF =23【解析】【分析】(1)依照题意作出图形,利用△AFE 中两边之和大于第三边,两边之差小于第三边,求解AE 边的取值范围;(2)连接BD ,取BD 中点G ,连接FG 、EG ,由E 、F 分别为BC 、AD 中点,可得FG =12AB ,EG =12DC ,同(1)△GEF 中两边之和大于第三边,两边之差小于第三边,求解EF 边的取值范围;(3)如图,连接BD ,取BD 的中点H ,连接HF ,HE ,由三角形中位线定理可知1=42FH AB =,1=32EH CD =,在△DHE 中有,两边之和大于第三边,两边之差小于第三边,即可求得17EF <<; (4)在线段CF 上取一点M ,使得FM =AF ,连接BM ,取BM 的中点N ,连接FN ,EN ,由EF 平分三角形ABC 周长,可得CM =AB =4,由三角形中位线定理,及∠A =60°,可知NF =NE =2,且∠FNE =120°,作NO ⊥EF 于O ,解△ENF ,可得FO =E 0=3,即可求得EF =23.【详解】(1)解:∵E 为 BC 中点,F 为 AB 中点,∴EF =12AC , ∵AB =8,AC =6, ∴AF =12AB =4,EF =12AC =3, 在△AEF 中,两边之和大于第三边,两边之差小于第三边,∴4-3<AE <4+3,即,1<AE <7;(2)解: 连接BD ,取BD 中点G ,连接FG 、EG ,∵E 、F 分别为BC 、AD 中点,∴FG =12AB ,EG =12DC , ∵AB =8,CD =6, ∴FG =4,EG =3,在△GEF 中,4-3<EF <4+3,即1<EF <7.(3)如图,连接BD ,取BD 的中点H ,连接HF ,HE ,∵E 、F 分别为BC 、AD 中点,∴1=42FH AB =,1=32EH CD = ∴在△DHE 中,4343EF -<<+,即EF 的取值范围为17EF <<,故答案为: 17EF <<;(4)在线段CF 上取一点M ,使得FM =AF ,连接BM ,取BM 的中点N ,连接FN ,EN ,∴F 为线段AM 的中点,∵E 为BC 中点,∴FN ∥AB ,且12FN AB =,EN ∥AC ,且12EN MC =,BE =EC , ∵∠A =60°,AB =4,∴FN =2,∠FNE =120°,∵EF 正好平分△ABC 的周长,∴BA AF CF +=,∴BA CF AF CF MF CM=-=-=,∴CM=4,∴NE=2,∴△FNE为等腰三角形,且∠NFE=∠NEF=30°,过点N作NO⊥EF于点O,则FO=OE=3,∴23EF=,故答案为: 23.【点睛】本题主要考查三角形中位线定理,三角形三边的数量关系,以及构造直角三角形求三角边长.根据题目信息,分析线段中点的作用,作出三角形中位线是解此题的关键.27. 如图①,将正方形ABOD放在平面直角坐标系中,O是坐标原点,点D的坐标为(2,3),(1)点B的坐标为;(2)若点P为对角线BD上的动点,作等腰直角三角形APE,使∠P AE=90°,如图②,连接DE,则BP与DE的关系(位置与数量关系)是,并说明理由;(3)在(2)的条件下,再作等边三角形APF,连接EF、FD,如图③,在P点运动过程中当EF取最小值时,此时∠DFE=°;(4)在(1)的条件下,点M在x轴上,在平面内是否存在点N,使以B、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.。

(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)

(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)

