人教A版必修2 4.2.2 圆与圆的位置关系

合集下载

人教课标版高中数学必修二《圆与圆的位置关系》教案-新版

人教课标版高中数学必修二《圆与圆的位置关系》教案-新版

4.2.2 圆与圆的位置关系(一)核心素养通过学习圆与圆的位置关系,掌握解决问题的方法――代数法、几何法. (二)学习目标1.明确两个圆之间的五种位置关系.2.能根据给定的两个圆的方程判断两个圆的位置关系.3.两圆相交时的公共弦方程及弦长计算.(三)学习重点圆与圆的位置关系及其判断方法.(四)学习难点1.用圆的方程解决问题.2.用几何法和代数法判断两圆之间的位置关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材,明确:圆与圆的五种位置关系——外离、外切、相交、内切、内含的几何含义是:(2)记一记:直线与圆的位置关系的判断方法 方法一:几何方法设两圆的圆心距d ,半径12,r r ,则: ①当12d r r >+时,圆1C 与圆2C 相离; ②当12d r r =+时,圆1C 与圆2C 外切; ③当<-||21r r 12d r r <+时,圆1C 与圆2C 相交; ④当12||d r r =-时,圆1C 与圆2C 内切; ⑤当12||d r r <-时,圆1C 与圆2C 内含;步骤:①计算两圆半径12,r r ;②计算两圆圆心距d ;③根据d 与12,r r 的关系判断两圆的位置关系. 方法二:代数方法方程组22111222220x y D x E y F x y D x E y F ⎧++++=⎪⎨++++=⎪⎩ 有两组不同实数解⇔相交;有两组相同实数解⇔相切(内切或外切);无实数解⇔相离(外离或内含). 2.预习自测(1)根据图片说出圆与圆之间的位置关系.【知识点】圆与圆位置关系 【数学思想】数形结合【解题过程】根据图像和定义直接得出结果 【思路点拨】看两圆交点个数【答案】(图一至图六依次为)外离、内含、内含、外切、内切、相交. (2)判断下列两圆的位置关系()()12222=-++y x 与()()165222=-+-y x .【知识点】圆与圆位置关系 【数学思想】数形结合 ()()221222255r r --+-==+,所以两圆外切.【思路点拨】看圆心距和半径间的关系 【答案】外切. (二)课堂设计 1.知识回顾(1)直线与圆的位置关系:相离、相交、相切;(2)判断直线与圆的位置关系的方法:根据圆心到直线的距离;根据直线的方程和圆的方程组成方程组的实数解的个数; (3)与圆相切的直线方程的计算方法. 2.问题探究探究一 圆与圆的位置关系★●活动① 明确概念我们知道根据圆心到直线距离的长度与圆半径长度的比较之后,明确了直线与圆有三种位置关系,分别是:相离、相切和相交. 那么圆与圆之间也同样有这样的关系,我们通过两个圆半径之间与两圆圆心之间距离的长度还有公共点的个数比较来判断两个圆的位置关系:当公共点个数为0时,若21r r d +>,则两圆外离,若21r r d -<,则两圆内含;当公共点个数为1时,若21r r d +=,则两圆外切,若21r r d -=,则两圆内切;当公共点个数为2时,2121r r d r r +<<-,则两圆相交. 【例题】【知识点】圆与圆位置关系 【数学思想】数形结合【解题过程】根据图像和定义直接得出结果 【思路点拨】看两圆圆心距和两半径的关系【答案】(图一至图五依次为)外离、外切、相交、内切、内含. 【设计意图】解决数学问题,体会概念与数形结合方法. ●活动② 给定方程,判断位置关系当我们给定两圆的方程,有几种判别两圆位置关系的方法呢?(抢答)首先是代数法:设两个圆的方程组成的方程组为22111222220,0,x y D x E y F x y D x E y F ⎧++++=⎪⎨++++=⎪⎩ 如果方程组有两组不同的实数解⇔两圆相交; 有两组相同的实数解⇔两圆外切或内切;无实数解⇔ 两圆相离或内含. 其次是几何法:设两圆圆心分别为O 1、O 2,半径为r 1、r 2(r 1≠r 2),则O 1O 2>r 1+r 2⇔相离;O 1O 2=r 1+r 2⇔外切;|r 1-r 2|<O 1O 2<r 1+r 2⇔相交;O 1O 2=|r 1-r 2|⇔内切;O 1O 2<|r 1-r 2|⇔内含.看下面的例题判断两圆07622=-++x y x 与027622=-++y y x 的位置. 【知识点】圆与圆位置关系 【数学思想】数形结合、方程思想【解题过程】第一个圆的方程07622=-++x y x 可以改写为()16322=++y x ,第二个圆的方程027622=-++y y x 可以改写为()36322=++y x ,两圆圆心的的距离为()()23030322=-+-半径和为1021=+r r ,半径差为122r r -=,故两圆相交.【思路点拨】看两圆圆心距和两半径的关系 【答案】相交.【设计意图】通过对概念理解和计算方法的运用,加深对圆与圆位置关系的理解. 探究二 两圆相交时的公共弦方程及弦长计算 ●活动① 根据图像判断公切线的条数在直线与圆的位置关系一节中我们探究了在圆内、圆上、圆外一点做圆的切线的问题,发现在圆内没有切线、在圆上有一条切线、在圆外有两条切线. 同理我们可以探究两圆的位置关系,再以此判断两圆的公切线的条数. 那么大家可以总结出来吗?(抢答)总结公切线条数如下:若两圆外离,两圆有四条公切线;相交,两圆有两条公切线;若两圆外切,两圆有三条公切线;若两圆内切,两圆有一条公切线;若两圆内含,两圆没有公切线.●活动② 给定两圆的方程,判断公切线的条数我们想要判定公切线的条数首先需要我们判定两圆位置关系.【例题】判断两圆07622=-++x y x 与027622=-++y y x 的公切线条数. 【知识点】圆与圆位置关系、公切线【数学思想】数形结合【解题过程】2211(3)16,(3,0),4x y o r ++=-=,2221(3)36,(0,3),6x y o r ++=-=122121210o o r r r r =-=<<+=则,则两圆相交,所以有2条公切线 【思路点拨】两圆的位置关系是相交 【答案】2●活动③ 过两圆交点的圆系方程的应用当两圆相交时,两圆有两个交点,这两个交点所在直线就是一条公共弦,那么这条弦的方程该如何计算呢?(举手回答)法一:联立两圆方程求出两圆交点,并用两点式求出直线方程. 法二:两圆相交,则两圆相减的方程为公共弦方程.例1 圆224410x y x y ++--=与圆222130x y x ++-=相交于,P Q 两点,求直线PQ 的方程.