高一数学必修三《统计》知识点+练习+答案

合集下载

苏教版高中数学必修3第2章 统计 全章复习讲义(含答案解析)

苏教版高中数学必修3第2章 统计 全章复习讲义(含答案解析)

【知识梳理】知识点一:抽样方法从调查的对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标做出推断,这就是抽样调查.调查对象的全体称为总体,被抽取的一部分称为样本.1.简单的随机抽样简单随机抽样的概念:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.①用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时,任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②简单随机抽样的特点是:不放回抽样,逐个地进行抽取,各个个体被抽到的概率相等;③简单随机抽样方法体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.简单抽样常用方法:①抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.②随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.【解析】由题意可得1011910,5x y ++++=22222(10)(10)(1010)(1110)(910)25x y -+-+-+-+-=,解得12,8.||4x y x y ==-=,故选D .例3. 对某电子元件进行寿命追踪调查,情况如下:寿命(h ) 100~200 200~300300~400400~500500~600个 数2030804030(1)列出频率分布表;(2)画出频率分布直方图和累积频率分布图; (3)估计电子元件寿命在100~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.【思路点拨】 通过本题可掌握总体分布估计的各种方法和步骤. 【解析】(1)频率分布表如下:寿命(h ) 频 数 频 率 累积频率 100~200 20 0.10 0.10 200~300 30 0.15 0.25 300~400 80 0.40 0.65 400~500 40 0.20 0.85 500~600 30 0.15 1 合 计2001(2)频率分布直方图如下:(3)由累积频率分布图可以看出,寿命在100~400 h内的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100~400 h内的概率为0.65.(4)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35.【总结升华】画频率分布条形图、直方图时要注意纵、横坐标轴的意义.举一反三:【变式1】为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是()(A)20 (B)30 (C)40 (D)50【答案】C;【解析】根据运算的算式:体重在〔56.5,64.5〕学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在〔56.5,64.5〕学生的人数为0.4×100=40.【变式2】某班学生在一次数学考试中成绩分布如下表:分数段[0,80)[80,90)[90,100)人数 2 5 6)分数段[100,110)[110,120 [120,130)人数8 12 6分数段[130,140)[140,150)人数 4 2那么分数在[100,110)中的频率和分数不满110分的累积频率分别是_______、_______(精确到0.01). 【答案】0.18 0.47【解析】由频率计算方法知:总人数=45.分数在[100,110)中的频率为458=0.178≈0.18. 分数不满110分的累积频率为458652+++=4521≈0.47【变式3】为检测某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品为13件,次品4件 (1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计商品为二级品或三级品的概率约是多少? 【解析】(1)样本的频率分布表为产品频数频率 一级品 5 0.17 二级品 8 0.27 三级品 13 0.43 次品40.13(2)样本频率分布的条形图为:(3)此种产品为二级品或三级品的概率约为0.27+0.43=0.7.例4.甲、乙两小组各10名学生的英语口语测试成绩如下:(单位:分) 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 用茎叶图表示两小组的成绩,并判断哪个小组的成绩更整齐一些?【思路点拨】学会用茎叶图表示数据的方法;并会进行统计推断.【解析】用茎叶图表示两小组的成绩如图:由图可知甲组成绩较集中,即甲组成绩更整齐一些.【总结升华】对各数据是二、三位数,且数据量不是很大时,用茎叶图表示较为方便,也便于进行统计推断,否则,应改用其他方法.举一反三:【变式1】甲、乙两个学习小组各有10名同学,他们在一次数学测验中成绩的茎叶图如图所示,则他们在这次测验中成绩较好的是组.【答案】甲小组类型三:变量的相关性和回归分析例5.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元)12 28 42 56(1) 画出表中数据的散点图;(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?【解析】(1)作出的散点图如下图所示(2)观测散点图可知各点大致分布在一条直线附近,由此可知散点图大致表现为线性相关.列出下表:序号 x y X 2xy 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 44 56 16 224 ∑1013830418易得569,22x y ==所以 414222156944184732255304()42i ii ii x y xyb xx ==--⨯⨯===-⨯-∑∑ 697352252a y bx =-=-⨯=- 故y 对x 的回归直线方程为73ˆ25yx =- (3)当x=9时, 73ˆ92129.45y=⨯-= 012 3 4x(万元)Y(万元)1020 30 40 50 60 .. . .08.0423.15=⨯-=-=bx y a .∴线性回归方程为:08.023.1^+=+=x a bx y .(2)当x=10时,38.1208.01023.1^=+⨯=y (万元) 即估计使用10年时维修费用是12.38万元.【变式2】一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间有如下一组数据:x 1.08 1.12 1.19 1.28 1.36 1.48 y 2.25 2.37 2.40 2.55 2.64 2.75 x 1.59 1.68 1.80 1.87 1.98 2.07 y 2.92 3.03 3.14 3.26 3.36 3.50(1)画出散点图;(2)求月总成本y 与月产量x 之间的回归直线方程. 【解析】(1)画出散点图:(2)设回归直线方程a bx y+=ˆ, 利用计算a ,b ,得b ≈1.215, 974.0ˆ≈-=+=x b y a bx y,从中抽取一个容量为100的样本,较为恰当的抽样方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.以上三种均可3. 从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为( ) A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大5.要从已编号(160:)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,486. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( ) A.0.6 h B.0.9 h C.1.0 h D.1.5 h7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……;第六组,成绩大于等于18秒且小于等于19秒.下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,458.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米B .49米C .50米D .51米9.用系统抽样法要从160名学生抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,则第一组中抽签方法确定的号码是________.10.从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数1231031则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.11.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 . 12.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下甲 6 8 9 9 8乙 10 7 7 7 9则两人射击成绩的稳定程度是__________________.13.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5~149.5 1 0.02149.5~153.5 4 0.08153.5~157.5 20 0.40157.5~161.5 15 0.30161.5~165.5 8 0.16165.5~169.5 m n合计M Nm n M N所表示的数分别是多少?(1)求出表中,,,(2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?14.从两个班中各随机的抽取10名学生,他们的数学成绩如下:甲班76 74 82 96 66 76 78 72 52 68乙班86 84 62 76 78 92 82 74 88 85画出茎叶图并分析两个班学生的数学学习情况.15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?16.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格.【答案与解析】1.【答案】B 【解析】∵n40=0.125,∴n=320.故选B. 2. 【答案】C 3. 【答案】C 【解析】剔除零头 4. 【答案】B【解析】平均数不大于最大值,不小于最小值 5. 【答案】B 【解析】60106=,间隔应为10 6. 【答案】B 【解析】505.020)5.11(1025⨯++⨯+⨯=0.9.7.【答案】A【解析】由图知,成绩小于17秒的学生人数占全班总人数的频率为0.020.180.360.340.9+++=, 所以0.9x =;成绩大于等于15秒且小于17秒的的频率为0.360.340.7+=,104416461451222222=++++=)(甲s 5627313751222222=++++=)(乙s ∵ 22乙甲乙甲,s s x x >>∴ 甲的平均成绩较好,乙的各门功课发展较平衡16.【解析】(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx , 308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=), 则1962.01570308≈==xx xyl l b 8166.115703081092.23≈⨯-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y )(3)据(2),当2150x m =时,销售价格的估计值为: 2466.318166.11501962.0=+⨯=y )(万元)。