(一共4套)苏教版八年级下册-期中数学-考试题+详细答案系列(第3套)(一共4套)苏教版八年级下册期中数学考试题+详细答案系列(第3套)一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.44.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%15.已知关于x的方程=3无解,则m的值为______.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为______.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.六、解答题(共5小题,满分46分)21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.22.(10分)(2017春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.参考答案与试题解析一.选择题(共有6小题,每小题2分,共12分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.3.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.2 C.3 D.4【考点】反比例函数的性质.【分析】根据反比例函数的性质可知“当k<0时,函数图象位于第二、四象限”,结合四个选项即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0.结合4个选项可知k=﹣1.故选A.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,结合函数图象所在的象限找出k值的取值范围是关键.4.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是()转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”区域的次数m 68 108 140 355 560 690落在“铅笔”区域的频率0.68 0.72 0.70 0.71 0.70 0.69A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒【考点】利用频率估计概率.【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘10次,一定有3次获得文具盒.【解答】解:A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有2000×0.3=600次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选:D.【点评】本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.5.已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补()A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%【考点】由实际问题抽象出分式方程.【分析】方程﹣=20中,表示乙单位人均捐款额,(1+20%)x表示甲单位的人数比乙单位的人数多20%,则表示甲单位人均捐款额,所以方程表示的等量关系为:乙单位比甲单位人均多捐20元,由此得出题中用“…”表示的缺失的条件.【解答】解:设乙单位有x人,那么当甲单位的人数比乙单位的人数多20%时,甲单位有(1+20%)x人.如果乙单位比甲单位人均多捐20元,那么可列出﹣=20.故选C.【点评】本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件.本题难度适中.二.填空题(共有10小题,每小题2分,共20分)7.计算=2.【考点】二次根式的性质与化简.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.8.分式,的最简公分母是6x3(x﹣y).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,的分母分别是2x3、6x2(x﹣y),故最简公分母是6x3(x﹣y);故答案为6x3(x﹣y).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.9.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是30°.【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.11.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB 的中点M,N,测得MN=32m,则A,B两点间的距离是64m.【考点】三角形中位线定理.【分析】根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.【点评】本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.12.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m<n (填“>”“<”或“=”号).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.【解答】解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.某工厂原计划a天生产b件产品,现要提前2天完成,则现在每天要比原来多生产产品件.【考点】列代数式(分式).【分析】根据题意知原来每天生产件,现在每天生产件,继而列式即可表示现在每天要比原来多生产产品件数.【解答】解:根据题意,原来每天生产件,现在每天生产件,则现在每天要比原来多生产产品﹣=件,故答案为:.【点评】本题主要考查根据实际问题列代数式,根据题意表示出原来和现在每天生产的件数是关键.14.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5°.【考点】正方形的性质.【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为:22.5°.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.15.已知关于x的方程=3无解,则m的值为﹣4.【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程无解得到x﹣2=0,求出x=2,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:2x+m=3x﹣6,由分式方程无解得到x﹣2=0,即x=2,代入整式方程得:4+m=0,即m=﹣4.故答案为:﹣4【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为3.【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.三、计算:(8分)17.计算:(1)+(2)﹣x﹣1.【考点】分式的加减法.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=﹣==a+b;(2)原式=﹣=.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.四、解方程:(8分)18.解方程(1)﹣=1(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得,(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得,6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),解得,x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.五、先化简,再求值:(共1小题,满分6分)19.先化简,再求值:(﹣)÷,其中x2﹣4x﹣1=0.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据x2﹣4x﹣1=0得出x2﹣4x=1,代入原式进行计算即可.【解答】解:原式=[﹣]•=•=•==,∵x2﹣4x﹣1=0,∴x2﹣4x=1∴原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.六、解答题(共5小题,满分46分)20.(10分)(2014•兴化市二模)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说50 c文学名著 d e(1)这次随机调查了200名学生,统计表中d=28;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是90°;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【考点】频数(率)分布表;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.【解答】解:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名;【点评】此题主要考查了条形图的应用以及用样本估计总体和频数分布直方图,根据图表得出正确信息是解决问题的关键.21.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(kPa)是气球体积V(m3)的反比例函数,且当V=1.5m3时,p=16kPa.(1)当V=1.2m3时,求p的值;(2)当气球内的气压大于40kP时,气球将爆炸,为了确保气球不爆炸,气球的体积应满足条件.【考点】反比例函数的应用.【分析】(1)设函数解析式为P=,把V=1.5m3时,p=16kPa代入函数解析式求出k值,即可求出函数关系式;(2)p=40代入求得v值后利用反比例函数的性质确定正确的答案即可.【解答】(1)解:设p与V的函数表达式为p=(k为常数).把p=16、V=1.5代入,得k=24即p与V的函数表达式为;(2)把p=40代入,得V=0.6根据反比例函数的性质,p随V的增加而减少,因此为确保气球不爆炸,气球的体积应不小于0.6m3.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.22.(10分)(2016春•六合区期中)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.(1)求甲单独完成全部工程所用的时间;(2)该工程规定须在20天内完成,若甲队每天的工程费用是4.5万元,乙队每天的工程费用是2.5万元,请你选择上述一种施工方案,既能按时完工,又能使工程费用最少,并说明理由?【考点】分式方程的应用.【分析】(1)利用总工作量为1,分别表示出甲、乙完成的工作量进而得出等式求出答案;(2)分别求出甲、乙单独完成的费用以及求出甲、乙合作的费用,进而求出符合题意的答案.【解答】解:(1)设甲单独完成全部工程所用的时间为x天,则乙单独完成全部工程所用的时间为(x+6)天,根据题意得,+=1,解得,x=12,经检验,x=12是原方程的解,答:甲单独完成全部工程所用的时间为12天;(2)根据题意得上述3个方案都在20天内.甲单独完成的费用:12×4.5=54万元,乙单独完成的费用:18×2.5=45万元,甲乙合做完成的费用:12×2.5+4×4.5=48万元,即乙单独完成既能按时完工,又能使工程费用最少.【点评】此题主要考查了分式方程的应用,根据题意利用总工作量为1得出等式是解题关键.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【考点】菱形的性质;勾股定理.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.24.(12分)(2014春•江都市校级期末)如图,已知直线与双曲线交于A、B两点,A点横坐标为4.(1)求k值;(2)直接写出关于x的不等式的解集;(3)若双曲线上有一点C的纵坐标为8,求△AOC的面积;(4)若在x轴上有点M,y轴上有点N,且点M、N、A、C四点恰好构成平行四边形,直接写出点M、N的坐标.【考点】反比例函数综合题.【分析】(1)由直线与双曲线交于A、B两点,A点横坐标为4,代入正比例函数,可求得点A的坐标,继而求得k值;(2)首先根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;(3)首先过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC,又由双曲线上有一点C的纵坐标为8,可求得点C 的坐标,继而求得答案;(4)由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.【解答】解:(1)∵直线与双曲线交于A、B两点,A点横坐标为4,∴点A的纵坐标为:y=×4=2,∴点A(4,2),∴2=,∴k=8;(2)∵直线与双曲线交于A、B两点,∴B(﹣4,﹣2),∴关于x的不等式的解集为:﹣4≤x<0或x≥4;(3)过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵双曲线上有一点C的纵坐标为8,∴把y=8代入y=得:x=1,∴点C(1,8),∴S△AOC =S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+8)×(4﹣1)=15;(4)如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,∵点A(4,2),点C(1,8),∴根据平移的性质可得:M(3,0),N(0,6)或M′(﹣3,0),N′(0,﹣6).【点评】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