【知识点】圆与圆位置关系、公共弦问题 【数学思想】方程思想【解题过程】两圆的公共弦方程就是两式相减的直线方程,22(441)x y x y ++---22(213)0x y x ++-=可得260x y -+=【思路点拨】两圆方程相减得出一条直线 【答案】260x y -+=;【同类训练】求以圆1C :22122130x y x y +---=和圆2C :221216250x y x y +++-=公共弦为直径的圆的方程.【知识点】圆与圆位置关系、公共弦问题 【数学思想】方程思想【解题过程】解法一:22221221301216250x y x y x y x y ⎧+---=⎪⎨+++-=⎪⎩相减得公共弦所在直线方程4320x y +-=,再由224320122130x y x y x y +-=⎧⎨+---=⎩联立得两交点坐标()1,2A -、()5,6B -.∵所求圆以AB 为直径,∴圆心是AB 的中心点()2,2M -,圆的半径为152r AB ==.于是圆的方程()()222225x y -++=. 解法二:(使用圆系方程求解:120o o λ+=)设所求圆2212x y x +--()222131216250y x y x y λ-++++-=()λ参数,得圆心()()1212162,2121λλλλ⎛⎫---- ⎪ ⎪++⎝⎭, ∵圆心在公共弦AB 所在直线上,∴()()121216243202121λλλλ⎛⎫⎛⎫--⨯-+--= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,解得12λ=. 故所求圆的方程2244170x y x y +-+-=即()()222225x y -++=. 【思路点拨】圆心在公共弦上 【答案】2244170x y x y +-+-= 探究三 两圆位置关系中的参数问题 ●活动① 已知两圆位置关系,求参数范围同直线与圆位置关系一样,我们在圆与圆位置关系的题目中同样涉及到参数的求解问题,接下来就根据这一道例题来掌握这一类问题中使用的代数思想. 例2 m y x =+22与圆0118622=--++y x y x 相交,求实数m 的范围. 【知识点】圆与圆位置关系 【数学思想】数形结合、方程不等式【解题过程】圆0118622=--++y x y x 改写为()()364322=-++y x ,则两圆圆心距离为5,使得两圆相交,则6562121+=+<<-=-m r r m r r ,最终解出.()121,1∈m【思路点拨】根据定义即可 【答案】()121,1∈m 【同类训练】已知圆0542:2221=-++-+m y mx y x C ,圆03222222=-+-++m my x y x C :,当m 为何值时,(1)圆C 1与圆C 2外切;(2)圆C 1与圆C 2内含?【知识点】圆与圆位置关系 【数学思想】数形结合、方程不等式【解题过程】对于圆C 1与圆C 2的方程,经配方后()()92221=++-y m x C :;()()41222=-++m y x C :. (1)如果C 1与C 2外切,则有()()232122+=+++m m ,()()252122=+++m m ,01032=-+m m ,解得25=-=m m 或.(2)如果C 1与C 2内含,则有()()232122-<+++m m ,1)2()1(22<+++m m ,0232<++m m ,解得12-<<-m ,∴当25=-=m m 或时,圆C 1与圆C 2外切;当12-<<-m 时,圆C 1与圆C 2内含. 【思路点拨】根据定义建立不等式 【答案】25=-=m m 或;12-<<-m 3.课堂总结 知识梳理(1)两个圆的位置关系一共有五种:外离、外切、相交、内切、内含. (2)给定两圆方程来判断两个圆之间的位置关系可以使用代数方法和几何方法. (3)两圆相交时公共弦所在直线和弦长的计算以及该弦的圆系方程. 重难点归纳(1)圆与圆的位置关系及其判断方法. (2)圆系方程解决问题. (三)课后作业 基础型 自主突破1.两个大小不等的圆,其位置关系有几种?分别是什么? 【知识点】考察几种圆与圆位置关系的定义 【数学思想】归类总结 【解题过程】直接根据定义回答 【思路点拨】根据定义即可【答案】五种,内含、内切、相交、外切、外离2.圆4)2(22=++y x 与圆9)1()2(22=-+-y x 的位置关系为__________.【知识点】两圆方程判断两圆位置 【数学思想】【解题过程】∵两圆的圆心距为17)01()22(22=-++, 又∵231723+<<-,∴两圆相交 【思路点拨】定义 【答案】相交3.已知圆0882221=-+++y x y x C :和 圆0144:222=---+y x y x C ,试判断圆C 1与圆C 2的位置关系.【知识点】已知两圆方程判断两圆位置 【数学思想】【解题过程】圆心距:5335-<<+ 【思路点拨】定义解题 【答案】相交4.若圆222x y m +=与圆2268x y x y ++-110-=相交,求实数m 的取值范围. 【知识点】已知位置关系,求参数范围,不等式 【数学思想】不等式方程思想【解题过程】1122(0,0),;(3,4),6O r m O r =-=,125,O O = 则因为两圆相交,所以656,m m -<<+解得m ∈(11,1)(1,11)--.【思路点拨】使用相交时圆心距离与两圆半径之间的关系来求解 【答案】(11,1)(1,11)--.5.判断两圆2220x y x +-=与2240x y y +-=的位置关系,若相交,请求出其公共弦长 .【知识点】两圆位置关系,弦长 【数学思想】方程思想【解题过程】把两圆改写成222212:(1)1;:(2)4;o x y o x y -+=+-=122112o o -<=<+ ,所以两圆相交,两圆相减可得直线方程为20x y -=,1o d l ===到直线的弦长 【思路点拨】定义解题. 6.两圆2222440,2120x y x y x y x ++-=++-=相交于A ,B 两点,则直线AB 的方程是 .【知识点】两圆相交时求公共弦的方程 【数学思想】方程思想【解题过程】()()0122442222=-++--++x y x y x y x 【思路点拨】两圆方程相减即可 【答案】260x y --=. 能力型 师生共研7.已知01r <<+,则两圆222x y r +=与22(1)(1)2x y -++=的位置关系是 .