(典型题)高中数学必修三第一章《统计》测试题(答案解析)(1)

(典型题)高中数学必修三第一章《统计》测试题(答案解析)(1)

一、选择题1.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差2.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .293. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日 4.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .5.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .296.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s7.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-. A .①②③B .①③④C .①②④D .②③④8.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,89.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1310.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位12.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.2二、填空题13.已知一组样本数据1210,x x x ,且22212102020x x x +++=,平均数9=x ,则该组数据的标准差为__________.14.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示: 宽带租业主户已安装 6042未安装36 62则该小区已安装宽带的居民估计有______户.15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______.18.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.19.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.20.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:月份i789101112销售单价i x(元)99.51010.5118.5销售量i y(元)111086514y x(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本).参考数据:51392i iix y==∑,521502.5iix==∑.参考公式:回归直线方程ˆˆˆy bx a=+,其中1221ˆni iiniix y nx ybx nx==-=-∑∑,ˆˆa y bx=-.22.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m=-,投资新型项目B的投资额x(单位:十万元)与纯利润y(单位:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a=+的斜率和截距的最小二乘估计分别为1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.23.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元),有如下的统计资料:由资料可知y 对x 呈线性相关关系. (1)求y 关于x 的线性回归方程;(2)请估计该设备使用年限为15年时的维修费用.参考公式:线性回归方程y bx a =+的最小二乘法计算公式:1221ni ii niix y nx yb xnx==-=-∑∑,ay bx =-,参考数据:5115263748510120i ii x y==⨯+⨯+⨯+⨯+⨯=∑24.某公司为了制定下一季度的投入计划,收集了今年前6个月投入量x (单位:万元)和产量y (单位:吨)的数据,用两种模型①y bx a =+,②y a =+分别进行拟合,得到相应的回归方程111.2 2.0y x =+,29.8y =,进行残差分析得到如图所示的残差值及一些统计量的值:(1)求上表中空格内的值;(2)残差值的绝对值之和越小说明模型拟合效果越好,根据残差比较模型①,②的拟合效果,应选择哪一个模型?并说明理由;(3)残差绝对值大于3的数据认为是异常数据,需要剔除,剔除异常数据后,重新求出(2)中所选模型的回归方程.(参考公式:i i ie y bx a =--,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-)25.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元 9 10 12 11 8 粮食产量y /万亿2526312721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 26.党的十八大以来,我国精准扶贫已经实施了六年,我国贫困人口从2012年的9899万人,减少到2018年的1660万人,2019年将努力实现减少贫困人口1000万人以上的目标,力争2020年在现行标准下,农村贫困人口全部脱贫,贫困县全部脱贫摘帽.某市为深入分析该市当前扶贫领域存在的突出问题,市扶贫办近三年来,每半年对贫困户(用y 表示,单位:万户)进行取样,统计结果如图所示,从2016年6月底到2019年6月底的共进行了七次统计,统计时间用序号t 表示,例如:2016年12月底(时间序号为2)贫困户为5.2万户.(1)求y 关于t 的线性回归方程y bx a =+,并预测到2020年12月底,该市能否实现贫困户全部脱贫;(2)为尽快打赢脱贫攻坚战,该市扶贫办在2019年6月底时,对全市贫困户随机抽取了100户贫困户,对每个家庭最主要经济收入来源进行抽样调查,统计结果如图.并决定据此选派一批农业技术人员对全市所有贫困户中,家庭最主要经济收入来源为养殖收入和种植收入的贫困户进行对口帮扶,每一名农业技术人员对口帮扶贫困户90户,则该市应分别安排多少农业技术人员对家庭最主要经济收入来源为养殖收入和种植收入的贫困户进行对口帮扶? 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()1122211nniii ii i nniii i tty y t y nt yb tttnt====---==--∑∑∑∑,a y bt =-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题.2.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=, 故21252835275m++++=,26m ∴=.故选:A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.3.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确; 从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.4.D解析:D 【解析】 【分析】先计算,代入回归直线方程,可得,从而可求得结果.【详解】 因为,所以,代入回归直线方程可求得,所以,故选D. 【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.5.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.6.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,()()()2221131653615661...726177s ⎡⎤=-+-++-=⎣⎦, ()()()2222134254625662 (736277)s ⎡⎤=-+-++-=⎣⎦ 则1212,x x s s <<故选C【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.7.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.8.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图9.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.10.C解析:C 【分析】设该样本中高三年级的学生人数为x ,则1800601200x=,解之即可 【详解】设该样本中高三年级的学生人数为x ,则1800601200x =,解得40x =, 故选C . 【点睛】本题考查了分层抽样方法的应用问题,属基础题.11.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.12.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=,据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.11【分析】根据题意利用方差公式计算可得数据的方差进而利用标准差公式可得答案【详解】根据题意一组样本数据且平均数则其方差则其标准差故答案为:11【点睛】本题主要考查平均数方差与标准差属于基础题样本方解析:11 【分析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案. 【详解】根据题意,一组样本数据1210,,...,x x x ,且22212102020x x x ++⋯+=,平均数9x =,则其方差()()()()22221210110S x x x x x x =-+-+⋯+-()2222121011012110x x x x =++⋯+-=,则其标准差11S ==, 故答案为:11. 【点睛】本题主要考查平均数、方差与标准差,属于基础题. 样本方差2222121[()()...()]n s x x x x x x n=-+-++-,标准差s =14.【分析】计算出抽样中已安装宽带的用户比例乘以总人数求得小区已安装宽带的居民数【详解】抽样中已安装宽带的用户比例为故小区已安装宽带的居民有户【点睛】本小题主要考查用样本估计总体考查频率的计算属于基础题 解析:10200【分析】计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数. 