新苏教版八年级数学上册第一章测试试卷(附答案)

新苏教版八年级数学上册第一章测试试卷(满分:150分时间:120分钟)一、选择题(将正确答案的序号填入题后的括号,共30分)1.下面有4个汽车标志图案,其中是轴对称图形的是()①②③④A、②③④B、①③④C、①②④D、①②③2.下列图形中只有一条对称轴的是()。

A B C D3.小亮在镜中看到身后墙上的时钟如下, 你认为实际时间最接近8:00的是( )A. B. C. D.4.如图,在△ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于()A、44°B、68°C、46°D、22°5.已知等腰三角形的一个内角是75º,则它的顶角是()A.30ºB.75ºC.30º或75ºD.105º6.如图,把矩形ABCD沿EF对折,若150∠=,则AEF∠等于()A.115B.130C.120D.65AB CD EF17.等腰梯形一底角为60°,它的两底长分别为8cm和20cm,则它的周长是()A.36cm B.44cm C.48cm D.52cm8.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个9.下列说法中, 不正确的是( )A. 三个角的度数之比为1:3:4的三角形是直角三角形;B. 三个角的度数之比为3:4:5的三角形是直角三角形;C. 三边长度之比为3:4:5的三角形是直角三角形;D. 三边长度之比为5:12:13的三角形是直角三角形10. 如图,在钝角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE。

有下列结论:①∠1=∠2②∠1=∠3 ③∠B=∠C ④∠B=∠3;其中一定正确的结论有()个。

苏教版八年级数学试卷【含答案】

苏教版八年级数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c (c ≠ 0)2. 在直角坐标系中,点 P(a, b) 关于 y 轴的对称点坐标是?A. (a, -b)B. (-a, b)C. (-a, -b)D. (b, a)3. 下列哪个数是合数?A. 23B. 29C. 31D. 394. 若一个等腰三角形的底边长为 8cm,腰长为 10cm,则这个三角形的周长是?A. 26cmB. 28cmC. 30cmD. 32cm5. 若一个圆的半径为 r,则下列哪个公式正确表示圆的面积?A. πrB. 2πrC. πr^2D. 2r^2二、判断题(每题1分,共5分)1. 互质的两个数的最小公倍数是它们的乘积。

()2. 任何一个有理数都可以表示为分数的形式。

()3. 在三角形中,大边对大角。

()4. 平行四边形的对边相等。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 若a × b = 0,则 a 和 b 中至少有一个数为______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为______°。

3. 若一个正方形的边长为 a,则它的对角线长度为______。

4. 若一个数的平方根是 4,则这个数是______。

5. 若一个圆的周长是 31.4cm,则这个圆的半径大约是______cm。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 什么是无理数?给出一个无理数的例子。

3. 如何判断一个数是否为质数?4. 什么是函数?给出一个函数的例子。

5. 简述平行线的性质。

五、应用题(每题2分,共10分)1. 计算下列各式的值:(a) 3^2 + 4^2(b) (2 + 3)^2(c) √(3^2 + 4^2)2. 解方程:2(x 3) = 3(x + 1)3. 画出一个边长为 5cm 的正方形,并标出它的对角线。

