(春季拔高课程)2017-2018年九年级数学 第12讲 几何问题探究—其它类型问题教案

合集下载

配套K12(春季拔高课程)2017-2018年九年级数学 第15讲 动点问题探究—其它类型动点问题教

配套K12(春季拔高课程)2017-2018年九年级数学 第15讲 动点问题探究—其它类型动点问题教

动点问题探究——其它类型动点问题教学过程一、课堂导入动点所产生的函数及方程问题在初中数学中占有相当的比重,在全国各地的中考数学试卷中占到10%到20%的比重。

主要研究在几何图形运动中,伴随着一定的数量关系、图形位置关系的“变”和“不变性”,就运动对象而言,有点动、线动和面动,常常集代数与几何于一体,有较强的综合性,题目灵活多变,动中有静,静中有动,动静结合.二、复习预习1. 平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。

2. 轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。

3. 在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

三、知识讲解考点1 单点运动及双点运动问题关于点运动的问题,一般根据图形变化,探索动点运动的特点和规律,作出符合条件的草图。

解这类题的关键是抓住动点运动过程中不变的量,用含未知数的代数式去表示所需的线段,根据题意中隐含的条件借助相似等方式构造方程或函数表达式。

考点2 图形运动问题图形的运动包括图形的平移、旋转、翻折等,图形在运动过程中,对应线段、对应角不变,以三角形、四边形的运动是常见的一种题型。

这里需注意:平移、旋转、翻折都改变了图形的位置,不改变图形的形状和大小。

对于此类题目,关键在于抓住运动图形的特殊位置、临界位置及特殊性质,其基本方法是把握图形运动与变化的全过程,以不变应万变,解答过程中常需借用函数或方程来解答。

考点3 线运动问题解决此类题的关键是根据线运动的变化,研究图形的变化.由图形变化前后的关系及图形的性质综合解决问题,如本题利用平移性质及三角形面积建立方程解决问题.四、例题精析考点一“K”型图问题例1如图13,等腰梯形ABCD中,AD∥BC,M是AD的中点,BC=8,MB=5.(1)判断△MBC的形状,并说明理由;(2)若P、Q分别是线段BC、BM上的动点(点P与B、C均不重合),且∠MPQ=∠MCB,设BP=x,QM =y,求y与x的关系式及x的取值范围,判断y是否存在最大(或最小)值,若存在,求出其值,并判断此时△MQP的形状,若不存在,说明理由.考点二几何变换-翻折问题例2在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DH=DA时,①填空:∠HGA=度;②若EF∥HG,求∠AHE的度数,并求此时的最小值;(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a 的值.考点三几何变换-平移问题例3如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1350,得到矩形EFGH(点E与O重合).(1)若GH交y轴于点M,则∠FOM=,OM= ;(2)矩形EFGH沿y轴向上平移t个单位。

(春季拔高课程)2017-2018年九年级数学 第9讲 几何问题探究—与中点相关问题教案

(春季拔高课程)2017-2018年九年级数学 第9讲 几何问题探究—与中点相关问题教案

教学过程一、课堂导入几何在初中数学中占有相当的比重,在全国各地的中考数学试卷中图形与几何的探究问题占到20%到30%的比重。

主要考查了图形的一些基本性质,借助图形的变换(平移变换、旋转变换、轴对称变换、相似变换)进行线段和角的一些相关问题的探讨,主要考查了学生的观察能力、空间想象能力、动手操作能力以及所学几何基础知识的灵活运用能力。

解决几何综合问题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧“模型间的关联,明确努力方向,才能进一步探究综合问题。

