2004 AMC12A(美国数学竞赛)

2004 AMC12A(美国数学竞赛)
2004 AMC12A(美国数学竞赛)

Alicia earns dollars per hour, of which is deducted to pay local taxes. How

many cents per hour of Alicia's wages are used to pay local taxes?

Solution

On the AMC 12, each correct answer is worth points, each incorrect answer is

worth points, and each problem left unanswered is worth points. If Charlyn leaves of the problems unanswered, how many of the remaining problems

must she answer correctly in order to score at least ?

Solution

For how many ordered pairs of positive integers is ?

Solution

Bertha has daughters and no sons. Some of her daughters have daughters, and

the rest have none. Bertha has a total of daughters and granddaughters, and no

great-granddaughters. How many of Bertha's daughters and grand-daughters have no children?

Solution

The graph of the line is shown. Which of the following is true?

Solution

Let , , , ,

and . Which of the following is the largest?

Solution

A game is played with tokens according to the following rules. In each round, the player with the most tokens gives one token to each of the other players and also places one token into a discard pile. The game ends when some player runs out of tokens. Players , and start with , and tokens, respectively. How

many rounds will there be in the game?

Solution

In the overlapping triangles and sharing common

side , and are right angles, , , ,

and and intersect at . What is the difference between the areas

of and ?

Solution

A company sells peanut butter in cylindrical jars. Marketing research suggests that using wider jars would increase sales. If the diameter of the jars is increased

by without altering the volume, by what percent must the height be decreased?

Solution

The sum of consecutive integers is . What is their median?

Solution

The average value of all the pennies, nickels, dimes, and quarters in Paula's purse is cents. If she had one more quarter, the average value would be cents. How many dimes does she have in her purse?

Solution

Let and . Points and are on the line ,

and and intersect at . What is the length of ?

Solution

Let be the set of points in the coordinate plane, where each of and may

be , , or . How many distinct lines pass through at least two members of ?

Solution

A sequence of three real numbers forms an arithmetic progression with a first term of . If is added to the second term and is added to the third term, the three

resulting numbers form a geometric progression. What is the smallest possible value for the third term in the geometric progression?

Solution

Brenda and Sally run in opposite directions on a circular track, starting at diametrically opposite points. They first meet after Brenda has run meters. They next meet after Sally has run meters past their first meeting point. Each girl runs at a constant speed. What is the length of the track in meters?

Solution

The set of all real numbers for which

is defined is . What is the value of ?

Solution

Let be a function with the following properties:

, and

, for any positive integer .

What is the value of ?

Solution

Square has side length . A semicircle with diameter is constructed

inside the square, and the tangent to the semicircle from intersects

side at . What is the length of ?

Solution

Circles and are externally tangent to each other, and internally tangent to

circle . Circles and are congruent. Circle has radius and passes through

the center of . What is the radius of circle ?

Solution

Select numbers and between and independently and at random, and

let be their sum. Let and be the results when and , respectively, are rounded to the nearest integer. What is the probability that ?

Solution

If , what is the value of ?

Solution

Three mutually tangent spheres of radius rest on a horizontal plane. A sphere of

radius rests on them. What is the distance from the plane to the top of the larger sphere?

Solution

A polynomial

has real coefficients with and distinct complex

zeroes , with and real, , and

Which of the following quantities can be a nonzero number?

Solution

A plane contains points and with . Let be the union of all disks of

radius in the plane that cover . What is the area of ?

Solution

For each integer , let denote the base- number . The

product can be expressed as , where and are positive integers and is as small as possible. What is the value of ?

Solution

答案:

20 dollars is the same as 2000 cents, and of 2000

is cents .

Problem 2

She gets points for the problems she didn't answer. She must

get problems right to score at least 100 Problem 3

Every integer value of leads to an integer solution for Since must be positive,

Also, Since must be positive,

This leaves values for y, which mean there are solutions to the

equation

Problem 4

Since Bertha has 6 daughters, Bertha has granddaughters, of which

none have daughters. Of Bertha's daughters, have daughters,

so do not have daughters.

Therefore, of Bertha's daughters and granddaughters, do not have

daughters .

OR

Draw a tree diagram and see that the answer can be found in the sum of 6 + 6 granddaughters, 5 + 5 daughters, and 4 more daughters

Problem 5

It looks like it has a slope of and is shifted up.