【苏教版】数学八年级下学期《期中考试题》及答案解析

苏教版八年级下学期数学期中测试卷一、选择题: 本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上............ 1. 下列图案中既是中心对称图形,又是轴对称图形的是( ) A. B. C.D. 2. 下列特征中,平行四边形不一定具有的是( )A. 邻角互补B. 对角互补C. 对角相等D. 内角和为360° 3. 将分式2m mn -中的m 、n 都扩大为原来的3倍,则分式的值( ) A. 不变 B. 扩大3倍 C. 扩大6倍D. 扩大9倍 4. 矩形两条对角线的夹角为60°,一条较短边长为5cm ,则其对角线的长为( )cm .A. 5B. 10C. 15D. 7.55. 平行四边形ABCD 的对角线AC 、BD 相交于点O ,给下条件不能判定它为菱形的是( )A. AB =ADB. AC ⊥BDC. ∠A =∠DD. CA 平分∠BCD6. 对于反比例函数y =﹣2x,下列说法不正确的是( ) A. 图象分布在第二、四象限B. y 随x 的增大而增大C. 图象经过点(1,﹣2)D. 若x >1,则﹣2<y <0 7. 如图,在平面直角坐标系中,平行四边形ABCD 的顶点B 、C 在x 轴上,A 、D 两点分别在反比例函数k y x =(k <0,x <0)与1y x =(x >0)的图像上,若平行四边形ABCD 的面积为4,则k 的值为( ) A. -1 B. -2 C. -3D. -5 8. 如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,此时点C 恰好在线段DE 上,若∠B=40°,∠CAE=60°,则∠DAC 度数为( )A. 15°B. 20°C. 25°D. 30°9. 如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A. 22-2B. 3-1C. 2-1D. 2-210. 如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= kx(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,23),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )A. (0,- 73) B. (0,-83)C. (0,-3)D. (0,- 103)二、填空题: 本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置.........上...11. 若分式x3x2+-有意义,则x≠___.12. 菱形两邻角的度数之比为1:3,边长为52__________.13. 已知点(-1,y1)、(2,y2)、(5y3)在反比例函数21kyx+=-的图像上,则y1、y2、y3的大小关系是__________ (用”>“连接)14. 一个平行四边形的一条边长为3,两条对角线的长分别为4和25,则它的面积为______. 15. 设函数3y x =-与2y x =+的图像的交点为(m ,n ),则11m n-的值为________. 16. 已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是_______. 17. 如图,在△ABC 中,点D 在BC 上,BD =AB ,BM ⊥AD 于点M ,N 是AC 的中点,连接MN .若AB =5,BC =8,则MN =_______.18. 如图,在Rt ABC ∆中, 90,3,4BAC AB AC ∠=︒==,点P 为BC 上任意一点,连接PA ,以,PA PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为__________.三、解答题: 本大题共8大题,共64分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19. 计算:(1)22555x x x+-- (2)22242369x x x x x x --÷+++ (3)211x x x --- 20. 先化简222(1)24p p p p -+÷--, 再求值.(其中 p 是满足-3<p <3 的整数). 21. 解分式方程: 214111x x x ++=--. 22. 某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 23. 如图,一次函数4y x =+的图像与反比例函数k y x=(k 为常数,且0k ≠)的图像交于 (1,),(,1)A a B b -两点.(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使PA PB+的值最小,求满足条件的点P 的坐标; (3)在(2)的条件下求PAB ∆的面积.24. 如图,已知菱形ABCD 的对角线AC 、BD 相交于点O ,延长AB 至点E ,使BE =AB ,连接CE .(1)求证: 四边形BECD 是平行四边形;(2)若∠E =60°,AC =43,求菱形ABCD 的面积.25. 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线y=k x的一部分.请根据图中信息解答下列问题: (1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k 的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?26. 如图1,正方形ABCD顶点A、B在函数y =kx(k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图2,当k=8时,分别求出正方形A'B'C'D'的顶点A'、B'两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A'B'C'D'有重叠部分时,求k的取值范围.答案与解析一、选择题: 本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上............1. 下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选: C.【点睛】本题主要考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2. 下列特征中,平行四边形不一定具有的是()A. 邻角互补B. 对角互补C. 对角相等D. 内角和为360°【答案】B【解析】【分析】根据平行四边形的性质得到,平行四边形邻角互补,对角相等,内角和360°,而对角却不一定互补.【详解】解: 根据平行四边形性质可知: A、C、D均是平行四边形的性质,只有B不是.故选B.【点睛】本题考查平行四边形的性质: ①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3. 将分式2mm n中的m、n都扩大为原来的3倍,则分式的值( )A. 不变B. 扩大3倍C. 扩大6倍D. 扩大9倍【答案】A【解析】m 、n 都扩大为原来的3倍得到()662333m m m m n m n m n==--- ,∴分式的值不变. 