注重对基本模型及辅助线的积累是非常必要的。

二、复习预习三角形中线的定义:三角形顶点和对边中点的连线。

三角形中线的相关定理:1. 直角三角形斜边的中线等于斜边的一半。

2. 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)。

中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见。

三、知识讲解考点1 三角形的中位线1. 三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。

2. 三角形中位线的定理:三角形的中位线平行于第三边并且等于它的一半。

3. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边。

考点2 全等三角形的概念及其性质1.定义:能够完全重合的两个三角形叫做全等三角形。

2.性质定理: (1)全等三角形的对应角相等。

(2)全等三角形的对应边相等。

(3)能够完全重合的顶点叫对应顶点。

(4)全等三角形的对应边上的高对应相等。

(5)全等三角形的对应角的角平分线相等。

(6)全等三角形的对应边上的中线相等。

(7)全等三角形面积和周长相等。

(8)全等三角形的对应角的三角函数值相等。

考点3 全等三角形的解题技巧一般来说考试中线段和角相等需要证明全等。

推荐K12春季拔高课程2017_2018年九年级数学第13讲动点问题探究_几何图形中的动点问题教案

推荐K12春季拔高课程2017_2018年九年级数学第13讲动点问题探究_几何图形中的动点问题教案

会解决图形的平移、旋转、翻折等问题教学过程一、课堂导入动点所产生的函数及方程问题在初中数学中占有相当的比重,在全国各地的中考数学试卷中占到10%到20%的比重。

主要研究在几何图形运动中,伴随着一定的数量关系、图形位置关系的“变”和“不变性”,就运动对象而言,有点动、线动和面动,常常集代数与几何于一体,有较强的综合性,题目灵活多变,动中有静,静中有动,动静结合.二、复习预习1. 平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。

2. 轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。

3. 在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

三、知识讲解考点1 单点运动及双点运动问题关于点运动的问题,一般根据图形变化,探索动点运动的特点和规律,作出符合条件的草图。

解这类题的关键是抓住动点运动过程中不变的量,用含未知数的代数式去表示所需的线段,根据题意中隐含的条件借助相似等方式构造方程或函数表达式。

考点2 图形运动问题图形的运动包括图形的平移、旋转、翻折等,图形在运动过程中,对应线段、对应角不变,以三角形、四边形的运动是常见的一种题型。

这里需注意:平移、旋转、翻折都改变了图形的位置,不改变图形的形状和大小。

对于此类题目,关键在于抓住运动图形的特殊位置、临界位置及特殊性质,其基本方法是把握图形运动与变化的全过程,以不变应万变,解答过程中常需借用函数或方程来解答。

考点3 线运动问题解决此类题的关键是根据线运动的变化,研究图形的变化.由图形变化前后的关系及图形的性质综合解决问题,如本题利用平移性质及三角形面积建立方程解决问题.四、例题精析 考点一 双点运动问题例1 如图14,在△ABC 中,∠B = 90°,AB = 6cm ,BC = 12cm ,动点P 以1cm/s 的速度从A 出发沿边AB 向点B 移动,动点Q 以2cm/s 的速度同时从点B 出发沿BC 向点C 移动.⑴△PBQ 的面积S(cm 2)与点P 移动时间t (s)的函数关系式为______,其中t 的取值范围为________; ⑵判断△PBQ 能否与△ABC 相似,若能,求出此时点P 移动的时间,若不能,说明理由; ⑶设M 是AC 的中点,连接MP 、MQ ,试探究点P 移动的时间是多少时,△MPQ 的面积为△ABC 面积的41?例2如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.考点二图形运动问题例3如图,矩形纸片ABCD中,AB=6,BC=8;折叠纸片使点B落在AD上,落点为B′;点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′;设直线l与AB相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y;(1)求证∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围;考点三线运动问题例4如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.课程小结本节课主要研究了几何图形中的动点问题,中考中,对运动变化问题的考查是常考的内容之一,考查的热点是点运动问题、图形运动问题(旋转、翻折、对称变换),解答动点问题时,点不同位置考虑的不全面是容易导致出错的原因之一。

第12讲相似三角形的判定复习课件(共46张PPT)

第12讲相似三角形的判定复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图

推荐精选春季拔高课程2017九年级数学第9讲几何问题探究—与中点相关问题教案

推荐精选春季拔高课程2017九年级数学第9讲几何问题探究—与中点相关问题教案

推荐精选春季拔高课程2017九年级数学第9讲几何问题探究—与中点相关问题教案 1 / 1 初,张咏 在成都 ,闻准 入相, 谓其僚 属曰:“寇公奇材,惜学术不足尔。