【详解】抽样中已安装宽带的用户比例为604251200100+=,故小区已安装宽带的居民有512000010200100⨯=户. 【点睛】 本小题主要考查用样本估计总体,考查频率的计算,属于基础题.15.92【解析】【分析】由题可得进而可得再计算出从而得出答案【详解】5个样本成份的平均值为标准差为所以即解得因为所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数解题的关键是求解析:92 【解析】 【分析】由题可得1234540x x x x x ++++=,()()()22212520x x x x x x -+-++-=进而可得222125340x x x +++=,再计算出125y y y +++,从而得出答案.【详解】5个样本12345,,,,x x x x x 成份A 的平均值为8g ,标准差为2g ,所以1234540x x x x x ++++=,()()()22212520x x x x x x -+-++-=,即()22221251252520x x x x x x x x +++-++++=,解得222125340x x x +++=因为2(20)20y x x x x =-=-,所以()()22212512512520460y y y x x x x x x +++=+++-+++=所以这批中成药的药物功效的平均值460925y ==药物单位 【点睛】本题考查求几个数的平均数,解题的关键是求出222125x x x +++,属于一般题.16.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.17.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++= ()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果18.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果. 详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.19.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人20.【解析】依次选取两个数字为237593211504……所以选出来的第个个体的编号为15 解析:15【解析】依次选取两个数字为23,75,93,21,15,04,…… 所以选出来的第3个个体的编号为15.三、解答题21.(1) 3.240ˆyx =-+;(2)可以认为所得的回归直线方程是理想的;(3)该产品的销售单价为7.5元/件时,获得的利润最大. 【分析】(1)计算x 、y ,求出回归系数,写出回归直线方程;(2)根据回归直线方程,计算对应的数值,判断回归直线方程是否理想; (3)求销售利润函数W ,根据二次函数的图象与性质求最大值即可. 【详解】(1)因为1(99.51010.511)105x =++++=,1(1110865)85y =++++=,所以23925108ˆ 3.2502.5510b-⨯⨯==--⨯,则8( 3.2)00ˆ14a =--⨯=, ∴y 关于x 的回归直线方程为 3.240ˆyx =-+ (2)剩余数据为12月份,此时8.5x =,14y =,现进行检测,当8.5x =时,ˆ 3.28.54012.8y=-⨯+=,则ˆ||12.814 1.22y y -=-=<,所以可以认为所得的回归直线方程是理想的. (3)令销售利润为W ,则22( 2.5)( 3.240) 3.248100 3.2(7.5)80W x x x x x =--+=-+-=--+.∴当7.5x =时,W 取最大值.所以该产品的销售单价为7.5元/件时,获得的利润最大. 【点睛】函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系,如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y . 22.(1) 1.60.2y x =+;(2)B 项目的收益更好. 【分析】(1)先利用平均数公式求出样本中心点的坐标, 再利用所给公式求出b 的值,最后将样本中心点的坐标代入回归方程求得a 的值即可;(2)分别利用所给关系式以及所求回归方程,求出A ,B 两个项目投资60万元,该企业所得纯利润的估计值,便可预测哪个项目的收益更好. 【详解】(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8, 所以1234535x ++++==,2357855y ++++==,22222212233547585351.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,则5 1.630.2a =-⨯=,故y 关于x 的线性回归方程为 1.60.2y x =+.(2)因为投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,所以若A 项目投资60万元,则该企业所得纯利润的估计值为1.760.59.7⨯-=万元; 因为y 关于x 的线性回归方程为 1.60.2y x =+,所以若B 项目投资60万元,则该企业所得纯利润的估计值为1.660.29.8⨯+=万元. 因为9.89.7>,所以可预测B 项目的收益更好.【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nniiii i x y x x y==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势. 23.(1) 1.2 3.6y x =+;(2)21.6万元. 【分析】(1)先求出年限x 和维修费用y 的平均值,即得到样本中心点,利用最小二乘法得到线性回归方程的系数,根据样本中心点在线性回归直线上,得到a 值,即得线性回归方程; (2)将15x =代入回归直线方程即可求得结果. 【详解】 (1)1234535x ++++==,5678107.25++++==y51120i ii x y==∑,522222211234555i i x ==++++=∑25945nx =⨯=,537.2108nx y =⨯⨯=∴1201081.25545b -==-,7.2 1.23 3.6a =-⨯=∴y 关于x 的线性回归方程为 1.2 3.6y x =+(2)在上述回归方程中,当15x =时得21.6y = ∴该设备使用年限为15年时的维修费用大约为21.6万元. 【点睛】本题考查回归直线方程的求解及其应用,其中认真审题,准确合理的运算是解决此类问题的关键,考查运算能力,属于基础题.24.(1)7.4;(2)选模型①,理由见解析;(3)111y x =+. 【分析】(1)根据i i ie y bx a =--,结合表中所给数据,即可求得空格内的值;(2)分别计算出模型①和模型②的残差值绝对值之和,比较其大小,即可求得应选择哪一个模型;(3)根据所给数据计算出x ,y ,51i ii x y =∑,521ii x=∑,带入1221ni ii nii x y nx yb xnx==-=-∑∑,即可求得答案. 【详解】(1)根据i i ie y bx a =--∴空格处的值为()43311.2 2.07.4-⨯+=(2)应选择模型①模型①的残差值的绝对值之和为0.2 2.47.4 1.83 1.216+++++= 模型②的残差值的绝对值之和为5.48.0 4.0 1.6 1.69.029.6+++++=1629.6<∴模型①的拟合效果好,应该选模型①.(3)剔除异常数据,即剔除3月份的数据后, 得()13.563 3.65x =⨯-=,()14164340.65y =⨯-=, 511049343920i ii x y==-⨯=∑,522191382i i x ==-=∑.∴51522159205 3.640.6189.211825 3.6 3.617.25i ii i i x y x yb x x==--⨯⨯====-⨯⨯-∑∑,40.611 3.61a y bx =-=-⨯=.所以y 关于x 的回归方程为111y x =+. 【点睛】本题解题关键是掌握残差的定义和回归直线方程的求解步骤,考查了分析能力和计算能力,属于中档题.25.(1)ˆ 2.24yx =+;(2)19.4万亿吨. 【分析】(1)利用最小二乘法公式求回归直线的系()()()51521ˆiii ii x x y y bx x ==--=-∑∑,即可得答案;(2)将7x =代入回归方程ˆ 2.24yx =+,可得,ˆ19.4y =,即可得答案; 【详解】解:(1)由表中所给数据可得,91012118105x ++++==,2526312721265y ++++==,代入公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,解得ˆ 2.2b=,所以ˆˆ4a y bx =-=. 故所求的y 关于x 的线性回归直线方程为ˆ 2.24yx =+. (2)由题意,将7x =代入回归方程ˆ 2.24yx =+,可得,ˆ19.4y =. 所以预测2019年该地区的粮食产量大约为19.4万亿吨. 【点睛】本题考查利用最小二乘法求回归直线方程、回归方程进行预报,考查数据处理能力. 26.(1)0.5 6.3y t =-+,不能;(2)58人和116人. 【分析】(1)由题意求得t 、y 后,代入公式即可得b 、a ,即可得线性回归方程;代入10t =求得 1.3y =即可得解;(2)由统计图计算可得家庭最主要经济收入来源为养殖收入和种植收入的贫困户户数,即可得解. 【详解】 (1)∵123456747t ++++++==,5.9 5.2 4.8 4.4 3.6 3.3 2.9 4.37y ++++++==,()()()()()()3 1.620.910.5010.7213 1.40.59410149b -⨯+-⨯+-⨯++⨯-+⨯-+⨯-==-++++++,()4.30.54 6.3a y bt =-=--⨯=,y 关于t 的线性回归方程0.5 6.3y t =-+.2020年12月底时,10t =,代入知 1.30y =>,不能实现贫困户全部脱贫.(2)2019年6月底时,贫困户共2.9万户,由图知,家庭最主要经济收入来源为养殖收入和种植收入分别占18%和36%,290000.189058⨯÷=,290000.3690116⨯÷=,对家庭最主要经济收入来源为养殖收入和种植收入的贫困户分别安排58人和116人. 【点睛】本题考查了统计的应用,考查了线性回归方程的求解和应用,属于中档题.。