故选A.4. 矩形两条对角线的夹角为60°,一条较短边长为5cm ,则其对角线的长为( )cm .A. 5B. 10C. 15D. 7.5 【答案】B【解析】【分析】由夹角60°可得△AOB 为等边三角形,进而可得对角线的长.【详解】如图,矩形两条对角线的夹角为60°,可得△AOB 为等边三角形,又AB=5,所以OA=OB=5,所以对角线AC=BD=10故选: B .【点睛】本题考查了等边三角形的判定及性质、矩形的性质,熟练掌握矩形两条对角线相等的性质及等边三角形的性质.5. 平行四边形ABCD 的对角线AC 、BD 相交于点O ,给下条件不能判定它为菱形的是( )A. AB =ADB. AC ⊥BDC. ∠A =∠DD. CA 平分∠BCD 【答案】C【解析】【分析】根据: ①定义: 一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.进行判断即可.【详解】A 、为一组邻边相等平行四边形是菱形,不符合题意;B 、为对角线互相垂直平分的平行四边形是菱形,不符合题意;C 、可判定为矩形,不能判定为菱形,符合题意;D 、为一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,不符合题意;故选C .【点睛】本题考查菱形的判定方法有三种: ①定义: 一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6. 对于反比例函数y =﹣2x ,下列说法不正确的是( ) A. 图象分布在第二、四象限 B. y 随x 的增大而增大C. 图象经过点(1,﹣2)D. 若x >1,则﹣2<y <0 【答案】B【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】解: A .k =﹣2<0,∴它的图象在第二、四象限,故本选项正确;B .k =﹣2<0,函数图象在二、四象限,且在每个象限内y 随x 的增大而增大,故本选项错误;C .∵﹣21=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确; D .若x >1,则﹣2<y <0,故本选项正确.故选: B .【点睛】本题考查反比例函数的性质,对于反比例函数y=k x(k≠0),当k >0时,反比例函数图象在一、三象限,在每一个象限内,y 随x 的增大而减小;当k <0时,反比例函数图象在第二、四象限内,在每一个象限内,y 随x 的增大而增大.7. 如图,在平面直角坐标系中,平行四边形ABCD 的顶点B 、C 在x 轴上,A 、D 两点分别在反比例函数k y x=(k <0,x <0)与1y x =(x >0)的图像上,若平行四边形ABCD 的面积为4,则k 的值为( )A. -1B. -2C. -3D. -5【答案】C【解析】连接OA、OD,如图,∵四边形ABCD为平行四边形,∴AD垂直y轴,∴122OAEkS k=⨯=,11122ODES=⨯=,∴122OADkS=+,∵▱ABCD的面积=2OADS=4.∴|k|+1=4,解得k=−3或3,∵k<0.∴k=−3故C.8. 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A. 15°B. 20°C. 25°D. 30°【答案】B【解析】【分析】由旋转的性质得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,证出△ACE是等边三角形,得出∠ACE=∠E=60°,由三角形内角和定理求出∠DAE的度数,即可得出结果.【详解】由旋转的性质得: △ADE≌△ABC,∴∠D =∠B =40°,AE =AC ,∵∠CAE =60°,∴△ACE 是等边三角形,∴∠ACE =∠E =60°,∴∠DAE =180°−∠E −∠D =80°∴806020DAC DAE CAE ∠=∠-∠=-=;故选B.【点睛】考查旋转的性质,等腰三角形的性质,三角形的内角和定理,熟练掌握旋转的性质是解题的关键. 9. 如图,已知正方形ABCD 边长为1,连接AC 、BD ,CE 平分∠ACD 交BD 于点E ,则DE 长为( )2-2 B. 3 1 C. 2-1 D. 22【答案】C【解析】【分析】 【详解】解: ∵正方形ABCD 边长为1,2AC BD ∴==22OC OD ∴==.设DE x =. 作EF CD ⊥ 于点F∵CE 平分∠ACD ,22EF OE x ∴==-,22CF OC ==,212DF =- ∵DF 2+EF 2=DE 2, 22222122x x ⎛⎛⎫∴-+-= ⎪ ⎪⎝⎭⎝⎭解之得21x =故选C10. 如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= kx(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,23),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )A. (0,- 73) B. (0,-83)C. (0,-3)D. (0,- 103)【答案】A 【解析】【分析】由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=2 3(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.【详解】∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,23 ),∴n=2+m,即E点坐标为(2+m,23 ),∴k=2⋅m=23(2+m),解得m=1,∴A(1,2),E(3,23 ),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得32 a ba b+=⎧⎨+=⎩,解得11 ab=⎧⎨=-⎩,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,23)代入得3+q=23,解得q=−73,∴直线l的解析式为y=x−7 3当x=0时,y=−73,∴点F的坐标为(0,−73 ),故选A.【点睛】本题考查反比例函数.求出b的值是解题关键.二、填空题: 本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相对应的位置.........上...11. 若分式x3x2+-有意义,则x≠___.【答案】2 【解析】试题分析: 根据分式分母不为0的条件,要使x3x2+-在实数范围内有意义,必须x20x2-≠⇒≠.12. 菱形的两邻角的度数之比为1:3,边长为__________.【答案】5【解析】试题分析: 如图,菱形ABCD 的边长52,BC =CE 为高,:1:3,B A ∠∠=//,+180,AD BC A B ∴∠∠= 45.B ∴∠=BCE ∴为等腰直角三角形,2,BC CE =2252 5.CE BC ∴==⨯=考点: 1、菱形的性质;2、等腰直角三角形的性质.13. 已知点(-1,y 1)、(2,y 2)、(5y 3)在反比例函数21k y x+=-的图像上,则y 1、y 2、y 3的大小关系是__________ (用”>“连接)【答案】y 1>y 3>y 2【解析】【分析】【详解】20k ≥ 211k ∴+≥2110k ∴--≤-<∴反比例函数21k y x+=-的图像在二,四象限,在每一象限内y 随x 的增大而增大 点()11,y -在第二象限10y ∴>()()232,,5,y y 都在第四象限,且25<230y y ∴<<132y y y ∴>>14. 