Problem 6

After comparison, is the largest.

Problem 7

Look at a set of 3 rounds, where the players have , , and tokens. Each

of the players will gain two tokens from the others and give away 3 tokens, so overall, each player will lose 1 token.

Therefore, after 12 sets of 3 rounds, or 36 rounds, the players will have 3, 2, and 1 tokens, repectively. After 1 more round, player will give away his last 3 tokens

and the game will stop .

Problem 8

Solution 1

Since and , . By alternate interior angles and AA~, we find that , with side length ratio . Their heights also have the same ratio, and since the two heights add up to , we have

that and . Subtracting the

areas, .

Solution 2

Let represent the area of figure . Note

that and .

.

Problem 9

When the diameter is increased by , it is increased by , so the area of the base

is increased by .

To keep the volume the same, the height must be of the original height, which is a reduction

Problem 10

The median of a sequence is the middle number of the sequence when the sequence is arranged in order. Since the integers are consecutive, the median is also

the mean, so the median is .

Problem 11

Solution 1

Let the total value (in cents) of the coins Paula has originally be , and the number of coins she has be .

Then and .Substituting yields

. It is easy to see now that Paula has 3

quarters, 1 nickel, so she has dimes.

Solution 2

If the new coin was worth 20 cents, adding it would not change the mean at all. The additional 5 cents raise the mean by 1, thus the new number of coins must be 5. Therefore initially there were 4 coins worth a total of cents. As in the previous solution, we conclude that the only way to get 80 cents using 4 coins is 25+25+25+5.

Problem 12

of can be found using points to

be . Similarily, has the

equation . These two equations intersect the line at and . Using the

or right triangles, the answer is . Problem 13

Solution 1

Let's count them by cases:

?Case 1: The line is horizontal or vertical, clearly .

?Case 2: The line has slope , with through and additional ones one unit above or below those. These total .

?Case 3: The only remaining lines pass through two points, a vertex and a non-vertex point on the opposite side. Thus we have each vertex pairing up with two points on

the two opposites sides, giving lines.

These add up to .

There are ways to pick two points, but we've clearly overcounted all of the lines which pass through three points. In fact, each line which passes through

three points will have been counted times, so we have to subtract for

each of these lines. Quick counting yields horizontal, vertical, and diagonal lines, so the answer is distinct lines.

Problem 14

Let be the common difference.

Then are the terms of the geometric progression. Since the middle term is the geometric mean of the other

two terms, . The smallest possible value occurs when , and the third term

is .

Problem 15

Solution 1

Call the length of the race track . When they meet at the first meeting point, Brenda has run meters, while Sally has run meters. By the second

meeting point, Sally has run meters, while Brenda has run meters. Since they run at a constant speed, we can set up

a proportion: . Cross-multiplying, we get

that .

The total distance the girls run between the start and the first meeting is one half of the track length.

The total distance they run between the two meetings is the track length.

As the girls run at constant speeds, the interval between the meetings is twice as long as the interval between the start and the first meeting.

Thus between the meetings Brenda will run meters. Therefore the

length of the track is meters

Problem 16

We know that the domain of , where is a constant, is .

So . By the definition of logarithms, we then

have .

Then and .

Problem 17

Problem 18

Solution 1

Let the point of tangency be . By the Two

Tangent Theorem and . Thus .

The Pythagorean Theorem on yields

Hence .

Solution 2

Clearly, . Thus, the sides of right triangle are in arithmetic

progression. Thus it is similar to the triangle and

since , .

Problem 19

Solution 1

Note that since is the center of the larger circle of radius . Using

the Pythagorean Theorem on ,

Now using the Pythagorean Theorem on ,

Substituting ,

Solution 2

We can apply Descartes' Circle Formula.

The four circles have curvatures , and .

We have

Simplifying, we get

Problem 20

Solution 1

Casework:

1.. The probability that and is . Notice that the

sum ranges from to with a symmetric distribution across ,

and we want . Thus the chance is .

2.. The probability that and is , but

now , which makes automatically. Hence the chance

is .

3.. This is the same as the previous case.

4.. We recognize that this is equivalent to the first case.

Our answer is .

Solution 2

Use areas to deal with this continuous probability problem. Set up a unit square with values of on x-axis and on y-axis.

If then this will work because . Similarly

if then this will work because in order for this to happen, and are each greater than making , and . Each of these triangles in

the unit square has area of 1/8.