”及准出陕 ,咏适自成都 罢还, 准严供 帐,大 为具待 。

咏将 去,准 送之郊,问曰:“何 以教准 ?”咏 徐曰: “《霍光传》不行不读也。

”准莫谕其意 ,归, 取其传读之, 至“不学无术”,笑曰:“此张公谓 我矣。

”几何问题研究——与中点有关问题知识点 1. 中点的定义2. 中点的表示方法:等量关系、倍的关系、分的关系3. 三角形中线的作用:均分线段4. 全等三角形的中线的作用:倍长中线(延伸中线至 * ,连结 ** ,证明三角形全等)教课目的 娴熟掌握有中点为背景的全等三角形证明的方法 .教课要点 在实质问题中能对中线倍长法模型的成立,利用中线倍长法解决问题 .教课难点 利用中线倍长法结构全等三角形解决问题 .教课过程一、讲堂导入几安在初中数学中据有相当的比重,在全国各地的中考数学试卷中图形与几何的研究问题占到 20%到30%的比重。

主要考察了图形的一些基天性质,借助图形的变换(平移变换 、旋转变换、轴对称变换、相像变换) 进行线段和角的一些有关问题的商讨, 主要考察了学生的察看能力、空间想象能力、 着手操作能力以及所学几何基础知识的灵巧运用能力。

解决几何综合问题,是需要厚积而薄发,所谓的“几何感觉” ,是成立在足够的知识累积的基础上的,熟习基本图形及常用的协助线,在碰到特定条件时能够实时 联想到对应的模型, 找到 “新” 问题与 “旧“模型间的关系, 明确努力方向, 才能进一步研究综合问题。

着重对基本模型及协助线的累积是特别必要的。

二、复习预习三角形中线的定义:三角形极点和对边中点的连线。

三角形中线的有关定理: 1. 直角三角形斜边的中线等于斜边的一半。

2. 等腰三角形底边的中线三线合一(底边的中线、顶角的角均分线、底边的高重合)。

K12推荐学习(春季拔高课程)2017-2018年九年级数学 第11讲 几何问题探究—相似与比例相关问题教案

K12推荐学习(春季拔高课程)2017-2018年九年级数学 第11讲 几何问题探究—相似与比例相关问题教案

熟练掌握图形相似的证明方法;知识讲解考点1 两条线段之间的数量关系在数量关系的猜想中,证明两条线段相等的情况较多,有时也出现证明两条线段的倍数关系,如AB=2CD或等。

在证明两条线短相等的过程中,可以根据特殊四边形的性质证明两条线段相等,也可以证明两个三角形全等,根据全等三角形的性质证明两条线段相等。

证明两条线段的倍分关系时,利用构造基本图形模型证明,具体情况如下:1.利用三角形的中位线或直角三角形证明a=12b;2.利用等腰三角形证明a=;3.利用含30°角的直角三角形证明等;考点2 两条线段之间的位置关系在位置关系猜想中,两条线段是垂直关系还是平行关系一目了然,关键是如何证明,方法如下:1.在证明垂直关系时,由垂直定义,即两条线段相交,所夹的角是90°,一般利用直角三角形的两个锐角互余的角度进行证明;2.在证明两条线段平行时,大多是根据平行线的判定方法进行证明即可;总之证明位置关系,需要根据图形的性质,利用三角形全等进行证明,有时利用相似。

在解答时,根据具体的题目条件,分解出基本图形,灵活掌握并选择方法证明。

考点3 相似三角形的判定①定义法:三个对应角相等,三条对应边成比例的两个三角形相似.②平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.④判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似. 考点4 证明题常用方法归纳(1)总体思路:“等积”变“比例”,“比例”找“相似”(2)找相似: 通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比: 若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。

推荐K12春季拔高课程2017_2018年九年级数学第1讲二次函数探究_二次函数与相似三角形的综合问题教案

综合问题;教学过程 一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,难度较大。

主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。

此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。

就本节二次函数与相似三角形的点存在性问题,主要考查了学生能否将相似三角形的性质与判定融入到二次函数,在函数图像中构造相似图形的能力。

二、复习预习 勾股定理及逆定理1.定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2)2.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题3.逆定理:如果三角形的三边长:a ,b ,c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。

4.用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边为c 。

(2)验证c 2和a 2+b 2是否具有相等的关系,若a 2+b 2=c 2,则△ABC 是以∠C 为直角的直角三角形。

三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据. 当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为: 一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式; 顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a ,244ac b a).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 相似三角形的概念及其性质1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