【知识点】圆与圆的位置关系判别 【数学思想】数形结合【解题过程】两圆心距离为2,与两圆半径和与两圆半径差比较 【思路点拨】定义解题 【答案】相交8.已知圆()22422010x y ax ay a +-++-=与圆224x y +=相切,则a 的值为_________.【知识点】圆与圆的位置关系 【数学思想】方程思想.、分类讨论 【解题过程】圆()22422010x y ax ay a +-++-=改写成222(2)()5(2)x a y a a -+-=-,d =圆心距相切可得22+或者22-解得1a =±.【思路点拨】定义解题,得出方程【答案】1a =±探究型 多维突破9.求过圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点,且圆心在直线:2410l x y +-=上的圆的方程. 【知识点】过两圆交点的圆系问题【数学思想】方程思想【解题过程】圆方程可设为222242(24)0x y x y x y y λ+-+++--=,求出圆心21(,)11λλλ-++,带入直线:2410l x y +-=可得13λ=,再代入所设方程可得圆的方程为22310x y x y +-+-=【思路点拨】圆系【答案】22310x y x y +-+-=10.已知圆2260x y x +-=与圆22244x y y m +-=-(0)m >,则m = 时,两圆相切.【知识点】两圆位置【数学思想】分类讨论思想【解题过程】 两圆改成2211(3)9,(3,0),3x y o r -+==,22222(2),(0,2),x y m o r m +-==d =圆心距,若外切则3,3;3m m m =+=-=-,解得3m =+【思路点拨】两圆相切分为两种:内切和外切3±自助餐1.已知圆221:2610C x y x y ++-+=,圆222:42110C x y x y +-+-=,求两圆的公共弦所在的直线方程及公共弦长.【知识点】相交两圆的公共弦问题【数学思想】数形结合【解题过程】两圆相减【思路点拨】结论解题【答案】0643=+-y x ;245. 2.已知圆0342:22=+-++y x y x C .若圆Q 与圆C 关于直线03=--y x 对称,求圆Q 的方程;【知识点】圆与圆位置关系的综合运用【数学思想】数形结合【解题过程】(1)将圆的方程化成标准式()()22122=-++y x ,圆心()21,-C ,半径2=r ,圆心()21,-C 关于直线03=--y x 的对称点()45-,Q ,圆Q 半径2=r ,∴圆Q 的方程为()()24522=++-y x . 【思路点拨】圆关于直线对称还是圆【答案】()()24522=++-y x ; 3.已知点(5,4)P ,圆C :2268110x y x y +---=,过P 作圆D ,使C 与D 相切,并且使D 的圆心坐标是正整数,求圆D 的标准方程.【知识点】位置关系、圆的方程【数学思想】分类讨论思想【解题过程】点P 在圆C 内部,所以圆D 与圆C 内切,设圆D ()()222x a y b r -+-=,由点在圆上和两圆内切得到133a r =-,14r ≤≤,讨论r后只有2r =和4满足,圆D 方程为()()22744x y -+-=或()()221416x y -+-=.【思路点拨】在圆与圆的位置关系中有内切和外切两种【答案】()()22744x y -+-=或()()221416x y -+-=.4.圆经过直线240x y ++=与圆222410x y x y ++-+=的两个交点,并且面积最小,求此圆的方程.【知识点】两圆位置关系、圆系方程【数学思想】数形结合【解题过程】抓住直线即为直径【思路点拨】通过圆系方程可知,该直径是公共弦 【答案】221364()()555x y ++-= 5.已知圆1C :222210x y kx k +-+-=和圆2C :2222(1)20x y k y k k +-+++=,则当它们圆心之间的距离最短时,两圆的位置关系如何?【知识点】两圆位置关系、最值【数学思想】函数思想【解题过程】圆1C 的方程可以改写为()122=+-y k x ,圆2C 改写为()()1122=+-+k y x 两圆圆心距离最短时1222++k k ,21-=k ,此时22min =d 【思路点拨】两圆距离最短不仅大于0而且小于2.【答案】两圆的位置关系为相交.6.在平面直角坐标系xOy 中,已知圆4)1()3(221=-++y x C :和圆4)5()4(222=-+-y x C :.(1)若直线l 过点)04(,A ,且被圆C 1截得的弦长为32,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.【知识点】直线与圆、圆与圆位置关系的综合运用【数学思想】数形结合、方程思想【解题过程】(1)由于直线4=x 与圆C 1不相交,所以直线l 的斜率存在 设直线l 的方程为)4(-=x k y ,圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为32,所以1)3(222=-=d . 由点到直线的距离公式,得21)43(1k k d +---=,从而0)724(=+k k ,即0=k 或247-=k , 所以直线l 的方程为0=y 或028247=-+y x .(2)设点),(b a P 满足条件,不妨设直线l 1的方程为0),(≠-=-k a x k b y ,则直线l 2的方程为)(1a x kb y --=-. 因为圆C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即2211)4(151)3(1kb a k k b a k +--+=+----,整理得bk a k b ak k --+=-++4531, 从而bk a k b ak k --+=-++4531或bk a k b ak k ++--=-++4531, 即3)2(+-=-+a b k b a 或5)8(-+=+-b a k b a ,因为k 的取值有无穷多个,所以⎩⎨⎧=+-=-+0302a b b a 或⎩⎨⎧=-+=+-0508b a b a , 解得5212a b ⎧=⎪⎪⎨⎪=-⎪⎩或⎪⎩⎪⎨⎧=-=21323b a 这样点P 只可能是点⎪⎭⎫ ⎝⎛-21,251P 或点⎪⎭⎫ ⎝⎛-213,232P . 经检验点P 1和P 2满足题目条件【思路点拨】条件直译【答案】(1)0282470=-+=y x y 或;(2)⎪⎭⎫ ⎝⎛-21,251P 或点⎪⎭⎫ ⎝⎛-213,232P .。