高中数学必修三--统计-含答案解析--zhy365

高中数学必修三--统计-含答案解析--zhy365

高中数学必修三--统计卷I(选择题)一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂2. 某单位200名职工中,年龄在50岁以上占20%,40∼50岁占30%,40岁以下占50%;现要从中抽取40名职工作样本.若用系统抽样法,将全体职工随机按1∼200编号,并按编号顺序平均分为40组(1∼5号,6∼10号,…,196∼200号).若第5组抽出的号码为22,则第8组抽出的号码应是①;若用分层抽样方法,则40岁以下年龄段应抽取②人.①②两处应填写的数据分别为()A.82,20B.37,20C.37,4D.37,503. 某学校有教师160人,其中有高级职称的32人,中级职称的56人,初级职称的72人.现抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数应为()A.4B.6C.7D.94. 2013年中国政府提出共建丝绸之路经济带,受到了世界各国的高度重视和积极响应,并提出打造海上丝绸之路的总体规划,被简称为“一带一路”.经调查,沿线某地区自2013年到2019年经过6年的经济新建设,经济收入增加了3倍.为更好地了解该地区经济收入变化情况,统计了该地区建设前后经济收入构成比例,得到如下表格:则2019年与2013年经济收入相比较,下面结论中正确的是( )A.石油出口收入减少B.其他收入增加了三倍以上C.百姓购物收入增加了三倍D.百姓购物收入与教育文化收入的总和超过了经济收入的一半的样本,若采用系统抽样,则分段的间隔k为()A.50B.60C.30D.406. 如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5, 2)千元的频数为300,则此次抽样的样本容量为()A.1000B.2000C.3000D.40007. 一样本的所有数据分组及频数如下:[−0.5, 0.5),C50;[0.5, 1.5),C51;[1.5, 2.5),C52;[2.5, 3.5),C53;[3.5, 4.5),C54;[4.5, 5.5),C55.则在[1.5, 4.5)的频率为()A.5 8B.12C.2532D.15168. 2019年,全国各地区坚持稳重求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:(同比=本期数−去年同期数去年同期数×100%,环比=本期数−上期数上期数×100%),下列结论中不正确的是()A.2019年第三季度的居民消费价格一直都在增长B.2018年7月份的居民消费价格比同年8月份要低一些C.2019年全年居民消费价格比2018年涨了2.5%以上D.2019年3月份的居民消费价格全年最低A.数据4、4、6、7、9、6的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数10. 某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了扇形统计图,已知步行的人数为60,则初三学生乘公交车的人数为( )A.60B.78C.132D.911. 绘制1000人的寿命直方图时,若组距均为20,60∼80岁范围的纵轴高为0.03,则60∼80岁的人数为()A.300B.500C.600D.80012. 以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月=100)变化图表,给出下列结论:其中正确的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津,上海、重庆)①3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均;②4月份仅有三个城市居民消费价格指数超过102;③仅有天津市从年初开始居民消费价格指数的增长呈上升趋势;④四个月的数据显示北京市的居民消费价格指数增长幅度波动较大.A.①②B.②④C.①②④D.①③④卷II(非选择题)二、填空题(本题共计 6 小题,每题 5 分,共计30分,)13. 某城市收集并整理了该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是_______.①最低气温与最高气温为正相关;②10月的最高气温不低于5月的最高气温;③月温差(最高气温减最低气温)的最大值出现在1月;④最低气温低于0∘C的月份有4个.14. 为了估计鱼塘中鱼的尾数,先从鱼塘中捕出2000尾鱼,并给每条尾鱼做上标记(不影响存活),然后放回鱼塘,经过适当的时机,再从鱼塘中捕出600尾鱼,其中有标记的鱼为40尾,根据上述数据估计该鱼塘中鱼的尾数为________.15. 已知数据:x,y,10,11,9,这组数据的平均值10,方差为2,则|x−y|=________.16. 抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:17. 某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]然后画出如下图的部分频率分布直方图.观察图形的信息,可知数学成绩低于50分的学生有________人;估计这次考试数学学科的及格率(60分及以上为及格)为________;18. 为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物________只.三、解答题(本题共计 5 小题,每题 12 分,共计60分,)19. 已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程.20. 某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.(1)设消费者的年龄为x ,对该款智能家电的评分为y .若根据统计数据,用最小二乘法得到y 关于x 的线性回归方程为y ̂=1.2x +40,且年龄x 的方差为s x 2=14.4,评分y 的方差为s y 2=22.5.求y 与x 的相关系数r ,并据此判断对该款智能家电的评分与年龄的相关性强弱.(2)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“ 好评”和“差评”,整理得到如下数据,请判断是否有99%的把握认为对该智能家电的评价与年龄有关.附:线性回归直线y ̂=b ̂x +a ̂的斜率b̂=∑(x i −x ¯)n i=1(y i −y ¯)∑(x i −x ¯)2n i=1相关系数r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1.独立性检验中的K 2=n(ad−bc)2(a+b)(a+c)(b+d)(c+d), 其中n =a +b +c +d .临界值表:21. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得附:相关系数: r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1√2≈1.414.22. 某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:i i−1i i−1x i 7i−1y i =3487. (1)求x ¯,y ¯;参考公式:b ̂=∑=n ∑(ni−1x i −x ¯)2∑n ∑x i 2n i−1−nx−2,a ̂=y ¯−b ̂x ¯(2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.23. 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示:为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具代表性,每类中各应抽选出多少份?并且写出具体操作过程.参考答案与试题解析高中数学必修三--统计一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】A、了解某班学生“50米跑”的成绩,是精确度要求高的调查,适于全面调查;B、C、D了解一批灯泡的使用寿命,了解一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,故不适于全面调查.2.【解答】解:若用系统抽样,则样本间隔为5,若第5组抽出的号码为22,则第8组抽出的号码应22+15=37,若用分层抽样方法,则40岁以下年龄段应抽取40×50%=20,故选:B.3.