推荐K12春季拔高课程2017_2018年九年级数学第9讲几何问题探究_与中点相关问题教案

教学过程一、课堂导入几何在初中数学中占有相当的比重,在全国各地的中考数学试卷中图形与几何的探究问题占到20%到30%的比重。

主要考查了图形的一些基本性质,借助图形的变换(平移变换、旋转变换、轴对称变换、相似变换)进行线段和角的一些相关问题的探讨,主要考查了学生的观察能力、空间想象能力、动手操作能力以及所学几何基础知识的灵活运用能力。

解决几何综合问题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧“模型间的关联,明确努力方向,才能进一步探究综合问题。

注重对基本模型及辅助线的积累是非常必要的。

二、复习预习三角形中线的定义:三角形顶点和对边中点的连线。

三角形中线的相关定理:1. 直角三角形斜边的中线等于斜边的一半。

2. 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)。

中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见。

三、知识讲解考点1 三角形的中位线1. 三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。

2. 三角形中位线的定理:三角形的中位线平行于第三边并且等于它的一半。

3. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边。

考点2 全等三角形的概念及其性质1.定义:能够完全重合的两个三角形叫做全等三角形。

2.性质定理:(1)全等三角形的对应角相等。

(2)全等三角形的对应边相等。

(3)能够完全重合的顶点叫对应顶点。

(4)全等三角形的对应边上的高对应相等。

(5)全等三角形的对应角的角平分线相等。

(6)全等三角形的对应边上的中线相等。

(7)全等三角形面积和周长相等。

(8)全等三角形的对应角的三角函数值相等。

考点3 全等三角形的解题技巧一般来说考试中线段和角相等需要证明全等。

2018届中考数学专题7 几何综合探究题 (共36张PPT)


考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
类型三
解:(1)将点A(0,3),B(-1,0),D(2,3)代入y=ax2+bx+c, c = 3, a = -1, 得 a-b + c = 0, 得 b = 2, 4a + 2b + c = 3, c = 3.
所以,抛物线解析式为y=-x2+2x+3. (2)因为直线l将平行四边形ABCD分割为面积相等的两部分,
所以必过其对称中心
3
(3)120
3 a 2
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
类型三
类型三 几何图形与函数相结合探究题 例3(2017· 山东潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形 ABCD的顶点A(0,3),B(-1,0),D(2,3),抛物线与x轴的另一交点为E.经 过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛 物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标 为t. (1)求抛物线的解析式; (2)当t何值时,△PFE的面积最大?并求最大值的立方根; (3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不 存在,说明理由.
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
类型三
类型一 类比拓展探究题 例1(2017中考)已知正方形ABCD,点M为边AB的中点. (1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG,BG分 别与边BC,CD交于点E,F. ① 证明:BE=CF; ② 求证:BE2=BC· CE. (2)如图2,在边BC上取一点E,满足BE2=BC· CE,连接AE交CM于点 G,连接BG并延长交CD于点F,求tan ∠CBF的值.

推荐K12春季拔高课程2017_2018年九年级数学第7讲二次函数探究_二次函数与图形面积的综合问题教案

熟练运用所学知识解决二次函数综合问题灵活运用技巧及方知识讲解探究图形面积的一般思路要求三角形或四边形的面积的最大值或是最小值,解决这类问题的基本步骤:(1)首先要确定所求三角形或四边形面积最值,可设动点运动个时间t或动点的坐标(t,at2+bt+c)(2)①求三角形面积最值时要用含t的代数式表示出三角形的底和高,此时就先证明涉及到底和高的三角形与已知线段长度的三角形相似,从而求得用含t的代数式表示底和高;②求四边形的面积最值时,常用到的方法是利用割补法将四边形分成两个三角形,从而利用三角形的方法求得用含t的代数式表示的线段;(3)用含有未知数的代数式表示出图形的面积;(4)用二次函数的知识来求最大值或是最小值。