The only case left is when . Then each of and must be 1 and 0, in any

order. These cut off squares of area 1/2 from the upper left and lower right corners of the unit square.

Then the area producing the desired result is 3/4. Since the area of the unit square is 1, the probability is

AMC/AIME美国数学竞赛 试题真题

AMC/AIME美国数学竞赛试题真题 考试信息 AMC最新考试时间: ●2010年第26届AMC8于 11月16日,星期二 ●2011第12届AMC10A,第62届AMC12A 于2月8日,星期二 ●2011第12届AMC10B,第62届AMC12B 于2月23日,星期三 ●2011第29届AIME-1于3月17日,星期四 2011第29届AIME-2于3月30日,星期三 ●2009年AMC8考试情况

●2008年考试情况 AMC/AIME中国历程: 1983第1届AIME上海有76名同学获得参赛资格 1984年第2届AIME有110人获得参赛资格 1985年第3届AIME北京有118名同学获得参赛资格 1986年第4届AIME上海有154名同学获得参赛资格,我国首次参加IMO的上海向明中学吴思皓就是在第四届AIME中获得满分 1992年第10届AIME上海有一千多名同学获得参赛资格,其中格致中学潘毅明,交大附中张觉,上海中学葛建庆均获满分1993年第11届AIME上海有一千多名同学获得参赛资格,其中华东师大二附中高一王海栋,格致中学高二(女)黄静,市西中学高二张

亮,复旦附中高三韩志刚四人获得满分,前三名总分排名复旦附中41分,华东师大二附中41分,上海中学40分。 北京地区参加2006年AMC的共有7所市重点学校的842名学生,有515名学生获得参加AIME资格,其中,清华附中有61名学生参加AMC,45名学生获得AIME资格,20名学生获得荣誉奖章 据悉中国大陆以下地区可以报名参加考试: 北京地区:中国数学会奥林匹克委员会负责组织实施 长春地区、哈尔滨地区也有参加考试 在华举办的美国人子弟学校也有参加考试广州地区:《数学奥林匹克报》负责组织实施。 在中国大陆报名者就在中国大陆考试。考题采用英文版。 2009年AMC中国地区参赛学校一览表

2010年美国大学生数学建模竞赛B题一等奖

Summary Faced with serial crimes,we usually estimate the possible location of next crime by narrowing search area.We build three models to determine the geographical profile of a suspected serial criminal based on the locations of the existing crimes.Model One assumes that the crime site only depends on the average distance between the anchor point and the crime site.To ground this model in reality,we incorporate the geographic features G,the decay function D and a normalization factor N.Then we can get the geographical profile by calculating the probability density.Model Two is Based on the assumption that the choice of crime site depends on ten factors which is specifically described in Table5in this paper.By using analytic hierarchy process (AHP)to generate the geographical profile.Take into account these two geographical profiles and the two most likely future crime sites.By using mathematical dynamic programming method,we further estimate the possible location of next crime to narrow the search area.To demonstrate how our model works,we apply it to Peter's case and make a prediction about some uncertainties which will affect the sensitivity of the program.Both Model One and Model Two have their own strengths and weaknesses.The former is quite rigorous while it lacks considerations of practical factors.The latter takes these into account while it is too subjective in application. Combined these two models with further analysis and actual conditions,our last method has both good precision and operability.We show that this strategy is not optimal but can be improved by finding out more links between Model One and Model Two to get a more comprehensive result with smaller deviation. Key words:geographic profiling,the probability density,anchor point, expected utility

AMC10美国数学竞赛A卷附中文翻译和答案之欧阳学创编

2011AMC10美国数学竞赛A卷时间:2021.03.03 创作:欧阳学 1. A cell phone plan costs $20 each month, plus 5¢per text message sent, plus 10¢ for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay? (A) $24.00(B) $24.50(C) $25.50(D) $28.00(E) $30.00 2. A small bottle of shampoo can hold 35 milliliters of shampoo, Whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? (A) 11(B) 12(C) 13(D) 14(E) 15 3. Suppose [a b] denotes the average of a and b, and {a b c} denotes the average of a, b, and c. What is {{1 1 0} [0 1] 0}? (A)(B)(C)(D)(E) 4. Let X and Y be the following sums of arithmetic sequences: X= 10 + 12 + 14 + …+ 100. Y= 12 + 14 + 16 + …+ 102. What is the value of ?