【解答】解:∵中级职称的56人,∴抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数为56160=n20,解得n=7,即抽取的中级职称的教师人数应为7人.故选C.4.【解答】解:假设建设前经济收入为a,则建设后经济收入为4a,所以石油出口收入在建设前为0.49a,建设后为4a×0.33=1.32a,石油出口收入较之前增加;其他收入在建设前为0.06a,建设后为0.24a,即其他收入增加了三倍;百姓购物收入建设前为0.3a,建设后为0.38×4a=1.52a,即百姓购物收入增加了四倍以上;教育文化收入建设前为0.1a,建设后为0.15×4a=0.6a,百姓购物收入与教育文化收入的总和为1.52a+0.6a=2.12a>2a,超过了经济收入的一半.故选D.5.【解答】解:由题意知本题是一个系统抽样问题,总体中个体数是3000,样本容量是100,根据系统抽样的步骤,得到分段的间隔k=3000100=30,解:由频率的意义可知,从左到右各个小组的频率之和是1,同时每小组的频率=小组的频数样本容量.∴[1.5, 2)长方形的面积为0.3.第二组月收入在[1.5, 2)千元的频数为300,所以此次统计的样本容量是300÷0.3=1000.故选A.7.【解答】解:由题意知本题共有C50+C51+C52+C53+C54+C55=25个数据,在[1.5, 4.5)的频数是C52+C53+C54∴在[1.5, 4.5)的频率为:C52+C53+C5425=2532,故选C.8.【解答】解:A,从环比看,2019年第三季度的居民消费价格一直都在增长,故A正确;B,从同比看,2018年7月份的居民消费价格比同年8月份要低一些,故B正确;C,从同比看,1.7+1.5+2.3+2.5+2.7+2.7+2.8+2.8+3.0+3.8+4.5+4.512=2.9,所以2019年全年居民消费价格比2018年涨了2.5%以上,故C正确;D,从环比看,2019年1月份的居民消费价格最低,故D错误.故选D.9.【解答】解:数据4、4、6、7、9、6的众数是4和6,故A错误;一组数据的标准差是这组数据的方差的算术平方根,故B错误;∵3,5,7,9的平均数=14(3+5+7+9)=6,∴3,5,7,9的标准差=√14[(3−6)2+(5−6)2+(7−6)2+(9−6)2]=√5.∵6、10、14、18的平均数=14(6+10+14+18)=12,∴6、10、14、18的标准差√14[(6−12)2+(10−12)2+(14−12)2+(18−12)2]= 2√5,∴数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半,故C正确;频率分布直方图中各小长方形的面积等于相应各组的频率,故D错误.故选:C.10.【解答】解:调查的学生总数是:60÷20%=300(人),则乘公交车的人数为:300×(1−20%−33%−3%)=300×44%=132(人).解:因为:组距均为20,60∼80岁范围的纵轴高为0.03,所以;频率为:0.03×20=0.6.∴60∼80岁的人数为:0.6×1000=600.故选:C.12.【解答】解:根据题目所给信息,①,3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为大,不平均,①错误;②,4月份仅有三个城市居民消费价格指数超过102;③,天津市和上海从年初开始居民消费价格指数的增长呈上升趋势,③错误;④,四个月的数据显示北京市的居民消费价格指数增长幅度波动较大,④正确.故正确的有②④.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【解答】解:由该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在①中,最低气温与最高气温为正相关,故①正确;在②中,10月的最高气温不低于5月的最高气温,故②正确;在③中,月温差(最高气温减最低气温)的最大值出现在1月,故③正确;在④中,最低气温低于0∘C的月份有3个,故④错误.故答案为:④.14.【解答】解:根据题意,设该鱼塘中鱼的尾数为x,则;x 2000=60040,解得x=30000;∴估计该鱼塘中鱼的尾数为30000.故答案为:30000.15.【解答】解:由平均值10得,x+y+10+11+9=50,则x+y=20,①由方差为2得,2=15[(x−10)2+(y−10)2+0+1+1],即(x−10)2+(y−10)2=8,②设x=10+t,y=10−t,代入②2t2=8,解得t=±2,∴|x−y|=2|t|=4,故答案为:4.16.甲城市连续5天的空气质量指数是109,111,132,118,110;它的极差是132−109=23,且数据的波动性较大些;乙城市连续5天的空气质量指数是110,111,115,132,112;它的极差是132−110=22,且数据的波动性较小些;由此得出,空气质量指数较为稳定(方差较小)的城市是乙.故答案为:乙.17.【解答】解:由图可知,成绩在[50, 60)的频率为0,015×10=0.15,成绩在[60, 70)的频率为0.015×10=0.15,成绩在[70, 80)的频率为0.030×10=0.3,成绩在[80, 90)的频率为0.025×10=0.25,成绩在[90, 100]的频率为0.005×10=0.05,∴成绩不低于50分的频率为0.15+0.15+0.3+0.25+0.05=0.9,成绩不低于60分的频率为0.15+0.3+0.25+0.05=0.75∴成绩低于50分的频率为为1−0.9=0.1∵共有60名学生,∴成绩低于50分的学生数为60×0.1=6,这次考试数学学科的及格率为75%.故答案为6;75%18.【解答】解:设保护区有这种动物有x只,则由题意可得1200x =1001000,求得x=12000,故答案为12000.三、解答题(本题共计 5 小题,每题 12 分,共计60分)19.【解答】解:由于三个车间的产品有差别,故应采用分层抽样的方法,先计算抽样比:k=40150+130+120=110,再计算各车间内抽取样本的件数:甲车间:150×110=15,乙车间:130×110=13,丙车间:120×110=12,再分析使用简单随机抽样的办法在各个车间中抽取样本,最后终成一个样本.20.【解答】解:(1)相关系数r=∑(x−x¯)50(y−y¯)√∑(xi−x)250i=1∑(y i−y)250i=1;=∑(x i−x¯)50i=1(y i−y¯)∑(x i−x¯)250i=1√∑(xi−x¯)250i=1√∑(yi−y)250i=1=b̂⋅√50s x2√50s y =1.2×1215=0.96.故对该款智能家电的评分与年龄的相关性较强.(2)由列联表可得K 2=50×(8×6−20×16)224×26×28×22≈9.624>6.635.故有99%的把握认为对该智能家电的评价与年龄有关.21.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得 ,r =∑(x i −x ¯)n i=1(y i −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1=80×9000=62≈0.94 ;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序, 每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计. 22.【解答】解:(1)x ¯=17(3+4+5+6+7+8+9)=6, y ¯=17(66+69+73+81+89+90+91)=5597≈79.86;(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.(3)∵ 3×66+4×69+5×73+6×81+7×89+8×90+9×91=3487,32+42+52+62+72+82+92=280,∴ b =3487−7×6×5597280−7×36=4.75,a =5597−6×4.75≈51.36,故线性回归方程为y =4.75x +51.36.23.【解答】解:每个个体被抽到的频率是 50050000=1100,10800×1100=108,12400×1100=124,15600×1100=156,11200×1100=112,每类中各应抽选出有效帖子的份数:很满意的108份,满意的124份,一般的156份,不满意的112份.在很满意的有效帖子中采用简单随机抽样的方法随机抽取108份,在满意的有效帖子中采用简单随机抽样的方法随机抽取124份,在一般的有效帖子中采用简单随机抽样的方法随机抽取156份,在不满意的有效帖子中采用简单随机抽样的方法随机抽取112份.。