人教A版 必修二 第4章 2 42 圆与圆的位置关系 公开课一等奖课件

人教A版 必修二 第4章 2 42 圆与圆的位置关系  公开课一等奖课件
2 2 x +y -6x-6=0 得 2 2 x +y -4y-6=0
① , ② ③,
3 ①-②并整理得,y=2x
将③代入①式整理得 13x2-24x-24=0.
高中数学人教版必修2课件
∵Δ=(-24)2-4×13×(-24)>0,故此方程有两个不等实 根, ∴圆 C1 与圆 C2 有两个不同的交点,
思维突破:可用方程思想和几何法两种方法,几何法更为
简便:先求出公共弦所在直线方程,再通过直角三角形求解. 解法一:由题意,列出方程组
2 2 x +y -4=0 2 2 x +y -4x+4y-12=0
,消去二次项,得 y=x+2.
把 y=x+2 代入 x2+y2-4=0, 得 x2+2x=0,重点
圆与圆的位置关系及判定方法
圆 C1:(x-a1)2+(y-b1)2=R2, 圆 C2:(x-a2)2+(y-b2)2=r2(R>r). 两圆的位置关系如下表:
两圆的位 图示 置关系 几何法 代数法
相离
|C1C2|>R+r
Δ<0
高中数学人教版必修2课件
续表
两圆的位
置关系
图示
几何法
代数法
外切
|C1C2|=R+r
Δ=0
内切
|C1C2|=R-r
Δ=0
相交
R-r<|C1C2|<R+r
Δ>0
内含
|C1C2|<R-r
Δ<0
高中数学人教版必修2课件
难点
两圆的公切线
和两个圆都相切的直线称为两圆的公切线,公切线条数如 下表:
两圆位 相离 置关系 公切线 外切 内切 相交 内含
4条
∴圆 C1 与圆 C2 相交.