希望杯数学竞赛小学三年级精彩试题

小学三年级数学竞赛训练题(二) 1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数. 8.(1)如果“访故”变成“放诂”,那么“1234”就变成. (2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.

10.图9、图10分别是由汉字组成的算式,不同的汉字代表不 同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使 算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大 值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了, 大家都盼着晴天,再过36小时会出太阳吗? 14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是 星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少?

如何准备美国大学生数学建模比赛

如何准备美赛 数学模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,2012年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。 对于不同功能的模型有不同的方法,例如 评价模型方法有层次分析、模糊综合评价、熵值法等; 优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等); 预测模型方法有灰色预测、神经网络、马尔科夫链等。 在数学中国、数学建模网站上有许多关于这些方法的相关介绍与文献。 软件与书籍: 软件一般三款足够:Matlab、SPSS、Lingo,学好一个即可。 书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够: 《数学模型》姜启源谢金星叶俊高等教育出版社 《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社 《数学建模算法与程序》司守奎国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解模型思想,参考自学。 分工合作:数模团队三个人,一般是分别负责建模、编程、写作。当然编程的可以建模,建模的也可以写作。这个要视具体情况来定,但这三样必须要有人擅长,这样才能保证团队最大发挥出潜能。 这三个人中负责建模的人是核心,要起主导作用,因为建模的人决定了整篇论文的思路与结构,尤其是模型的选择直接关系到了论文的结果与质量。 对于建模的人,首先要去大量的阅读文献,要见识尽可能多的模型,这样拿到一道题就能迅速反应到是哪一方面的模型,确定题目的整体思路。 其次是接口的制作,这是体现建模人水平的地方。所谓接口的制作就是把死的方法应用到具体问题上的过程,即用怎样的表达完成程序设计来实现模型。比如说遗传算法的方法步骤大家都知道,但是应用到具体问题上,编码、交换、变异等等怎么去做就是接口的制作。往往对于一道题目大家都能想到某种方法,可就是做不出来,这其实是因为接口不对导致的。做接口的技巧只能从不断地实践中习得,所以说建模的人任重道远。 另外,在平时训练时,团队讨论可以激烈一些,甚至可以吵架,但比赛时,一定要保持心平气和,不必激烈争论,大家各让3分,用最平和的方法讨论问题,往往能取得效果并且不耽误时间。经常有队伍在比赛期间发生不愉快,导致最后的失败,这是不应该发生的,毕竟大家为了一个共同的目标而奋斗,这种经历是很难得的。所以一定要协调好队员们之间的关系,这样才能保证正常发挥,顺利进行比赛。 美赛特点:一般人都认为美赛比国赛要难,这种难在思维上,美赛题目往往很新颖,一时间想不出用什么模型来解。这些题目发散性很强,需要查找大量文献来确定题目的真正意图,美赛更为注重思想,对结果的要求却不是很严格,如果你能做出一个很优秀的模型,也许结果并不理想也可能获得高奖。另外,美赛还难在它的实现,很多东西想到了,但实现起来非常困难,这需要较高的编程水平。 除了以上的差异,在实践过程中,美赛和国赛最大的区别有两点: 第一点区别当然是美赛要用英文写作,而且要阅读很多英文文献。对于文献阅读,可以安装有道词典,

2011AMC10美国数学竞赛A卷附中文翻译和答案

2011AMC10美国数学竞赛A卷 1. A cell phone plan costs $20 each month, plus 5¢ per text message sent, plus 10¢ for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay? (A) $24.00 (B) $24.50 (C) $25.50 (D) $28.00 (E) $30.00 2. A small bottle of shampoo can hold 35 milliliters of shampoo, Whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 3. Suppose [a b] denotes the average of a and b, and {a b c} denotes the average of a, b, and c. What is {{1 1 0} [0 1] 0}? (A) 2 9(B)5 18 (C)1 3 (D) 7 18 (E) 2 3 4. Let X and Y be the following sums of arithmetic sequences: X= 10 + 12 + 14 + …+ 100. Y= 12 + 14 + 16 + …+ 102. What is the value of Y X ?