高中数学必修3(人教B版)第二章统计2.3知识点总结含同步练习题及答案

高中数学必修3(人教B版)第二章统计2.3知识点总结含同步练习题及答案

描述:例题:高中数学必修3(人教B版)知识点总结含同步练习题及答案第二章 统计 2.3 变量的相关性一、学习任务1. 能通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2. 了解线性回归的方法,了解用最小二乘法研究两个变量的线性相关问题的思想方法,会根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆系数公式).二、知识清单变量间的相关关系相关关系 线性相关三、知识讲解1.变量间的相关关系2.相关关系变量与变量之间的关系一类是确定性的函数关系,像正方形的边长 和面积 的关系 .另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,人的身高不能确定体重,但一般说来“身高者,体也重”.我们说身高与体重这两个变量具有相关关系.函数关系与相关关系的异同点相同点:是两者均是指两个变量的关系;不同点:①函数关系是一种确定性的关系,相关关系是一种非确定性的关系.②函数关系式一种因果关系,而相关关系不一定是因果关系,其也可能是伴随关系.a S 给出下列关系:①正方形的边长与面积之间的关系;②水稻产量与施肥量之间的关系;③降雪量与交通事故的发生率之间的关系.其中具有相关关系的是______.解:②③两个变量之间的关系有两种:函数关系与相关关系.①正方形的边长和面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③降雪量与交通事故的发生率具有相关关系.下图中的两个变量是相关关系的是( )描述:3.线性相关两个变量的线性关系对具有相关关系的两个变量进行统计分析的方法叫回归分析.将样本中的个数据点(,,,)描在平面直角坐标系中,就得到了散点图.如果两个变量的散点图中的点散步在左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,我们将这种相关称为正相关.如果两个变量的散点图中的点散步的位置是从左上角到右下角的区域,即一个变量的值由小变大是,另一个变量的值由大变小,我们将这种相关称为负相关.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量具有线性相关关系.回归直线方程“最贴近”已知的数据点的直线方程称之为回归直线方程,简称回归方程,方程为,叫做回归系数.刻画了实际观察值与回归直线上相应点纵坐标之间的偏离程度,个离差构成的总离差越小越好,总离差通常是用离差的平方和来表示,即作为总离差,并使之达到最小.回归直线就是所有直线中取最小的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.A.①② B.①③ C.②④ D.②③解:D①属于函数关系,因为每个 值对应一个 值,这是确定性的关系;②中散点图中各点分布的区域大致为从左下角到右上角,没有确定的函数关系,但是具有相关关系;③中散点图分布的区域大致在一条曲线附近,对于每个 ,其对应的 呈现出一定的规律性,因此这两个变量具有相关关系;④ 中各点的分布比较均匀,但对于每个 , 的分布没有规律,因此不属于相关关系.x y x y x y n (,)x i y i i =12⋯n =a +bx y ^b −y i y ^i y i n Q =(−a −b ∑i =1ny i x i )2Q(),得散点图2.由这两个散点图可以判断( )(,)u i v i i =12⋯10高考不提分,赔付1万元,关注快乐学了解详情。

高中数学必修3复习-统计的讲义与习题(含答案及详细解答过程)

高中数学必修3复习-统计的讲义与习题(含答案及详细解答过程)

【知识点:统计】一.简单随机抽样1.总体和样本总体:在统计学中 , 把研究对象的全体叫做总体.个体:把每个研究对象叫做个体.总体容量:把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本...其中个体的个数称为样本容量....。

2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

二.系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

d(抽样距离)=N(总体规模)/n(样本规模)三.分层抽样1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

3.分层的比例问题:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。

高一数学统计试题答案及解析

高一数学统计试题答案及解析

高一数学统计试题答案及解析1.从测量所得数据中取出个,个,个,个组成一个样本,则这个样本的平均数是()A.B.C.D.【答案】C【解析】利用平均数计算公式平均数=,故选C。

【考点】本题考查了平均数的概念及计算.点评:运用求平均数公式:。

2.一位教师出了一份含有3个问题的测验卷,每个问题1分.班级中30%的学生得了3分,50%的学生得了2分,10%的学生得了1分,另外还有10%的学生得0分,则全班的平均分是_________.【答案】2分【解析】=3×30%+2×50%+1×10%+0=2.【考点】本题考查了平均数的概念及计算、频率分布表的意义、加权平均数的求法.点评:运用求平均数公式:。

3.某校在一次学生身体素质调查中,在甲、乙两班中随机抽10名男生测验100m短跑,测得成绩如下(单位:):【答案】甲班男生短跑水平高些【解析】,.,甲班男生短跑水平高些.【考点】本题考查了平均数的概念及计算.点评:运用求平均数公式:,分别计算比较,平均数高者为优秀,数基本题型。

4.如果五个数的平均数是7,那么这五个数的平均数是()A.5B.6C.7D.8【答案】D【解析】利用平均数计算,或利用结论:样本x1,x2, (x)n的平均数为7,∴样本x1+1,x2+1,…,xn+1的平均数=7+1=8,故选D.【考点】本题主要考查平均数的意义及其计算。

点评:基本题型,注意掌握平均数计算公式。

在此基础上推出一般结论更好。

5.一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组对应数据:判断它们是否有相关关系.【答案】解:两者之间具有相关关系.【解析】本题只给出了样本数据,对于给定的两个变量是否具有相关关要用散点图来分析,散点图中的点若很集中,则具有相关关系并且集中趋势越强则相关性越强,若很分散,则不具相关关系。