一个平行四边形的一条边长为3,两条对角线的长分别为4和25______.【答案】5【解析】【分析】【详解】如图所示: 3,4,25,AB AC BD ===∵四边形ABCD 是平行四边形112,5,22OA AC OB BD ∴==== ∵22225)3+=,90.AOB ∴∠= 即两条对角线互相垂直,∴这个四边形是菱形, ∴14254 5.2S =⨯⨯= 故答案为4 5.15. 设函数3y x =-与2y x =+的图像的交点为(m ,n ),则11m n -的值为________. 【答案】−23 【解析】【分析】由两函数的交点坐标为(m ,n ),将x=m ,y=n 代入反比例解析式,求出mn 的值,代入一次函数解析式,得出n-m 的值,将所求式子通分并利用同分母分式的加法法则计算后,把mn 及n-m 的值代入即可求出值.【详解】∵函数3y x=-与y=x+2的图象的交点坐标是(m,n), ∴将x=m ,y=n 代入反比例解析式得: mn=−3, 代入一次函数解析式得: n=m+2,即n−m=2,则1122=33n m m n mn --==--. 故答案为−23 . 【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出求出mn 的值.16. 已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是_______.【答案】12k >且1k ≠. 【解析】 试题分析: 分式方程去分母得: ()()()()211121211x k x k x x x k k +--+=-⇒=-+-+≠±. ∵分式方程解为负数,∴12102k k-+⇒. 由211k -+≠±得0k ≠和1k ≠∴k 的取值范围是12k >且1k ≠. 考点: 1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.17. 如图,在△ABC 中,点D 在BC 上,BD =AB ,BM ⊥AD 于点M ,N 是AC 的中点,连接MN .若AB =5,BC =8,则MN =_______.【答案】1.5【解析】【分析】根据题目的已知条件易求DC 的长为3,易证MN 是三角形ADC 的中位线,由三角形中位线定理即可求出MN 的长.【详解】∵BD=AB ,BM ⊥AD 于点M ,∴AM=DM ,∵N 是AC 的中点,∴AN=CN ,∴MN 是三角形ADC 的中位线,∴MN=12DC , ∵AB=5,BC=8,∴DC=3,∴MN=1.5,故答案是: 1.5.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半. 18. 如图,在Rt ABC ∆中, 90,3,4BAC AB AC ∠=︒==,点P 为BC 上任意一点,连接PA ,以,PA PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为__________.【答案】125【解析】【分析】【详解】解: 90,3,4,BAC AB AC ︒∠===225BC AC AB ∴=+=四边形APCQ 是平行四边形,,PO QO CO AO ∴==.∵PQ 最短也就是PO 最短,过O 作BC 的垂线OP′.,'90'ACB P CO CP O CAB ︒∠=∠∠=∠=,~',CAB CP O ∴',CO OP BC AB∴= 2',53OP ∴=65OP '∴=. 则PQ 的最小值为122'5OP =. 故答案为: 125. 三、解答题: 本大题共8大题,共64分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19. 计算:(1)22555x x x +-- (2)22242369x x x x x x --÷+++ (3)211x x x --- 【答案】(1)x+5;(2)26x x+;(3)11x - 【解析】【分析】(1)原式变形后,利用同分母分式的减法法则计算,约分即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式通分并利用同分母分式的减法法则计算,即可得到结果. 【详解】(1)22555x x x+-- =22555x x x --- =2255x x -- =(5)(5)5x x x +-- =5x +(2)22242369x x x x x x --÷+++ =22(2)(3)(3)2x x x x x -++-=2(3)x x+; (3)211x x x --- =2(1)(1)11x x x x x -+--- =2(1)(1)1x x x x --+- =11x -. 【点睛】此题主要考查了分式的加、减、乘、除运算,熟练掌握运算法则是解本题的关键.20. 先化简222(1)24p p p p -+÷--, 再求值.(其中 p 是满足-3<p <3 的整数). 【答案】21p p +-,-12. 【解析】【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.在-3<p<3中的整数p 是-2,-1,0,1,2;为满足原式有意义,只能取-1. 【详解】222(1)24p p p p -+÷--=()()()22221=221p p p p p p p p +--⨯-++-- . 在−3<p<3中的整数p 是−2,−1,0,1,2;根据题意,这里p 仅能取−1,此时原式=-12. 故答案为-12. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则进行化简.21. 解分式方程:214111x x x ++=--. 【答案】3x =-【解析】【分析】首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.【详解】解: 方程两边乘以(1)(1)x x +-得: 2(1)4(1)(1)x x x ++=+-,解这个方程得: 3x =-,检验: 当3x =-时,(1)(1)0x x +-≠,3x =-是原方程的解;∴原方程的解是: 3x =-.【点睛】本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.22. 某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元?【答案】90260【解析】【分析】盈利=总售价-总进价,应求出衬衫的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是: “单价贵了4元”;等量关系为: 第一次的单价=第二次的单价-4.【详解】设商场第一次购进x 件衬衫,则第二次购进2x 件,根据题意得: 8000017600042x x-=. 160000=176000-8x解这个方程得: x=2000.经检验: x=2000是原方程的根.∴2x=4000商场利润: (2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答: 在这两笔生意中,商场共盈利90260元.