2015年全国高中数学联赛试卷解析

2015 年全国高中数学联合竞赛(A 卷) 参考答案及评分标准 一试 说明: 1.评阅试卷时,请依据本评分标冶填空题只设。分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次. 一、填空题:本大题共8小题,每小题8分,满分64分. 1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22 a b a +=-,即20a b +=,所以(2)424f a b =++=. 2.若实数α满足ααtan cos =,则αα 4cos sin 1 +的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 2 2=+αα, 得 )cos 1)(sin 1(sin sin sin cos cos sin 122224 αααααααα-+=++=+ 2cos sin 22=-+=αα. 3.已知复数数列{}n z 满足),2,1(1,111???=++==+n ni z z z n n ,其中i 为虚数单位,n z 表示 n z 的共轭复数,则=2015z . 答案:2015 + 1007i .解:由己知得,对一切正整数n ,有 211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+?+=+. 4.在矩形ABCD 中,1,2==AD AB ,边DC 上(包含点D 、C )的动点P 与CB 延长线上(包含点B )的动点Q 满足条件BQ DP =,则PQ PA ?的最小值为 . 答案 34 . 解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则 由||||DP BQ = 得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=--- ,因此, 22133()(2)(1)(1)1()244 PA PQ t t t t t t ?=-?-+-?--=-+=-+≥ . 当12t =时,min 3 ()4 PA PQ ?= . 5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案: 2 55 .解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法

美国AMC8数学竞赛试题(含答案)

2001 年 美国AMC8 (2001年 月 日 时间40分钟) 1. 卡西的商店正在制作一个高尔夫球奖品。他必须给一颗高尔夫球面上的300个小凹洞着色, 如果他每着色一个小凹洞需要2秒钟,试问共需多 分钟才能完成他的工作。 (A) 4 (B) 6 (C) 8 (D) 10 (E) 12 。 2. 我正在思考两个正整数,它们的乘积是24且它们的和是11,试问这两个数中较大的数是什 么 。 (A) 3 (B) 4 (C) 6 (D) 8 (E) 12 。 3. 史密斯有63元,艾伯特比安加多2元,而安加所有的钱是史密斯的三分之一,试问艾伯特 有 元。 (A) 17 (B) 18 (C) 19 (D) 21 (E) 23 。 4. 在每个数字只能使用一次的情形下,将1,2,3,4及9作成最小的五位数,且此五位数为 偶数,则其十位数字为 。 (A) 1 (B) 2 (C) 3 (D) 4 (E) 9 。 5. 在一个暴风雨的黑夜里,史努比突然看见一道闪光。10秒钟后,他听到打雷声音。声音的速 率是每秒1088呎,但1哩是5280呎。若以哩为单位的条件下,估计史努比离闪电处的距离 最接近下列何者 。 (A) 1 (B) 121 (C) 2 (D) 22 1 (E) 3 。 6. 在一笔直道路的一旁有等间隔的6棵树。第1棵树与第4棵树之间的距离是60呎。试问第1 棵树到最后一棵树之间的距离是 呎。 (A) 90 (B) 100 (C) 105 (D) 120 (E) 140 。 问题7、8、9请参考下列叙述: 主题:竞赛场所上的风筝展览 7. 葛妮芙为提升她的学校年度风筝奥林匹亚竞赛的质量,制作了一个小风筝 与一个大风筝,并陈列在公告栏展览,这两个风筝都如同图中的形状, 葛妮芙将小风筝张贴在单位长为一吋(即每两点距离一吋)的格子板上,并将 大风筝张贴在单位长三吋(即每两点距离三吋)的格子板上。试问小风筝的面 积是 平方吋。 (A) 21 (B) 22 (C) 23 (D) 24 (E) 25 。 8. 葛妮芙在大风筝内装设一个连接对角顶点之十字交叉型的支撑架子,她必须使用 吋的 架子材料。 (A) 30 (B) 32 (C) 35 (D) 38 (E) 39 。 9. 大风筝要用金箔覆盖。金箔是从一张刚好覆盖整个格子板的矩形金箔裁剪下来的。试问从四 个角隅所裁剪下来废弃不用的金箔是 平方吋。 (A) 63 (B) 72 (C) 180 (D) 189 (E) 264 。 10. 某一收藏家愿按二角五分(即41元)银币面值2000%的比率收购银币。在该比率下,卜莱登现 有四个二角五分的银币,则他可得到 元。 (A) 20 (B) 50 (C) 200 (D) 500 (E) 2000 。 11. 设四个点A ,B ,C ,D 的坐标依次为A (3,2),B (3,-2),C (-3,-2),D (-3,0)。则四边形 ABCD 的面积是 。 (A) 12 (B) 15 (C) 18 (D) 21 (E) 24 。 12. 若定义a ?b =b a b a -+,则(6?4)?3= 。 (A) 4 (B) 13 (C) 15 (D) 30 (E) 72 。 13. 在黎琪儿班级36位学生中,有12位学生喜爱巧克力派,有8位学生喜爱苹果派,且有6 位学生喜爱蓝莓派。其余的学生中有一半喜爱樱桃派,另一半喜爱柠檬派。黎琪儿想用圆形 图显示此项数据。试问:她应该用 度的扇形表示喜欢樱桃派的学生。 (A) 10 (B) 20 (C) 30 (D) 50 (E) 72 。 14. 泰勒在自助餐店排队,准备挑选一种肉类,二种不同蔬菜,以及一种点心。若不计较食物 的挑选次序,则他可以有多少不同选择方法?