新课标高中数学人教A版必修二全册课件4.2.2圆与圆的位置关系

新课标高中数学人教A版必修二全册课件4.2.2圆与圆的位置关系
设两圆的圆心距为d,两圆半径 分别为R、r. 当d>R+r时,两圆 , 当d=R+r时,两圆 , 当|R-r|<d<R+r时,两圆 , 当d=|R-r|时,两圆 , 当d<|R-r|时,两圆 .
第四页,编辑于星期日:十三点 十六分。
讲授新课
例1. 已知圆C1: x2+y2+2x+8y-8=0, 圆C2: x2+y2-4x-4y-2=0,试判断 圆C1与圆C2的位置关系.
第五页,编辑于星期日:十三点 十六分。
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
第六页,编辑于星期日:十三点 十六分。
探讨: 问题如何根据圆的方程,判断
两圆之间的位置关系?
方法:通常是通过解方程或不等式
等方法加以解决.
第七页,编辑于星期日:十三点 十六分。
例2.圆C1的方程是: x2+y2-2mx+4y+m2 -5=0, 圆C2的方程是: x2+y2+2x-2my+m2 -3=0,
4.2.2圆与圆 的位置关系
第一页,编辑于星期日:十三点 十六分。
复习引入
1. 两圆的位置关系有哪几种?
第二页,编辑于星期日:十三点 十六分。
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
第三页,编辑于星期日:十三点 十六分。
复习引入
2. 如何利用半径与圆心距之间的关系 来判断两圆的位置关系?
第十三页,编辑于星期日:十三点 十六分。
2. 已知圆C与圆x2 y2 2x 0相外切, 并 且与直线x 3 y 0相切于点Q(3, 3), 求圆C的方程 .
3. 求两圆x2+y2=1和(x-3)2+y2=4的外 公切线方程.
第十二页,编辑于星期日:十三点 .129到P.130; 2. 《习案》二十八.

高一数学人教版A版必修二课件:4.2.2 圆与圆的位置关系

高一数学人教版A版必修二课件:4.2.2 圆与圆的位置关系

思考2 已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+ E2y+F2=0,如何通过代数的方法判断两圆的位置关系? 答案 联立两圆的方程,消去y后得到一个关于x的一元二次方程, 当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切, 当Δ<0时,两圆外离或内含.
答案
解析答案
1 23 4
2.圆C1:x2+y2=1与圆C2:x2+(y-3)2=1的内公切线有且仅有( B )
A.1条
B.2条
C.3条
D.4条
解析 圆心距为3,半径之和为2,故两圆外离,内公切线条数为2.
解析答案
1 23 4
3.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为( D )
解析 由题意知:直线AB与直线x-y+c=0垂直, ∴kAB×1=-1, 3--1
1-m =-1,得 m=5, AB的中点坐标为(3,1), AB的中点在直线x-y+c=0上. ∴3-1+c=0,∴c=-2, ∴m+c=5-2=3.
解析答案
(2)求圆C1:x2+y2=1与圆C2:x2+y2-2x-2y+1=0的公共弦所在直线
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑模型
2
内脑-思考内化
思 维 导 图 &超 级 记 忆 法 &费 曼 学 习 法
1
外脑-体系优化
知 识 体 系 &笔 记 体 系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
返回
题型探究
重点难点 个个击破

圆与圆的位置关系(必修2)

圆与圆的位置关系(必修2)

(2)C1 : x2 y2 9 C2 : (x 2)2 y2 1
解:C1(0, 0) r1 3
C2 (2, 01 r2 内切
(3) C1:x2 y2 2x 8y 8 0 C2:x2 y2 4x 4 y 1 0
相交
几何方法
两圆心坐标及半径 (配方法)
思考
C1 : x2 y2 2x 8y 8 0 C2 : x2 y2 4x 4 y 2 0
把C1与C2两式相减,得到的方程表示什么图形? 这条直线与两圆的公共弦所在直线又有什么关系?
我们是否可以用这种方法求任意两个圆的公共弦 所在的直线呢? 结论:只能在已知两圆位置关系是相交、相切 时才可以用来求公共弦所在直线,和过公共点 的切线方程。
直线与圆的三种位置关系
d
d
d
公共点个数 判别式
d与r的关系
相交
相切
相离
2个
1个
方程有两个 方程只有一 解 △>0 个解 △=0
dr d r
0个
方程无解 △<0
dr
小结:判断直线和圆的位置关系
方法一
方法二
求圆心坐标及半径r (配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2
❖ 解:联立两个方程组得
x2 y2 2x 8 y 8 0 ①
x2
y2
4x
4y
2
0

①-②得
x 2y 1 0 ③
把上式代入①
x2 2x 3 0 ④
(2)2 41 (3) 16
得 x1=-1,x2=3 把x1,x2代入方程③得到 y1=1,y2=-1
所以圆C1与圆C2有两个不同的交点A(-1,1),B(3,-1) 最后得到公共弦所在直线:x+2y-1=0,

【同步课件】2017-2018学年高一数学人教A版必修2课件:4.2.2 圆与圆的位置关系

【同步课件】2017-2018学年高一数学人教A版必修2课件:4.2.2 圆与圆的位置关系
新课标导学
数 学
必修② ·人教A版
第四章
圆的方程
4.2 直线、圆的位置关系
4.2.2 圆与圆的位置关系
1 2 3
自主预习学案
互动探究学案
课时作业学案
第四章 圆的方程
自主预习学案
数 学 必 修 ② · 人 教 A 版
返回导航
第四章 圆的方程
观察下面这些生活中常见的图形,感受一下圆与圆之间有哪些位置关系?
数 学 必 修 ② · 人 教 A 版
内切 ; d=|r1-r2|⇔两圆_______
内含 ,d=0 时为同心圆. 0<d<|r1-r2|⇔两圆_______
返回导航
第四章 圆的方程
2.两圆的公切线条数: 一条 公切线;当两圆外切时有 _______ 三条 公切线;相交时 当两圆内切时有 _______ 两条 公切线;相离时有_______ 四条 公切线;内含时____ 无 公切线. 有_______
a=4 可得 b=0 a=0 或 b=-4
数 学 必 修 ② · 人 教 A 版
3
.
∴⊙C 的方程为(x-4)2+y2=4 或 x2+(y+4 3)2=36.
返回导航
第四章 圆的方程
互动探究学案
数 学 必 修 ② · 人 教 A 版
返回导航
第四章 圆的方程
命题方向1 ⇨两圆位置关系的判断
[ 解析]
圆 x2+y2=m 的半径 r1= m,
导学号 09024991
圆 x2+y2+6x-8y-11=0 的圆心坐标为(-3,4),半径 r2=6. ∵两圆相内切,两圆心距离 d=5, ∴6- m=5,或 m-6=5,
数 学 必 修 ② · 人 教 A 版