【点睛】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23. 如图,一次函数4y x =+的图像与反比例函数k y x=(k 为常数,且0k ≠)的图像交于 (1,),(,1)A a B b -两点.(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标;(3)在(2)的条件下求PAB ∆的面积.【答案】(1)反比例函数的表达式: 3y x =-; (2) 5(,0)2-; (3) PAB ∆的面积为32. 【解析】【试题分析】 (1)根据()()1,,,1A a B b -两点在一次函数4y x =+的图像上,求出A 、B 两点坐标即可;代入反比例函数求出答案;(2)根据”小马饮水”的思路解决即可,关键是先画出图形,再解答;(3)用割补法求三角形的面积.【试题解析】(1)根据()()1,,,1A a B b -两点在一次函数4y x =+的图像上,得A(-1,3)和B(-3,1),因为点A(-1,3)在k y x =,则31(3)3,k y x=⨯-=-=-即 ; (2)如图,作点B 关于x 轴的对称点D(-3,-1),连接DA ,则直线DA 的解析式为25y x =+ ,当y=0时,x=5-2 ,故点P (5,02-); (3)用割补法求三角形的面积,PAB ∆的面积为提醒ABGH 的面积减去三角形BGH 的面积减去三角形APH 的面积,即(13)21131313222222+⨯-⨯⨯-⨯⨯= .24. 如图,已知菱形ABCD 的对角线AC 、BD 相交于点O ,延长AB 至点E ,使BE =AB ,连接CE .(1)求证: 四边形BECD 是平行四边形;(2)若∠E=60°,AC=43,求菱形ABCD的面积.【答案】(1)证明见解析;(2)菱形ABCD的面积为83【解析】试题分析: (1)根据菱形的对边平行且相等可得AB=AD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形;(2)根据(1)的结论,以及菱形的性质可求出两对角线,然后根据菱形的面积=对角线之积的一半可求解. 试题解析: (1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD.;又∵BE=AB,∴BE=CD.∵BE∥CD,∴四边形BECD是平行四边形.(2)∵四边形BECD是平行四边形,∴BD∥CE.∴∠ABO=∠E=60°.又∵四边形ABCD是菱形,∴AC丄BD,OA=OC.∴∠BOA=90°,∴∠BAO=30°.∵AC=43∴OA=OC=3∴OB=OD=2.∴BD=4.∴菱形ABCD的面积=1143483 22AC BD⨯⨯=⨯=25. 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=kx的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?【答案】(1)10 ;(2)216;(3)12.5【解析】【分析】【详解】(1)12-2=10(小时)故恒温系统在这天保持大棚内温度18℃的时间有10个小时.(2)把()12,18B代入y=k x得k=12×18=216. (3)设开始部分的函数解析式为y kx b=+,则有21814k b b+=⎧⎨=⎩解得214k b=⎧⎨=⎩214y x∴=+当16y=时,1x=对于216,16y y x==时,13.5x=13.5112.5-=答: 这天该蔬菜能够快速生长12.5h.26. 如图1,正方形ABCD顶点A、B在函数y=k x(k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图2,当k=8时,分别求出正方形A'B'C'D'的顶点A'、B'两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A'B'C'D'有重叠部分时,求k的取值范围.【答案】(1)5;(2)A'(2,4),B'(4,2);(3)872 9k≤≤【解析】【分析】(1)过点A作AE⊥y轴于点E,如图1,则∠AED=90°.利用正方形的性质得AD=DC,∠ADC=90°,再根据等角的余角相等得到∠EDA=∠OCD,则利用”AAS”可判断△AED≌△DOC,从而得到OD=EA=5,于是确定点D的纵坐标为5;(2)作A′M⊥y轴于M,B′N⊥x轴于点N,如图2,设OD′=a,OC′=b,同理可得△B′C′N≌△C′D′O≌△A′D′E,利用全等的性质得C′N=OD′=A′M=a,B′N=C′O=D′M=b,则A′(a,a+b),B′(a+b,b),再根据反比例函数图象上点的坐标特征得到a(a+b)=8,b(a+b)=8,解方程组求出a、b,从而得到A′、B′两点的坐标;(3)先利用待定系数法求出直线A′B′解析式为y=-x+6,直线C′D′解析式为y=-x+2,设点A的坐标为(m,2m),则点D坐标为(0,m),若当A点在直线C′D′上时,则2m=-m+2,解得m=23,可确定此时点A的坐标,从而得到此时k的值;当点D在直线A′B′上时,则m=6,同样可确定此时点A的坐标和k的值,所以可确定当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时k的取值范围.【详解】(1)过点A作AE⊥y轴于点E,如图1,则∠AED=90°.∵四边形ABCD为正方形,∴AD=DC ,∠ADC=90°,∴∠ODC+∠EDA=90°.∵∠ODC+∠OCD=90°,∴∠EDA=∠OCD ,在△AED 和△DOC 中AED DOC EDA OCD AD DC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AED ≌△DOC (AAS ),∴OD=EA=5,∴点D 的纵坐标为5;(2)作A′M ⊥y 轴于M ,B′N ⊥x 轴于点N ,如图2,设OD′=a ,OC′=b ,同理可得△B′C′N ≌△C′D′O ≌△A′D′E ,∴C′N=OD′=A′M=a ,B′N=C′O=D′M=b ,∴A′(a ,a+b ),B′(a+b ,b ),∵点A′、B′在反比例函数y=8x 的图象上,∴a (a+b )=8,b (a+b )=8,解得a=b=2或a=b=-2(舍去).∴A′、B′两点的坐标分别为(2,4),(4,2);(3)设直线A′B′的解析式为y=mx+n ,把A′(2,4),B′(4,2)代入得2442m n m n +⎧⎨+⎩==,解得16m n -⎧⎨⎩==, ∴直线A′B′解析式为y=-x+6, 同样可求得直线C′D′解析式为y=-x+2,由(2)可知△OCD 是等腰直角三角形,设点A 坐标为(m ,2m ),点D 坐标为(0,m ).当A 点在直线C′D′上时,则2m=-m+2,解得m=23, 此时点A 的坐标为(23,43),k=23×43=89; 当点D 在直线A′B′上时,有m=6,此时点A 的坐标为(6,12),k=6×12=72; 综上可知: 当变化的正方形ABCD 与(2)中的正方形A′B′C′D′有重叠部分时,k 的取值范围为89≤x≤72. 【点睛】本题考查了反比例函数的图象与性质: 熟练掌握反比例函数图象上点的坐标特征和正方形的性质;灵活运用全等三角形的性质解决线段相等的问题;会运用待定系数法求一次函数解析式;理解坐标与图形性质.。