2018年美国数学竞赛 AMC 试题

2018 AIME I Problems Problem 1 Let be the number of ordered pairs of integers with and such that the polynomial can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when is divided by . Problem 2 The number can be written in base as , can be written in base as , and can be written in base as , where . Find the base- representation of . Problem 3 Kathy has red cards and green cards. She shuffles the cards and lays out of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is , where and are relatively prime positive integers. Find . Problem 4 In and . Point lies strictly between and on and point lies strictly between and on so that . Then can be expressed in the form , where and are relatively prime positive integers. Find . Problem 5 For each ordered pair of real numbers satisfying there is a real number such that

美国大学生数学建模竞赛优秀论文翻译

优化和评价的收费亭的数量 景区简介 由於公路出来的第一千九百三十,至今发展十分迅速在全世界逐渐成为骨架的运输系统,以其高速度,承载能力大,运输成本低,具有吸引力的旅游方便,减少交通堵塞。以下的快速传播的公路,相应的管理收费站设置支付和公路条件的改善公路和收费广场。 然而,随着越来越多的人口密度和产业基地,公路如花园州公园大道的经验严重交通挤塞收费广场在高峰时间。事实上,这是共同经历长时间的延误甚至在非赶这两小时收费广场。 在进入收费广场的车流量,球迷的较大的收费亭的数量,而当离开收费广场,川流不息的车辆需挤缩到的车道数的数量相等的车道收费广场前。因此,当交通繁忙时,拥堵现象发生在从收费广场。当交通非常拥挤,阻塞也会在进入收费广场因为所需要的时间为每个车辆付通行费。 因此,这是可取的,以尽量减少车辆烦恼限制数额收费广场引起的交通混乱。良好的设计,这些系统可以产生重大影响的有效利用的基础设施,并有助于提高居民的生活水平。通常,一个更大的收费亭的数量提供的数量比进入收费广场的道路。 事实上,高速公路收费广场和停车场出入口广场构成了一个独特的类型的运输系统,需要具体分析时,试图了解他们的工作和他们之间的互动与其他巷道组成部分。一方面,这些设施是一个最有效的手段收集用户收费或者停车服务或对道路,桥梁,隧道。另一方面,收费广场产生不利影响的吞吐量或设施的服务能力。收费广场的不利影响是特别明显时,通常是重交通。 其目标模式是保证收费广场可以处理交通流没有任何问题。车辆安全通行费广场也是一个重要的问题,如无障碍的收费广场。封锁交通流应尽量避免。 模型的目标是确定最优的收费亭的数量的基础上进行合理的优化准则。 主要原因是拥挤的

2019AMC 8(美国数学竞赛)题目

2019 AMC 8 Problems Problem 1 Ike and Mike go into a sandwich shop with a total of to spend. Sandwiches cost each and soft drinks cost each. Ike and Mike plan to buy as many sandwiches as they can and use the remaining money to buy soft drinks. Counting both soft drinks and sandwiches, how many items will they buy? Problem 2 Three identical rectangles are put together to form rectangle , as shown in the figure below. Given that the length of the shorter side of each of the smaller rectangles is feet, what is the area in square feet of rectangle ?