人教版数学必修二4.2.2圆与圆的位置关系


课堂小结
1.本节课你收获了什么? (1)知识方面:
判断圆与圆的位置关系的两种方法,以及这两种方法的优劣。 求圆与圆相交弦所在直线方程的方法。 求圆与圆相交弦的弦长的方法。
(2)数学思想方面:
数形结合的思想,等价转化的思想,类比思想。
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
|r1-r2|< c1c2 < |r1+r2| c1c2 = |r1-r2| c1c2 < |r1-r2|
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
例题讲解
例1.已知圆C1 : x2+y2+2x+8y-8=0和圆C2 : x2+y2-4x-4y-2=0,试判断圆C1与圆C2的 位置关系.
普通高中课程准实验教科书
数 学2 必修
A 人民教育出版社 版
4.2.2 圆与圆的位置关系
复习回顾
1. 平面中直线和圆的位置关系的判断有哪两种方法?
(1)几何法:
r o
d l
r o
dl
r
od
l
(1)直线l 和⊙O相离 d>r
(2)直线l 和⊙O相切
d=r
(3)直线l 和⊙O相交
d<r
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
复习回顾 构建新知 例题讲授 总结反思 变式探究 跟踪训练 课堂小结 拓展训练
例题讲解
例1.已知圆C1 : x2+y2+2x+8y-8=0和圆C2 : x2+y2-4x-4y-2=0,试判断圆C1与圆C2的 位置关系.

人教A高中数学必修二课时分层训练:第四章 圆与方程 42 422 423 含解析

第四章4.2直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用课时分层训练‖层级一‖……………………|学业水平达标|1.已知0<r<2+1,则两圆x2+y2=r2与(x-1)2+(y+1)2=2的位置关系是()A.外切B.相交C.外离D.内含解析:选B设圆(x-1)2+(y+1)2=2的圆心为O′,则O′(1,-1).圆x2+y2=r2的圆心O(0,0),圆心距|OO′|=12+(-1)2=2.显然有|r-2|<2<2+r.所以两圆相交.2.圆C1:x2+y2=1与圆C2:x2+(y-3)2=1的内公切线有且仅有() A.1条B.2条C.3条D.4条解析:选B因为两圆的圆心距为3,半径之和为2,故两圆外离,所以内公切线的条数为2条.3.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则实数m等于()A.21 B.19C.9 D.-11解析:选C圆C2的标准方程为(x-3)2+(y-4)2=25-m.又圆C1:x2+y2=1,∴|C1C2|=5.又∵两圆外切,∴5=1+25-m,解得m=9.4.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车蓬蓬顶距离地面的高度不得超过( )A .1.4米B .3.0米C .3.6米D .4.5米解析:选C 可画出示意图,如图所示,通过勾股定理解得OD =OC 2-CD 2=3.6(米),故选C.5.过点P (2,3)向圆C :x 2+y 2=1作两条切线P A ,PB ,则弦AB 所在的直线方程为( )A .2x -3y -1=0B .2x +3y -1=0C .3x +2y -1=0D .3x -2y -1=0解析:选B 弦AB 可以看作是以PC 为直径的圆与圆x 2+y 2=1的交线,而以PC 为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134.根据两圆的公共弦的求法,可得弦AB 所在的直线方程为:(x -1)2+⎝ ⎛⎭⎪⎫y -322-134-(x 2+y 2-1)=0,整理可得2x+3y -1=0,故选B.6.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则实数a = .解析:由已知,两个圆的方程作差可以得到相应弦的直线方程为y =1a ,利用圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1=22-(3)2=1,解得a =1.答案:17.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为 .解析:AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2,又C 1(3,0),C 2(0,3),C 1C 2的方程为x +y -3=0,即线段AB 的中垂线方程为x +y -3=0.答案:x +y -3=08.点P 在圆O :x 2+y 2=1上运动,点Q 在圆C :(x -3)2+y 2=1上运动,则|PQ |的最小值为 .解析:如图所示.设连心线OC 与圆O 交于点P ′,与圆C 交于点Q ′,圆O 的半径为r 1,圆C 的半径为r 2,当点P 在P ′处,点Q 在Q ′处时|PQ |最小,最小值为|P ′Q ′|=|OC |-r 1-r 2=1.答案:19.已知圆C 1:x 2+y 2+4x +1=0和圆C 2:x 2+y 2+2x +2y +1=0,求以圆C 1与圆C 2的公共弦为直径的圆的方程.解:由两圆的方程相减,得公共弦所在直线的方程为x -y =0. ∵圆C 1:(x +2)2+y 2=3,圆C 2:(x +1)2+(y +1)2=1, 圆心C 1(-2,0),C 2(-1,-1), ∴两圆连心线所在直线的方程为y -0-1-0=x +2-1+2,即x +y +2=0.由⎩⎨⎧x -y =0,x +y +2=0,得所求圆的圆心为(-1,-1). 又圆心C 1(-2,0)到公共弦所在直线x -y =0的距离d =|-2-0|2=2, ∴所求圆的半径r =(3)2-(2)2=1, ∴所求圆的方程为(x +1)2+(y +1)2=1.10.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.解:以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1.因为点B (8,0),C (0,8),所以直线BC 的方程为x 8+y8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆的切点处时,DE 为最短距离.此时DE 长的最小值为|0+0-8|2-1=(42-1)km.‖层级二‖………………|应试能力达标|1.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 利用圆的几何性质,将题目转化为求两圆相交的公共弦所在直线的方程.设点P (3,1),圆心C (1,0),又切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆圆心的坐标为⎝ ⎛⎭⎪⎫2,12,半径长为12(3-1)2+(1-0)2=52,∴此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54 ①.又圆C :(x -1)2+y 2=1 ②,①-②得2x +y -3=0,此即为直线AB 的方程.2.若圆x 2+y 2=r 2与圆x 2+y 2+2x -4y +4=0有公共点,则r 满足的条件是( )A .r <5+1B .r >5+1C .|r -5|<1D .|r -5|≤1解析:选D 由x 2+y 2+2x -4y +4=0,得(x +1)2+(y -2)2=1,圆心距(-1)2+22= 5.∵两圆有公共点,∴|r -1|≤5≤r +1,∴5-1≤r ≤5+1,即-1≤r -5≤1,∴|r -5|≤1.3.圆(x +2)2+y 2=5关于直线x -y +1=0对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x -1)2+(y -1)2=5D .(x +1)2+(y +1)2=5解析:选D 由圆(x +2)2+y 2=5,可知其圆心为(-2,0),半径为 5.设点(-2,0)关于直线x -y +1=0对称的点为(x ,y ),则⎩⎪⎨⎪⎧y -0x +2=-1,x -22-y +02+1=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,∴所求圆的圆心为(-1,-1).又所求圆的半径为5,∴圆(x +2)2+y 2=5关于直线x -y +1=0对称的圆的方程为(x +1)2+(y +1)2=5.4.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是( )A .5B .1C .35-5D .35+5解析:选C 圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2),半径长r 1=3;圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1),半径长r 2=2,两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.5.若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长为 .解析:连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,|OA |=5,|O 1A |=25, ∴|OO 1|=5, ∴|AC |=5×255=2, ∴|AB |=4. 答案:46.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是 .解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0,则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.答案:x 2+y 2-3x +y -1=07.台风中心从A 地以每小时20 km 的速度向东北方向移动,离台风中心30 km 内的地区为危险地区,城市B 在A 地正东40 km 处,B 城市处于危险区内的时间为 .解析:如图所示,以A 为原点,正东和正北方向为x 轴、y 轴正方向,则B (40,0).台风中心在直线y =x 上移动.则问题转化成以点B 为圆心,30 km 为半径的圆与直线y =x 相交的弦长就是B 处在危险区内台风中心走过的距离.则圆B 的方程为(x -40)2+y 2=302,直线y =x 被圆B 截得弦长为CD =2·302-⎝ ⎛⎭⎪⎫4022=20(km).故B 城市处于危险区的时间为t =2020=1(h). 答案:1 h8.已知圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1). (1)若圆O 1与圆O 2外切,求圆O 2的方程;(2)若圆O 1与圆O 2交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解:(1)设圆O 1、圆O 2的半径分别为r 1,r 2, ∵两圆外切,∴|O 1O 2|=r 1+r 2,∴r 2=|O 1O 2|-r 1=(0-2)2+(-1-1)2-2 =2(2-1),∴圆O 2的方程是(x -2)2+(y -1)2=12-8 2.(2)由题意,设圆O 2的方程为(x -2)2+(y -1)2=r 23,圆O 1,O 2的方程相减,即得两圆公共弦AB 所在直线的方程,为4x +4y +r 23-8=0.∴圆心O 1(0,-1)到直线AB 的距离为|0-4+r 23-8|42+42=4-⎝⎛⎭⎪⎫2222=2,解得r 23=4或20.∴圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。