散点图为:可看出样本点都集中在一条直线附近,所以两者之间具有相关关系。

高一数学 (人教版必修3):第三章 统计 Word版含解析

高一数学 (人教版必修3):第三章 统计 Word版含解析

重点列表:重点 名称重要指数 重点1 频率分布直方图 ★★★★ 重点2 茎叶图 ★★★ 重点3抛物线★★★★重点详解:用样本的频率分布估计总体分布(1)通常我们对总体作出的估计一般分成两种:一种是用样本的__________估计总体的__________;另一种是用样本的________估计总体的__________.(2)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用________________表示.各小长方形的面积总和等于________.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布________.随着样本容量的增加,作图时所分的________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称之为______________________,它能够更加精细地反映出____________________________________.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以____________________,而且可以______________,给数据的记录和表示都带来方便.【参考答案】(1)频率分布 分布 数字特征 数字特征 (2)频率组距 各小长方形的面积 1 (3)折线图 组数 总体密度曲线 总体在各个范围内取值的百分比 (4)保留所有信息 随时记录重点1:频率分布表、频率分布直方图及其应用 【要点解读】用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.【考向1】根据数据画出频率分布直方图【例题】某市2013年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成下列频率分布表、频率分布直方图;频率分布表分组频数频率41,51)51,61)61,71)71,81)81,91)91,101)101,111)频率分布直方图(2)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)如图所示:频率分布表分组频数频率41,51) 2 230 51,61) 1 130 61,71) 4 430 71,81) 6 630 81,91) 10 1030 91,101) 5 530 101,111)2230(2)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115,有26天处于良的水平,占当月天数的1315,处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115,污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%,说明该市空气质量有待进一步改善.【评析】首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数;对于开放性问题的解答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.本题主要考查运用统计知识解决简单实际问题的能力、数据处理能力和应用意识. 【考向2】频率分布直方图的逆用【例题】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60, [)60,70,[)70,80,[)80,90,[]90,100.(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生的语文成绩在某些分数段的人数(x )与数学成绩在相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数.分数段[)50,60 [)60,70 [)70,80 [)80,90x ∶y1∶12∶13∶44∶5解:(1)由()2a +×10=1, 解得a =0.005.(2)=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.(3)由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段 50,60) 60,70) 70,80) 80,90)x 5 40 30 20 x ∶y 1∶1 2∶1 3∶4 4∶5 y5204025于是数学成绩在50重点2:茎叶图 【要点解读】茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作. 【考向1】根据茎叶图求方差【例题】以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.如果X =8,求乙组同学植树棵数的平均数和方差;注:方差s2=1n(x1-)2+(x2-)2+…+(x n-)2],其中x为x1,x2,…,x n的平均数.解:当X=8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为=8+8+9+104=354;方差为s2=14⎝⎛⎭⎪⎫8-3542+⎝⎛⎭⎪⎫8-3542+⎝⎛⎭⎪⎫9-3542+⎝⎛⎭⎪⎫10-3542]=1116.【考向2】根据茎叶图求平均数【例题】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.179201 530(1)根据茎叶图计算样本平均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?难点列表:难点名称难度指数难点1 用样本的数字特征估计总体的数字特征★★★★难点2导数与函数的极值、最值★★★难点详解:用样本的数字特征估计总体的数字特征(1)众数,中位数,平均数众数:在一组数据中,出现次数________的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或者最中间两个数据的________)叫做这组数据的中位数.平均数:样本数据的算术平均数,即=_______.在频率分布直方图中,中位数左边和右边的直方图的面积应该________. (2)样本方差,样本标准差 标准差s =])()()[(122221x x x x x x nn -+⋯+-+-,其中x n 是__________________,n 是________,是________.标准差是反映总体__________的特征数,________是样本标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.【答案】 (1)最多 平均数 1n(x 1+x 2+…+x n ) 相等(2)样本数据的第n 项 样本容量 平均数 波动大小 样本方差难点1:用样本的数字特征估计总体的数字特征 【要点解读】能从一组数据中求出中位数、平均数和众数 【考向1】平均数、中位数【例题】某汽车制造厂分别从A ,B 两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1000 km): 轮胎A 96 11297108100103 86 98轮胎B 108 101 94 105 9693 97 106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差; (3)根据以上数据,你认为哪种型号轮胎的性能更加稳定?(2)A 轮胎行驶的最远里程的极差为:112-86=26, 标准差为:s =8)2()14(308)3(12)4(22222222-+-++++-++-=2212≈7.43; B 轮胎行驶的最远里程的极差为:108-93=15, 标准差为:s =86)3()7()4(5)6(1822222222+-+-+-++-++=1182≈5.43. (3)虽然A 轮胎和B 轮胎的最远行驶里程的平均数相同,但B 轮胎行驶的最远里程的极差和标准差相对于A 轮胎较小,所以B 轮胎性能更加稳定.【评析】在理解平均数、中位数、众数、极差、标准差、方差的统计意义和数学表达式的情况下,不难作出解答. 【考向2】平均数、标准差【例题】某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4. 则(1)平均命中环数为____________; (2)命中环数的标准差为____________.难点2:根据频率分布直方图计算样本的数字特征【要点解读】会从频率分布直方图中求出中位数、平均数和众数【考向1】中位数【例题】如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为( )A.12.5 B.13C.13.5 D.14【答案】 B【考向2】平均数【例题】某市为了节约能源,拟出台“阶梯电价”制度,即制订住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价计费;若某月用电量超过a度,则超出部分按议价计费,未超出部分按平价计费.为确定a的值,随机调查了该市100户的月用电量,工作人员已将90户的月用电量填在了下面的频率分布表中,最后10户的月用电量(单位:度)为:18,63,43,119,65,77,29,97,52,100.组别月用电量频数统计频数频率①0,20)②20,40)正正③40,60)正正正正④60,80)正正正正正⑤80,100)正正正正⑥100,120](1)完成频率分布表并绘制频率分布直方图;(2)根据已有信息,试估计全市住户的平均月用电量(同一组数据用该区间的中点值作代表);(3)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a. 解] (1)组别月用电量频数统计频数频率①0,20)40.04②20,40)正正120.12③40,60)正正正正240.24④60,80)正正正正正正300.30⑤80,100)正正正正正250.25⑥100,120]正50.05(2)由题意,用每小组的中点值代表该小组的平均月用电量,则100户住户组成的样本的平均月用电量为10×0.04+30×0.12+50×0.24+70×0.30+90×0.25+110×0.05=65(度).用样本估计总体,可知全市居民的平均月用电量约为65度.(3)计算累计频率,可得下表:分组0,20)20,40)40,60)60,80)80,100)100,120] 频率0.040.120.240.300.250.05累计频率0.040.160.400.700.95 1.00由此可知临界值a应在区间80,100)内,且频率分布直方图中,在临界值a左侧小矩形的总面积(频率)为0.75,故有0.7+(a-80)×0.012 5=0.75,解得a=84,由样本估计总体,可得临界值a为84.【趁热打铁】1.容量为20的样本数据,分组后的频数如下表:分组10,20)20,30) 30,40) 40,50) 50,60) 60,70)频数2 3 4 5 4 2A.0.35 B.0.45C.0.55 D.0.652.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m o,平均值为,则( )A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<3.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数4.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .30%B .10%C .3%D .不能确定5.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为甲,乙,中位数分别为m 甲,m 乙,则( )甲乙8 6 5 0 8 8 4 0 0 1 0 2 87 5 2 2 0 2 3 3 7 8 0 0 3 1 2 4 4 8 3 1 4 2 3 8A.甲<乙,m 甲>m 乙 B .甲乙甲乙C .甲>乙,m 甲>m 乙 D .甲>乙,m 甲<m 乙6.样本(x 1,x 2,…,x n )的平均数为,样本(y 1,y 2,…,y m )的平均数为y (≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数=α+(1-α) y ,其中0<α<12,则n ,m 的大小关系为( ) A .n <mB .n >mC .n =mD .不能确定7.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下.中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天中甲、乙两人日加工零件的平均数分别为________和________.甲乙9 8 1 9 7 10 1 3 2 0 2 1 4 2 41 1 5 3 02 08.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5],样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.9.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.10.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.23.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?第三章1解:由频率分布表可知:样本数据落在区间10,40)内的频数为2+3+4=9,样本总数为20,故样本数据落在区间10,40)的频率为920=0.45.故选B.2解:中位数为5.5,众数为5,平均值为17930.故选D.3解:这种抽样方法为简单随机抽样,该班这五名男生成绩的平均数为86+94+88+92+905=90,方差为15(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8;该班这五名女生成绩的平均数为 88+93+93+88+935=91,方差为15(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6.故选C.5解:易知甲=21.5625,乙=28.5625,m 甲=20,m 乙=29,∴甲<乙,m 甲<m 乙.故选B. 6解:∵x 1+x 2+…+x n =n ,y 1+y 2+…+y m =m y ,∴x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n ) =(m +n )α+(1-α)y ] =(m +n )α+(m +n )(1-α)y , ∴n +m y =(m +n )α+(m +n )(1-α)y .∴⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α). 故n -m =(m +n )α-(1-α)]=(m +n )(2α-1). ∵0<α<12,∴2α-1<0.∴n -m <0,即n <m .故选A.7解:设甲、乙在这10天中日加工零件的平均数分别为a ,b ,则a =20+-1-2+0+1+3+2+0+11+11+1510=24,b =20+-1-3-9+1+4+2+4+10+12+1010=23.故填24;23.8解:平均气温低于22.5℃的城市所占频率为最左边两个矩形面积之和,即0.10×1+0.12×1=0.22,又其频数为11,故总城市数为110.22=50,故样本中平均气温不低于25.5℃的城市共有50×0.18=9(个). 故填9.9解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组频率=第二小组频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.(2)由图可估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.10解:(1)计算得A=2.3, B=1.6,从计算结果来看,A药的疗效更好.(2)从以上茎叶图可以看出,A药疗效的试验结果有10的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修三统计知识点类别内容名称定义各自要点方法步骤共同点适用范围相互联系简单随机抽样通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽取的概率相等,这样的抽样称为∽从总体中逐个抽取1、抽签法:①编②放③抽2、随机数表法:①编号②选数③读数①均属于不放回抽样。