Problem 3 Which of the following is the correct order of the fractions , , and , from least to greatest? Problem 4 Quadrilateral is a rhombus with perimeter meters. The length of diagonal is meters. What is the area in square meters of rhombus ? Problem 5 A tortoise challenges a hare to a race. The hare eagerly agrees and quickly runs ahead, leaving the slow-moving tortoise behind. Confident that he will win, the hare stops to take a nap. Meanwhile, the tortoise walks at a slow steady pace for the entire race. The hare awakes and runs to the finish line, only to find the tortoise already there. Which of the following graphs matches the description of the race, showing the distance traveled by the two animals over time from start to finish?

美国数学学会中学生数学竞赛真题和答案解析2015AMC8 Solutions

This Solutions Pamphlet gives at least one solution for each problem on this year’s exam and shows that all the problems can be solved using material normally associated with the mathematics curriculum for students in eighth grade or below. These solutions are by no means the only ones possible, nor are they necessarily superior to others the reader may devise. We hope that teachers will share these solutions with their students. However, the publication, reproduction, or communication of the problems or solutions of the AMC 8 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Dissemination at any time via copier, telephone, email, internet or media of any type is a violation of the competition rules. Correspondence about the problems and solutions should be addressed to: Prof. Norbert Kuenzi, AMC 8 Chair 934 Nicolet Ave Oshkosh, WI 54901-1634 Orders for prior year exam questions and solutions pamphlets should be addressed to: MAA American Mathematics Competitions Attn: Publications PO Box 471 Annapolis Junction, MD 20701 ? 2015 Mathematical Association of America

AMC美国数学竞赛AMCB试题及答案解析

2003 AMC 10B 1、Which of the following is the same as 2、Al gets the disease algebritis and must take one green pill and one pink pill each day for two weeks. A green pill costs more than a pink pill, and Al’s pills cost a total of for the two weeks. How much does one green pill cost? 3、The sum of 5 consecutive even integers is less than the sum of the ?rst consecutive odd counting numbers. What is the smallest of the even integers? 4、Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the ?gure. She plants one flower per square foot in each region. Asters cost 1 each, begonias each, cannas 2 each, dahlias each, and Easter lilies 3 each. What is the least possible cost, in dollars, for her garden? 5、Moe uses a mower to cut his rectangular -foot by -foot lawn. The swath he cuts is inches wide, but he overlaps each cut by inches to make sure that no grass is missed. He walks at the rate of

1985~美国大学生数学建模竞赛题目集锦

1985~2015年美国大学生数学建模竞赛题目集锦 目录 1985 MCM A: Animal Populations (3) 1985 MCM B: Strategic Reserve Management (3) 1986 MCM A: Hydrographic Data (4) 1986 MCM B: Emergency-Facilities Location (4) 1987 MCM A: The Salt Storage Problem (5) 1987 MCM B: Parking Lot Design (5) 1988 MCM A: The Drug Runner Problem (5) 1988 MCM B: Packing Railroad Flatcars (6) 1989 MCM A: The Midge Classification Problem (6) 1989 MCM B: Aircraft Queueing (6) 1990 MCM A: The Brain-Drug Problem (6) 1990 MCM B: Snowplow Routing (7) 1991 MCM A: Water Tank Flow (8) 1991 MCM B: The Steiner Tree Problem (8) 1992 MCM A: Air-Traffic-Control Radar Power (8) 1992 MCM B: Emergency Power Restoration (9) 1993 MCM A: Optimal Composting (10) 1993 MCM B: Coal-Tipple Operations (11) 1994 MCM A: Concrete Slab Floors (11) 1994 MCM B: Network Design (12) 1995 MCM A: Helix Construction (13) 1995 MCM B: Faculty Compensation (13) 1996 MCM A: Submarine Tracking (13) 1996 MCM B: Paper Judging (13) 1997 MCM A: The Velociraptor Problem (14) 1997 MCM B: Mix Well for Fruitful Discussions (15) 1998 MCM A: MRI Scanners (16) 1998 MCM B: Grade Inflation (17) 1999 MCM A: Deep Impact (17) 1999 MCM B: Unlawful Assembly (18) 2000 MCM A: Air Traffic Control (18) 2000 MCM B: Radio Channel Assignments (19) 2001 MCM A: Choosing a Bicycle Wheel (20) 2001 MCM B: Escaping a Hurricane's Wrath (An Ill Wind...). (21) 2002 MCM A: Wind and Waterspray (23) 2002 MCM B: Airline Overbooking (23) 2003 MCM A: The Stunt Person (24) 2003 MCM B: Gamma Knife Treatment Planning (24) 2004 MCM A: Are Fingerprints Unique? (25) 2004 MCM B: A Faster QuickPass System (25)