高中数学 4.2.2圆与圆的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题

【成才之路】2015-2016学年高中数学圆与圆的位置关系练习新人教A版必修2基础巩固一、选择题1.圆C1:x2+y2+4x-4y+7=0和圆C2:x2+y2-4x-10y+13=0的公切线有( ) A.1条B.3条C.4条D.以上均错[答案] B[分析] 先判断出两圆的位置关系,然后根据位置关系确定公切线条数.[解析] ∵C1(-2,2),r1=1,C2(2,5),r2=4,∴|C1C2|=5=r1+r2,∴两圆相外切,因此公切线有3条,因此选B.规律总结:如何判断两圆公切线的条数首先判断两圆的位置关系,然后判断公切线的条数:(1)两圆相离,有四条公切线;(2)两圆外切,有三条公切线,其中一条是内公切线,两条是外公切线;(3)两圆相交,有两条外公切线,没有内公切线;(4)两圆内切,有一条公切线;(5)两圆内含,没有公切线.2.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是( )A.(x-3)2+(y-5)2=25B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25D.(x-3)2+(y+2)2=25[答案] B[解析] 设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x -5)2+(y+1)2=25.3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是( )A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=0[答案] B[解析] 利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.4.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=( )A.5 B.4C.3 D.2 2[答案] C[解析] 设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.5.已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线x-y+c=0上,则m +c的值是( )A.-1 B.2C.3 D.0[答案] C[解析] 两点A,B关于直线x-y+c=0对称,k AB=-4m-1=-1.∴m=5,线段AB的中点(3,1)在直线x-y+c=0上,∴c=-2,∴m+c=3.6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为( ) A.(x-6)2+(y-4)2=6B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36D.(x-6)2+(y±4)2=36[答案] D[解析] 半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.二、填空题7.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是_________.[答案] 外切[解析] ∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d =|C 1C 2|=a 2+b 2=4=2, ∴d =r 1+r 2.∴两圆外切.8.与直线x +y -2=0和圆x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是_________.[答案] (x -2)2+(y -2)2=2[解析] 已知圆的标准方程为(x -6)2+(y -6)2=18,则过圆心(6,6)且与直线x +y -2=0垂直的方程为x -y =0.方程x -y =0分别与直线x +y -2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x -2)2+(y -2)2=2.三、解答题9.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 方法1:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0,联立得两圆交点坐标(-1,2),(5,-6). ∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为 125+12+-6-22=5.∴圆C 的方程为(x -2)2+(y +2)2=25.方法2:由方法1可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-1221+λ,-16λ-221+λ).∵圆心C 在公共弦所在直线上, ∴4·-12λ-1221+λ+3·-16λ-221+λ-2=0,解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0. 10.(2015·某某天一中学模拟)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r ;若不存在,请说明理由.[解析] (1)依题意可设动圆C 的方程为(x -a )2+(y -b )2=25,其中(a ,b )满足a -b +10=0.又因为动圆C 过点(-5,0), 故(-5-a )2+(0-b )2=25.解方程组⎩⎪⎨⎪⎧a -b +10=0,-5-a 2+0-b2=25,得⎩⎪⎨⎪⎧a =-10,b =0或⎩⎪⎨⎪⎧a =-5,b =5,故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25. (2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=5 2.当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相切的圆;当r 满足r +5=d ,即r =52-5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切;当r 满足r +5>d ,即r >52-5时,与圆O :x 2+y 2=r 2相外切的圆有两个. 综上,当r =52-5时,动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个.能力提升一、选择题1.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[答案] D[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.2.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( ) A .4x -y -4=0 B .4x +y -4=0 C .4x +y +4=0 D .4x -y +4=0[答案] A[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.3.若集合A ={(x ,y )|x 2+y 2≤16|,B ={(x ,y )|x 2+(y -2)2≤a -1},且A ∩B =B ,则a 的取值X 围是( )A .a ≤1B .a ≥5C .1≤a ≤5D .a ≤5[答案] D[解析] A ∩B =B 等价于B ⊆A .当a >1时,集合A 和B 分别代表圆x 2+y 2=16和圆x2+(y -2)2=a -1上及内部的点,容易得出当B 对应的圆的半径长小于等于2时符合题意.由0<a -1≤4,得1<a ≤5;当a =1时,集合B 中只有一个元素(0,2),满足B ⊆A ;当a <1时,集合B 为空集,也满足B ⊆A .综上可知,当a ≤5时符合题意.4.(2015·某某某某模拟)若圆(x -a )2+(y -a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值X 围是( )A .⎝⎛⎭⎪⎫22,322B .⎝ ⎛⎭⎪⎫-322,-22C .⎝ ⎛⎭⎪⎫-322,-22∪⎝ ⎛⎭⎪⎫22,322D .⎝ ⎛⎭⎪⎫-22,22[答案] C[解析] 圆(x -a )2+(y -a )2=4的圆心C (a ,a ),半径r =2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R =1,则这两个圆相交,圆心距d =a 2+a 2=2|a |,则|r -R |<d <r +R ,则1<2|a |<3,所以22<|a |<322, 所以-322<a <-22或22<a <322.二、填空题5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =_________. [答案] 1[解析] 两个圆的方程作差,可以得到公共弦的直线方程为y =1a,圆心(0,0)到直线y=1a 的距离d =|1a |,于是由(232)2+|1a|2=22,解得a =1. 6.(2015·某某某某月考)已知两点M (1,0),N (-3,0)到直线的距离分别为1和3,则满足条件的直线的条数是_________.[答案] 3[解析] ∵已知M (1,0),N (-3,0),∴|MN |=4,分别以M ,N 为圆心,1,3为半径作两个圆,则两圆外切,故有三条公切线.即符合条件的直线有3条.三、解答题7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:考虑到圆B 的圆心在直线l 上移动,可先写出动圆B 的方程,再设法建立圆B 的半径r 的目标函数.设圆B 的半径为r .∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2, 即x 2+y 2-2tx -4ty +5t 2-r 2=0.① ∵圆A 的方程是x 2+y 2+2x +2y -2=0,② ∴②-①,得两圆的公共弦方程为 (2+2t )x +(2+4t )y -5t 2+r 2-2=0.③ ∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③并整理,得r 2=5t 2+6t +6=5(t +35)2+215≥215.∴当t =-35时,r min =215. 此时,圆B 的方程是 (x +35)2+(y +65)2=215.解法二:也可以从图形的几何性质来考虑,用综合法来解. 如图,设圆A ,圆B 的圆心分别为A ,B ,则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M ,N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M ,N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4.欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得直线AB 方程为y +1=-12(x +1),即y =-12x -32,与直线l :y =2x 联立可求得B (-35,-65),r min =215. ∴圆B 的方程是 (x +35)2+(y +65)2=215.8.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.[解析] (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心C 1(-3,1)到直线l 的距离为d =|1-k -3-4|1+k2, 因为直线l 被圆C 1截得的弦长为23, ∴4=(3)2+d 2,∴k (24k +7)=0, 即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ),因为C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k -3-a -b |1+k2=⎪⎪⎪⎪⎪⎪5+1k 4-a -b 1+1k 2整理得:|1+3k +ak -b |=|5k +4-a -bk |,∴1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5. 因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0a +b -5=0,解得⎩⎪⎨⎪⎧ a =52b =-12或⎩⎪⎨⎪⎧a =-32b =132这样点P 只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎫-32,132.经检验点P 1和P 2满足题目条件.。

【高中数学必修二】4.2.2圆与圆的位置关系.