②抽样过程中每个个体被抽取的概率相等总体的个体数较少系统抽样将总体分成均衡的几个部分,然后按照预先定出的规则,从每个部分抽去一个样本,这样的抽样叫∽总体均分成几部分按事先确定的规则在各部分抽取①编号②分段(确定分段间隔k=或k=)③确定起始号④按预定规则抽取样本(若是等距抽样,起始号为1,分段间隔为k,则抽取的样本编号依次为1,1+k,1+2k,1+3k,…,1+(n-1)k)总体中的个体数较多在总体均分后的每一部分抽样时采用简单随机抽样分层抽样当总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这样的抽样叫∽。

其中分成的各部分叫做层。

将总体分成几层,分层进行抽取①计算各层抽取的个体数②用简单随机抽样或系统抽样总体由差异明显的几部分组成各层抽样时采用简单随机抽样或系统抽样二、统计初步有关概念和公式:1、频数——落在各个小组的数据的个数叫~。

2、频率——每一个小组频数与数据的比值叫做这一组的~。

3、总体——所要考察对象的全体叫做~。

4、个体——每一个考察对象~。

5、样本——从总体中所抽取的一部分个体叫做总体的一个样本。

6、样本容量——样本中个体的数目叫做~。

7、众数——在一组数据中,出现次数最多的数据叫做这组数据的众数。

8、中位数——将一组数据按从小到大排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

9、总体分布——总体取值的概率分布规律通常称为~。

10、连续型总体——可以在实数区间取值的总体叫~。

11、累积频率——样本数据小于某一数值的频率,叫做~。

计算最大值与最小值的差决定组距与数据列法决定分点列表12、频率分布表表的行式横轴——实验结果纵轴频率条形图用高度表示各取值的频率适用于个体取不同值较少横轴——产品尺寸纵轴——频率/组距13、直方图用图形面积的大小表示在各个区间内取值的概率适用于个体在区间内取值横轴——产品尺寸累积频率分布图纵轴——累计频率反映一组数据的分布情况14、总体分布曲线——当样本容量无限增大、分组的组距无缩限小时、频率分布直方图就会无限趋近于一条光滑曲线,这条曲线叫总体密度曲线。

以这条曲线为图象的函数叫做总体的概率密度函数。

总体密度函数反映了总体分布,即反映总体在各个范围内取值的概率。

P(a<ξ<b)的值等于直线x=a,x=b与曲线、x轴围成的图形面积。

15、累积分布曲线——当样本容量无限增大、分组的组距无缩限小时,累积频率分布图就会无限趋近于一条光滑曲线,这条曲线叫累积分布曲线。

它反映了总体的累积分布规律,即曲线上任意一点P(a,b)纵坐标b,表示总体取小于a的值的概率。

①正态总体的概率密度函数f(x)=e-,R(其中总体的平均数,总体的标准差,N(μ,σ2)—正态总体,有时记作N(μ,σ2)1)曲线在轴上方,并且关于直线x=对称:②正态曲线的性质 2)曲线在x=μ时处于最高点,由这一点向左、右两边延伸时,曲线逐渐下降:3)曲线的对称轴位置由μ确定:直线的形状由σ确定,σ越大,曲线的形状越“矮胖”反过来曲线越“高瘦”③正态曲线在几个区间上的取值:区间取值概率(μ-σ,μ+σ)68.3%(μ-2σ,μ+2σ)95.44%(μ-3σ,μ+3σ)99.7% 16、质控图④小概率事件——通常指发生的概率小于5%的事件。

注意小概率事件几乎不可能发生是相对于“一次试验”来说的。

1)提出统计假设,例如统计假设的变量服从正态分布;⑤假设检验的基本思想 2)确定一次试验中的取值a是否落入范围(μ-3σ,μ+3σ);3)作出判断:如果a(μ-3σ,μ+3σ)接受统计假设,如果a(μ-3σ,μ+3σ),由于是小概率事件,就拒绝统计假设。

横轴——时间纵轴——零件尺寸⑥控制图中心线——y=μ上界线——y=μ+3σy=μ-3σ三、总体特征的估计1、特征数:总体平均数μ样本平均数总体方差2样本方差 s2或s*2总体标准差样本标准差 s或s*2、有关公式:样本平均数:=(x1+x2 +...+xn)样本方差: s2或s*2 s 2=[(x1-)2+(x2+)2+...+(x n-)2]样本标准差:s*2=[(x1-)2+(x2+)2+...+(x n-)2简单随机抽样1.现从80件产品中随机抽出20件进行质量检验,下列说法正确的是()A. 80件产品是总体B. 20件产品是样本C. 样本容量是80D. 样本容量是202.对于简单随机抽样,每个个体每次被抽到的机会都()A. 相等B. 不相等C. 无法确定D. 没关系3.下列抽样方法是简单随机抽样的是()A. 在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位是2 709的为三等奖B. 某车间包装一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格C. 某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D. 从10件产品选取3件进行质量检验4. (2010·抚顺高一检测)某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是( )A. 800名同学是总体B. 100名同学是样本C. 每名同学是个体D. 样本容量是1005.为了了解某班学生会考的合格率,要从该班60名同学中抽取20人进行考查分析,则这次考查中的总体容量是,样本容量是.6. (2010·淮北高一质检)一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是.95 33 95 22 00 18 74 72 00 18 38 79 5869 32 81 76 80 26 92 82 80 84 25 39 9084 60 79 80 24 36 59 87 38 82 07 53 8935 96 35 23 79 18 05 98 90 07 35 46 4062 98 80 54 97 20 56 95 15 74 80 08 3216 46 70 50 80 67 72 16 42 79 20 31 8903 43 38 46 82 68 72 32 14 82 99 70 8060 47 18 97 63 49 30 21 30 71 59 73 0550 08 22 23 71 77 91 01 93 20 49 82 9659 26 94 66 39 67 98 607.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽出一个容量为m 的样本,则抽取的m个个体中带有标记的个数估计为( )A. N·B. m·C. N·D. N8.从60件产品中抽取10件进行检查,写出抽取样本的过程.9.某车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量(轴的直径要求为20 mm±0.5 mm),如何采用简单随机抽样法抽取上述样本?10.现有一批零件,其编号为600,601,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查.若用随机数法,怎样设计方案?11.(创新题)第九届Channel[V]全球华语榜中榜在上海举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.12. (2010·洛阳高一综测)上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?答案1. D2.A3.D4. D5. 60 206. 18,00,38,58,32,26,25,397. A8.解析:第一步,将60件产品编号01,02, (60)第二步,在随机数表中任取一数作为开始,如从第一行第一列03开始;第三步,从03开始向右读,依次选出03,47,43,36,46,33,26,16,45,60共10个对应编号的产品当作样本.9. 解析:100件轴的直径为总体,将这100件轴编号00,01,02,…,99,利用随机数法来抽取.10.解析:第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如,选第7行第6个数“7”,向右读;第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916;第三步,以上号码对应的10个零件就是要抽取的对象.11.解析:第一步,先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上分别写上编号,然后放入一个小筒中搅匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.第二步,确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面分别写上1到20这20个数字,代表演出顺序,让每个演员抽一张,各人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.12.解析:选法一满足抽签法的特征,是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为.。

相关文档
最新文档