例题精析例1如图, △ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图像与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形.(1)试求b 、c 的值,并写出该二次函数的解析式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,由PQ ⊥AC ?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?例2如图,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC . (1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).例3如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过A、C两点,与AB边交于点D.(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式,并求出m为何值时,S取得最大值;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.例4如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.课程小结有针对性的对勾股定理、相似三角形的性质及二次函数的基础知识进行复习,有助于为研究二次函数与图形面积的综合问题提供有利的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程一、课堂导入几何在初中数学中占有相当的比重,在全国各地的中考数学试卷中图形与几何的探究问题占到20%到30%的比重。

主要考查了图形的一些基本性质,借助图形的变换(平移变换、旋转变换、轴对称变换、相似变换)进行线段和角的一些相关问题的探讨,主要考查了学生的观察能力、空间想象能力、动手操作能力以及所学几何基础知识的灵活运用能力。

解决几何综合问题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧“模型间的关联,明确努力方向,才能进一步探究综合问题。

注重对基本模型及辅助线的积累是非常必要的。

二、复习预习相似三角形的概念及性质1. 对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.2. 相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.注:相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等.三、知识讲解考点1 两条线段之间的数量关系在数量关系的猜想中,证明两条线段相等的情况较多,有时也出现证明两条线段的倍数关系,如AB=2CD或CD等。

在证明两条线短相等的过程中,可以根据特殊四边形的性质证明两条线段相等,也可以证明两个三角形全等,根据全等三角形的性质证明两条线段相等。

证明两条线段的倍分关系时,利用构造基本图形模型证明,具体情况如下:1.利用三角形的中位线或直角三角形证明a=12b;2.利用等腰三角形证明b;3.利用含30°角的直角三角形证明等;考点2 两条线段之间的位置关系在位置关系猜想中,两条线段是垂直关系还是平行关系一目了然,关键是如何证明,方法如下:1.在证明垂直关系时,由垂直定义,即两条线段相交,所夹的角是90°,一般利用直角三角形的两个锐角互余的角度进行证明;2.在证明两条线段平行时,大多是根据平行线的判定方法进行证明即可;总之证明位置关系,需要根据图形的性质,利用三角形全等进行证明,有时利用相似。

在解答时,根据具体的题目条件,分解出基本图形,灵活掌握并选择方法证明。

考点3 相似三角形的判定①定义法:三个对应角相等,三条对应边成比例的两个三角形相似.②平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③判定定理1:两角对应相等,两三角形相似.④判定定理2:两边对应成比例且夹角相等,两三角形相似.⑤判定定理3:三边对应成比例,两三角形相似.考点4 锐角三角函数的定义、表达式及关系四、例题精析例1如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE;(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2);当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示);例2已知:如图1所示,Rt⊿ABC与Rt⊿ADE中,∠ACB=∠AED=90°,AC=k BC,AE=k DE,点O为线段BD的中点,探索∠COE、∠ADE之间有怎样的数量关系,证明你的结论。

说明:如果你反复探索没有解决问题,可以选取(1)和(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为4分。

(1)点E在CA延长线上(图2);(2)K=1,点E在CA延长线上(图3);例3如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.例4在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P;(1)如图1,若四边形ABCD是正方形;①求证△AOC1≌△BOD1;②请直接写出AC1与BD1的位置关系;(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1;判断AC1与BD1的位置关系,说明理由,并求出k的值;(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1;请直接写出k的值和AC12+(kDD1)2的值;课程小结本节课主要针对与三角函数相关问题、与角相关等几何问题进行了探究。

若遇到与三角函数相关问题时,只需将所研究的角放入直角三角形中,由已知角确定相应的三角函数表示;若遇到与角相关问题时,只需通过全等变换或是相似变换得出角的结论,有时也需注意题干中所给的信息。