苏教版八年级数学上册期中测试卷【带答案】

苏教版八年级数学上册期中测试卷【带答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是()A.2020B.2020C.12020D.120202.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.下列计算正确的是()A.235 B.3223C.623 D.(4)(2)224.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313B.3 C.313-5 D.-35.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.如图,有一块直角三角形纸片,两直角边6cmAC,8cmBC.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60o,∠BDC=95o,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123________.2.比较大小:23________13.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,?ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是__________.6.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x yx y(2)134342x yx y2.先化简,再求值[(x2+y2)-(x-y)2+2y(x-y)]÷2y,其中x=-2,y=-12.3.已知关于x的一元二次方程22(21)10x m x m有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且221212170x x x x,求m的值.4.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、B6、B7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、32、<3、-y(3x-y)24、145、(-2,0)6、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)1010xy(2)64xy2、2x-y;-31 2.3、①54m,②m的值为53.4、(1)8;(2)6;(3),40cm,80cm2.5、(1)略(2)90°(3)AP=CE6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版八下数学测试题
一、选择题(3×10=30分)
1.如图,已知点M在平面直角坐标系的位置,其
坐标可能是………………………………………()
A. (-1,2)
B. (1,2)
C. (-2,-1)
D.(1,-3)
2.若点P(m,n)在第二象限,则点Q(-m,-n)在………………()A. 第一象限 B.第二象限 C. 第三象限 D.第四象限
3.气象台为预报台风,给出台风位置的几种说法①北纬46°,东经142°。

②上海东北方向100km处。

③日本与韩国之间。

④大西洋。

⑤大连正东方向。

其中能确定台风位置的有……………………….……………………………()
A. 一个
B. 二个
C. 三个
D.四个
4.将点A(5,-2)按如下方式进行平移:先向上平移2个单位,再向左平移4个单位,则点A平移后的坐标为……………………………………………..…()
A. (7,-6)
B. (9,0)
C. (1,-4)
D.(1,0)
5.已知直线MN平行于y轴,且点M(3,-5),N(x,y)那么x,y的值分别为()A. 3,3 B. 一切实数,3 C. 3,一切实数 D.无法确定
6.函数自变量x的取值范围是………….…………….….…()
A. 全体实数
B. x>0
C. x≥0且x≠1
D.x>1
7.若m+n <0,mn >0。

则一次函数y=mx+n的图像不经过…………….….…()A. 第一象限 B.第二象限 C. 第三象限 D.第四象限
8.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图像是…()
A. B. C. D.
9.某游泳池分为深水区和浅水区,每次消毒后要重新注满水,假定进水管的速度是均匀的,那么游泳池内水的高度h随时间t变化的图像是………..………….….…()
A. B. C. D.
10.下列各曲线中,不能表示y是x的函数的是…………….…………….…()
A. B. C. D.
二、填空题(4×8=32分)
11.已知点P(m,n)在y轴上,则mn=。

12.点M(x,y)到x轴的距离为3,到y轴的距离为4,则点M的坐标为。

13.在方格纸上有A,B两点,若以点B为原点建立直角坐标系,则点A的坐标为(3,4)。

若以A点为原点建立直角坐标系,则B点坐标为。

14.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为和。

(只写一组)
15.函数y=-2x-3的图像是由直线y=-2x向平移个单位得到的。

16.请写出一个经过(1,2),且图像自左向右上升的一次函数解析式。

17.点(,y1),(2,y2)是一次函数y=-x-3图像上的两点,则y1y2。

(填“>”、“=”或“<”)
18.一次函数y=-x+2的图像与坐标轴围成三角形的面积是。

三、解答题(6+6+8+8=28分)
19.已知一次函数图像如图,写出它的解析式。

20.已知y与x-3成正比例,当x=4时,y=—3。

(1)写出y与x之间的函数关系式。

(2)画出函数图像。

21.在平面直角坐标系中,△ABC的边AB在x轴上,且AB=3,点A的坐标为(-5,0),点C的坐标为(2,5)。

(1)符合条件的三角形有几个?并写出B点的坐标。

(2)求△ABC的面积。

22.正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),求:(1)k的值。

(2)两条直线与x轴围成的三角形的面积。

四、综合运用(5+5+10+10=30分)
23.某汽车加油站储油45000升,每天给汽车加油1500升,那么加油x天与储油量y升之间的关系式是什么?并指出自变量的取值范围。

24. 三角形ABC在平面直角坐标系中的坐标如下:A(-3,0),B(3,0),
C(0,2)。

将三角形先向上平移3个单位,再向左平移2个单位得到△A’B’C’, 请写出A’,B’,C’各点的坐标。

25. “龟兔赛跑”是同学们熟悉的寓言故事,今天龟兔又进行了600m赛跑。

如图
表示龟兔赛跑的路程S(m)与时间t(min)的关系,
根据图像回答以下问题:
(1)赛跑中,兔子共睡了多长时间?
(2)赛跑开始后,乌龟在第几分钟
时从睡觉的兔子旁经过?
(3)这次比赛谁赢了?
26、已知函数,
⑴若函数图象经过原点,求的值;
⑵若函数图象在y轴上的截距为,求的值;
⑶若函数图象平行于直线,求的值;
⑷若该函数的值y随自变量x的增大而减小,求的取值范围;
⑸不经过第四象限,求的取值范围。

(10分)。

相关文档
最新文档