Rr
O1
O2
外离
O1O2>R+r
Rr
O1
O2
外切
O1O2=R+r
Rr O1 O2
相交
R-r<O1O2<R+r
R
O1 O2r
内切
O1O2=R-r
R
O1 O2r
内含
0≤O1O2<R-r
R
O
1O
r
2
同心圆 (一种特殊的内含)
O1O2=0
判断两圆位置关系 外离 d>R+r
Rr
O1
O2
外切 d=R+r 内切 d=R-r
外切
O1O2=R+r
R
O1 O2r
内含
Rr O1 O2
相交
R-r<O1O2<R+r
从图形上看圆与圆的五种位置关系:
Rr
O1
O2
外离
O1O2>R+r
Rr
O1
O2
外切
O1O2=R+r
R
O1 O2r
内切
O1O2=R-r
R
O1 O2r
内含
0≤O1O2<R-r
Rr O1 O2
相交
R-r<O1O2<R+r
从图形上看圆与圆的五种位置关系:
Rr
O1
O2
R
O1 O2r
内含 0≤d<R-r
R
O1 O2r
相交 R-r<d<R+r
Rr O1 O2
判断两圆位置关系 外离 d>R+r
几何方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C2 : x + y − 4 x − 4 y − 2 = 0
2 2
判断C1和C2的位置关系 判断C
• 解:联立两个方程组得
x2 + y2 + 2x + 8 y − 8 = 0 ① 2 2 x + y − 4x − 4 y − 2 = 0 ②
联立方程组 消去二次项 消元得一元 二次方程 用∆判断两 判断两 圆的位置关 系
(1) 当 | AB |= r1 + r2 即 (a + 1)2 + (a + 2)2 = 3 + 2
⇒a = −5 2时两 外 . 或 , 圆 切
当 | AB |=| r1 − r2 | 即 (a + 1)2 + (a + 2)2 = 3 − 2
⇒a = −2 或−1 两 内 . 时 圆 切
(2) 当 | r1 − r2 |<| AB |< r1 + r2 即1 < (a + 1)2 + (a + 2)2 < 5
(1)当∆=0时,有一个交点,两圆位置关系如何? ) 时 有一个交点, 内切或外切 (2)当∆<0时,没有交点,两圆位置关系如何? ) 时 没有交点, 内含或相离 几何方法直观, 求出交点; 几何方法直观,但不能 求出交点; 代数方法能求出交点, 代数方法能求出交点,但∆=0, ∆<0时,不能判 , 时 圆的位置关系。 圆的位置关系。
2 2 2 2 1 2:
的公切线有且仅有( B )
A. 1条 条
2 1
B.2条 条
2
C.3条 条
2 2
D.4条 条
2.两个圆C : x + y − 4x + 2y + 4 = 0与C : x + y + 2x − 6y − 26 = 0的 位置关系是
外切
2 2
3.求圆心在直线x − y − 4 = 0上,且经过两圆x +y -4x-3=0 和x +y -4y-3=0的交点的圆的方程
1条 条 0条 条
C 1
••
C2
判断两圆位置关系
几何方法
两圆心坐标及半径 配方法) (配方法)
外离 外切 相交 内切 内含
d>R+r d=R+r R-r<d<R+r d=R-r d<R-r
圆心距d 圆心距 (两点间距离公式) 两点间距离公式)
比较d和 , 的大 比较 和R,r的大 小,下结论
结合图形记忆
将 y = x + 4 代入第一方程得:
x 2 + 7 x + 6 = 0 ⇒ x = 1或 x = 6
∴ 两圆交点坐标为 (1, 5 ), ( 6 ,10 )
设所求圆方程为 x 2 + y 2 + Dx + Ey + F = 0
(1) D + 5 E + F + 26 = 0 ∴ 6 D + 10 E + F + 136 = 0 ( 2 ) D E 又圆心坐标(− ,− )在直线x − y − 4 = 0上 2 2
∴−
D E + − 4 = 0(3) 2 2
x 2 + y 2 − x + 7 y − 32 = 0
小结: 小结:判断两圆位置关系
几何方法
两圆心坐标及半径 配方法) (配方法)
代数方法
(x −a )2 +(y −b )2 = r2 1 1 1 (x −a2)2 +(y −b2)2 = r 2 2
⇒−5< a < −2 或−1< a < 2时 圆 交 两 相 .
(3) 当 | AB |> r1 + r2 即 (a + 1)2 + (a + 2)2 > 5
⇒a < −5或 > 2 两 相 a 时 圆 离
例题讲解 的位置关系,如果相交, 例1.判断 1和C2的位置关系,如果相交,求出 1.判断C 判断 相交弦的方程。 相交弦的方程。 C1 : x 2 + y 2 + 2 x + 8 y − 8 = 0
例题讲解 经 两 x 例2 求 过 圆
2
+ y +6x −4 = 0ห้องสมุดไป่ตู้ + y +6y −28 = 0 x
2 2 2
的 点 并 圆 在 线 − y −4 = 0上 圆 方 。 交 , 且 心 直 x 的 的 程
x2 + y2 + 6x − 4 = 0 相减得:x − y + 4 = 0 解: 2 x + y 2 + 6 y − 28 = 0
2 2

2 2 2 2

2 2
已知圆C1:x + y − 2ax + 4 y + a − 5 = 0 圆C2:x + y + 2 x − 2ay + a − 3 = 0
(1) 当a为何值时,两圆外切? (2) 当a为何值时,两圆内含? (3) 当a为何值时,两圆相交?
练 习 .a 何 值 时 , 两 圆 :C1:x2+y2-2ax+4y+a2-5=0,C2 : x2+y2+2x,C 2ay+a2-3=0,(1) 相切;(2)相交;(3)相离 . 相切; 相交; , C1 : ( x − a ) 2 + ( y + 2) 2 = 9,圆心A(a,−2, ) , 半径r1 = 3 解: 由已知得 C2 : ( x + 1) 2 + ( y − a) 2 = 4,圆心B(−1, a) , 半径r2 = 2
①- ②得 x + 2 y −1 = 0 ③ 把上式代入① 把上式代入①
x − 2x − 3 = 0 ④ ∆ = (−2) 2 − 4 ×1× (−3) = 16 > 0
2
所以圆C 与圆C 所以圆 1与圆 2相交
反思
判断两圆位置关系
几何方法 代数方法
各有何优劣,如何选用? 各有何优劣,如何选用?

• 判断圆C1和C2的位置关系 判断圆C

C2 : ( x − 4) + ( y − 2) = 9
2 2
(1)C1 : ( x + 2) + ( y − 2) = 49
2 2
解:C1 (−2, 2)
2
r1 = 7
2
C2 (4, 2)
=6
r2 = 3
d = (−2 − 4) + ( 2 − 2 )
消去y(或x) 消去y
圆心距d 圆心距 (两点间距离公式) 两点间距离公式)
px2 +qx +r = 0
比较d和 比较 和r1,r2的 大小, 大小,下结论
交 ∆> 0: 相 切 外 ∆= 0:内 或 切 ∆< 0: 相 或 含 离 内
反馈演练: 反馈演练:
1.两个圆C : x + y + 2x + 2y − 2 = 0与C : x + y − 4x − 2y +1= 0
4.2.2 圆与圆的位置关系
直线与圆的位置关系 1、直线和圆相离 2、直线和圆相切

判定方法
C2
d >r
∆<0

C2
d =r
d <r
∆=0 ∆>0
3、直线和圆相交

C2
直线和圆的位置关系
几何方法
类比 猜想
代数方法
圆和圆的位置关系
几何方法
代数方法
圆与圆的位置关系 : (d为两圆心间距离,即圆心距)
2 2
r1 − r2 < d < r1 + r2
2 2
相交
(2)C1 : x + y = 9 C2 : ( x − 2) + y = 1
解:C1 (0, 0)
d = 22 + 02
r1 = 3
=2
C2 (2, 0)
d = r1 − r2
r2 = 1
内切
(3)C1 : x 2 + y 2 + 2 x + 8 y − 8 = 0 C2 : x + y − 4 x − 4 y − 2 = 0
C1 : x + y + 2 x + 8 y − 8 = 0
2 2
C2 : x + y − 4 x − 4 y − 2 = 0
2 2
1、求经过两圆C1和C2的交点的直线方程 求经过两圆
结论:求两圆的公共弦所在的直线方程,只需 结论:求两圆的公共弦所在的直线方程, 把两个圆的方程相减即可
2、求两圆C1和C2的公共弦长 求两圆 的交点, 3、求过两圆C1和C2的交点,且圆心在直 求过两圆 线2x+2y+1=0上的圆的方程 上的圆的方程
1、圆和圆相离 2、圆和圆外切 3、圆和圆相交 4、圆和圆内切 5、圆和圆内含
C 1


C2
d > r1 + r2
公切线 条数 4条 条 3条 条
C
• 1

C2
d = r +r2 1
| r −r2 |<d <r +r2 1 1
C
• 1

2条 条
C2
C 1


C2
| r1 −r2 |= d
| r1 − r2 |> d
相关文档
最新文档