几何问题的探究是一个长期积累的过程,注重几何知识的综合运用,积累基本型是重中之重。

例1【规范解答】(1)∠DCA=∠BDE;证明:∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE,∴∠BDE=∠DEC﹣∠DBC=∠DCE﹣∠ACB=∠DCA (2)过点E作EG∥AC,交AB于点G,如图1,则有∠DAC=∠DGE,在△DCA和△EDG中,∴△DCA≌△EDG(AAS)∴DA=EG,CA=DG,∴DG=AB,∴DA=BG∵AF∥EG,DF=EF,∴DA=AG,∴AG=BG,∵EG∥AC,∴BE=EC.(3)过点E作EG∥AC,交AB的延长线于点G,如图2,∵AB=AC,DC=DE,∴∠ABC=∠ACB,∠DEC=∠DCE,∴∠BDE=∠DBC﹣∠DEC=∠ACB﹣∠DCE=∠DCA∵AC∥EG,∴∠DAC=∠DGE,在△DCA和△EDG中,∴△DCA≌△EDG(AAS)∴DA=EG,CA=DG,∴DG=AB=1,∵AF∥EG,,∴△ADF∽△GDE,∴,∵DF=kFE,∴DE=EF﹣DF=(1﹣k)EF,∴,∴AD=,∴GE=AD=过点A作A H⊥BC,垂足为H,如图2,∵AB=AC,AH⊥BC,∴BH=CH,∴BC=2BH,∵AB=1,∠ABC=α,∴BH=ABcos∠ABH=cosα∴BC=2cosα,∵AC∥EG,∴△ABC∽△GBE,∴,∴∴BE=,∴BE的长为【总结与反思】(1)运用等腰三角形的性质及三角形的外角性质就可解决问题;(2)过点E作EG∥AC,交AB于点G,如图1,要证BE=CE,只需证BG=AG,由DF=FE可证到DA=AG,只需证到DA=BG即DG=AB,也即DG=AC即可;只需证明△DCA≌△△EDG即可解决问题;(3)过点A作AH⊥BC,垂足为H,如图2,可求出BC=2cosα;过点E作EG∥AC,交AB的延长线于点G,易证△DCA≌△△EDG,则有DA=EG,CA=DG=1;易证△ADF∽△GDE,则有;由DF=kFE可得DE=EF ﹣DF=(1﹣k)EF;从而可以求得AD=,即GE=;易证△ABC∽△GBE,则有,从而可以求出BE.例2【规范解答】证明:如图1,取AD、AB中点M、N,连接EM、MO、ON、CN,AD与EO相交于点F,则:EM=DM=MA,CN=AN=BN,∴∠AME=2∠ADE,∠ANC=2∠ABC,∵O为BD中点∴OM=AN=CN,OM‖AN,ON=AM=EM,ON‖AD,∴四边形ANOM为平行四边形,∴∠AMO=∠ANO,∠AFE=∠NOE,∵∠ACB=∠AED=90°,AC=kBC,AE=kDE,∴Rt△ABC∽Rt△ADE,∴∠ADE=∠ABC,∴∠AME=∠ANC,∴∠EMO=∠ONC,∴△EMO≌△ONC,∴∠NOC=∠MEO,∵∠AFE=∠AM E+∠MEO∠NOE=∠COE+∠NOC,∴∠COE=∠AME,∴∠COE=2∠ADE,选择条件(1)证明:延长EO交CB的延长线于点F,∵∠ACB=∠AED=90°,∴ED∥CF,∴∠DEO=∠F,∠EDO=∠FBO∵O为BD中点,∴DO=BO,∴△EDO≌△FBO,∴ED=FB,EO=FO,∵∠ACB=90°,∴CO=OF=EO∴∠F=∠OCF,∴∠COE=∠F+∠OCF=2∠F,∵AC=kBC,AE=kDE,CE=AC+AE,CF=BC+BF,∴EA:CE=ED:CF=1:(K+1),∵∠ACB=∠AED=90°,∴△EAD∽△CEF,∴∠ADE=∠F,∴∠COE=2∠ADE选择条件(2)证明:延长EO交CB的延长线于点F∵∠ACB=∠AED=90°AE=DE,∴ED‖CF,∠ADE=45°,∴∠DEO=∠F,∠EDO=∠FBO∵O为BD中点,∴DO=BO,∴△EDO≌△FBO,∴ED=FB,EO=FO,∵AC=BC,AE=DE,∴CE=CF∴CO⊥EF,∴∠COE=90°,∴∠COE=2∠ADE.【总结与反思】(1)取AD、AB中点M、N,连接EM、MO、ON、CN,AD与EO相交于点F,先证明Rt△ABC∽Rt△ADE,然后证明△EMO≌△ONC即可证明;(2)延长EO交CB的延长线于点F,证明△EDO≌△FBO,ED=FB,EO=FO,由AC=BC,AE=DE,可得CE=CF,从而CO⊥EF,可得∠COE=90°,可得∠COE=2∠ADE.