2020年度美国数学竞赛AMC12 A卷(带答案)

AMC2020 A Problem 1 Carlos took of a whole pie. Maria took one third of the remainder. What portion of the whole pie was left? Problem 2 The acronym AMC is shown in the rectangular grid below with grid lines spaced unit apart. In units, what is the sum of the lengths of the line segments that form the acronym AMC Problem 3 A driver travels for hours at miles per hour, during which her car gets miles per gallon of gasoline. She is paid per mile, and her only expense is gasoline at per gallon. What is her net rate of pay, in dollars per hour, after this expense?

Problem 4 How many -digit positive integers (that is, integers between and , inclusive) having only even digits are divisible by Problem 5 The integers from to inclusive, can be arranged to form a -by- square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum? Problem 6 In the plane figure shown below, of the unit squares have been shaded. What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry

美国大学生数学竞赛2011题目中文版

A题:滑雪场问题 请设计一个单板滑雪场(现为“半管”或“U型池”)的形状,以便能使熟练的单板滑雪选手最大限度地产生垂直腾空。“垂直腾空“是超出“半管”边缘以上的最大的垂直距离。定制形状时要优化其他可能的要求,如:在空中产生最大的身体扭曲。在制定一个“实用”的场地时哪些权衡因素可能需要? 微分方程,确定一个形状,现在是半圆形的 B题中继站的协调 甚高频无线电频谱包含信号的发送和接收。这种限制是可以被“中继站”克服,中继站捕捉到弱信号,放大它们,再用不同的频率重新发送。这样, 低功耗的用户们/站(例如移动电话用户/站)在用户与用户(站与站)之间无法直接接触联系的情况下,通过使用中继站,就可以相互交流。然而,中继站之间会相互干扰,除非它们离的足够远或者它们通过充分分离的频率来传送。 除了地理的分离、“持续的音频编码控制系统”,有时被称为“私人专线”技术,可以用来减轻干扰问题。该系统给每一个中继站连接了一个独立的次声频音,这个次声频音由想通过中继站交流的每一个用户所发送。中继站只回应接收到的特殊的私人专线信号。通过这个系统,两个邻近的中继站可以共享相同的频率对(包括接收和发送);这样,在一个特定的区域可以容纳更多的中继站(并因此能同时容纳更多的用户)。 单纯形方法,分配问题:匈牙利方法, 问题: 1.为一个半径40英里的圆形平台区域决定最少数量的中继站,设计一个方案,要求能容纳1000个用户同时在线。假设甚高频无线电频谱范围是145兆赫~148兆赫,中继站发送的频率要么是600千赫以上,要么低于接收的频率600千赫,共有54种不同的私人专线可用。 2.如果有10,000用户同时被容纳,如何改变你的解决方案? 3. 在由于山区引起信号传播阻碍的地区,讨论这样的情形。 频率和距离 甚高频无线频谱包括视距发送和接收。这种限制可以被“中继器”所克服,中继器接收到微弱的信号,放大然后在不同的频率重传信号。所以,如果使用一个中继器,低功率用户(比如移动台)可以和另外一个不能直接建立用户至用户联系的用户进行通信。但是,如果中继器之间距离不够远或者频率相距不够大,中继器之间会产生相互的干扰。 除了空间上的远离外,“连续语音控制静噪系统”(CTCSS),有时被称为“专线”(PL)的技术可以被用来解决干扰的问题。这个系统以不同的亚音频和每个中继器联系,所有希望通过那个中继器通信的用户都发送那个亚音频。只有当以自己的专线音频接收信号时中继器才响应。有了这个系统,两个相邻的中继器可以共享同样的频率对(为了接收和发送);所以更多地中继器(也意味着更多的用户)可以共存于一个特别的地带。 对于一个半径为40英里的圆形平坦地带,决定满足1000个同时存在的用户的最小中继器数目。假设可用频谱从145到148MHz,中继器的发送频率高于或低于接收频率600kHz,则有54个不同的亚音频可供使用。

相关文档
最新文档