例3【规范解答】解:(1)①BF=AD,BF⊥AD;②BF=AD,BF⊥AD仍然成立,证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵四边形CDEF是正方形,∴CD=CF,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,在△BCF和△ACD中,∴△BCF≌△ACD(SAS),∴BF=AD,∠CBF=∠CAD,又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠A HO=90°,∴∠AOH=90°,∴BF⊥AD;(2)证明:连接DF,∵四边形CDEF是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD,∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,∵AC=4,BC=3,CD=,CF=1,∴,∴△BCF∽△ACD,∴∠CBF=∠CAD,又∵∠BHC=∠A HO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠A OH=90°,∴BF⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB2=A C2+BC2=32+42=25,∵在Rt△FCD中,∠FCD=90°,CD=,CF=1,∴,∴BD2+AF2==.【总结与反思】(1)①证△BCF≌△ACD推出∠CAD=∠FBC,BF=AD,即可得出结论;②证△BCF≌△ACD推出∠CAD=∠FBC,BF=AD,即可得出结论;(2)连接FD,根据(1)得出BO⊥AD,根据勾股定理得出BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2,推出BD2+AF2=AB2+DF2,即可求出答案.例4【规范解答】(1)①证明如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴O C1=OC,O D1=OD,∠CO C1=∠DO D1,∴O C1=O D1,∠AO C1=∠BO D1=90°+∠AOD1,在△AO C1和△BOD1中,,∴△AO C1≌△BOD1(SAS);②AC1⊥BD1;(2)AC1⊥BD1理由如下如图2,∵四边形ABCD是菱形,∴OC=OA=AC,OD=OB=BD,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴O C1=OC,O D1=OD,∠CO C1=∠DO D1,∴O C1=OA,O D1=OB,∠AO C1=∠BO D1,∴,∴△AO C1∽△BOD1,∴∠O AC1=∠OB D1,又∵∠AOB=90°,∴∠O AB+∠ABP+∠OB D1=90°,∴∠O AB+∠ABP+∠O AC1=90°,∴∠APB=90°∴AC1⊥BD1;∵△AO C1∽△BOD1,∴====,∴k=;(3)如图3,与(2)一样可证明△AO C1∽△BOD1,∴===,∴k=;∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴O D1=OD,而OD=OB,∴OD1=OB=OD,∴△BDD1为直角三角形,在Rt△BDD1中,BD12+DD12=BD2=100,∴(2AC1)2+DD12=100,∴AC12+(kDD1)2=25【总结与反思】(1)①如图1,根据正方形的性质得OC=OA=OD=OB,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得O C1=OC,O D1=OD,∠CO C1=∠DO D1,则O C1=O D1,利用等角的补角相等得∠AO C1=∠BO D1,然后证明△AO C1≌△BOD1;②由∠AOB=90°,则∠O AB+∠ABP+∠OB D1=90°,所以∠O AB+∠ABP+∠O AC1=90°,则∠APB=90°所以AC1⊥BD1;(2)如图2,根据菱形的性质得OC=OA=AC,OD=OB=BD,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得O C1=OC,O D1=OD,∠CO C1=∠DO D1,则O C1=OA,O D1=OB,利用等角的补角相等得∠AO C1=∠BO D1,加上,得到△AO C1∽△BOD1,得到∠O AC1=∠OB D1,由∠AOB=90°得∠O AB+∠ABP+∠OB D1=90°,则∠O AB+∠ABP+∠O AC1=90°,则∠APB=90°,所以AC1⊥BD1;然后得到===,所以k=;(3)与(2)一样可证明△AO C1∽△BO D1,则===,所以k=;根据旋转的性质得O D1=OD,根据平行四边形的性质得OD=OB,则OD1=OB=OD,于是可判断△BDD1为直角三角形,根据勾股定理得BD12+DD12=BD2=100,所以(2AC1)2+DD12=100,于是有AC12+(kDD1)2=25.本文档仅供文库使用。

相关文档
最新文档