钢化玻璃自爆

合集下载

中空钢化玻璃自爆特征鉴别原理

中空钢化玻璃自爆特征鉴别原理

中空钢化玻璃自爆特征鉴别原理今天来聊聊中空钢化玻璃自爆特征鉴别原理的事儿。

你看啊,生活中有时候会遇到中空钢化玻璃突然自爆的情况,就像住在高楼的一户人家,窗户玻璃突然“砰”的一声就碎了,可吓人啦。

那我们怎么知道它是为啥自爆的呢?这就涉及到中空钢化玻璃自爆特征的鉴别原理了。

先说说钢化玻璃为啥会自爆吧。

这其中有个重要因素——硫化镍(NiS)。

硫化镍就像个小炸弹一样,在玻璃里头。

钢化玻璃生产的过程中,由于工艺原因呢,硫化镍可能以一种不稳定的状态存在。

正常情况下,它在玻璃里老实呆着,但要是温度、压力啥的发生变化,它就可能发生相变。

打个比方呢,它就像是一颗休眠的种子,遇到合适的外部环境就突然“发芽”,这个“芽”就是它从一种稳定结构变成不稳定结构,导致玻璃内部应力分布发生巨大改变,“嘭”的一下玻璃就爆了。

这是一种内部因素导致的自爆。

那有的自爆是外部因素造成的。

比如说,玻璃边缘受到坚硬物体的挤压或者碰撞。

我们可以把玻璃边缘想象成城墙的边儿,如果有人在城墙上打了个小洞(受到局部外部撞击),这个城墙(玻璃)的结构就受到影响了,慢慢的就有可能会崩塌。

这种因素造成的自爆特征和内部因素还不太一样呢。

从自爆特征上来说,如果是硫化镍导致的自爆,一般玻璃碎片会比较小、均匀,裂纹呈现出类似蝴蝶翅膀的形状。

为啥呢?这是因为硫化镍引起的内部应力释放是在玻璃内部比较均匀地展开,就像往平静的湖水里扔一颗炸弹,冲击波是均匀往外扩散的。

而外部撞击导致的自爆呢,通常先会有一个撞击点,然后裂纹从这个点开始向四周扩散,就像蜘蛛网,从蛛网上那个关键点向四周蔓延一样。

这时候你可能会问了,就靠这几个特征就能准确判断吗?老实说,我一开始也不明白。

其实啊,这还不是绝对准确的,有时候这几种情况会交织混合,判断起来真的很困难。

比如说如果玻璃先受了一点点不易察觉的边缘撞击,然后正好遇到天气冷热交替(影响到硫化镍的状态)才自爆了,这时候自爆的特征就很模糊了。

但是呢,在实际的建筑或者汽车等使用中空钢化玻璃的场景中,了解这些基本的鉴别原理还是很有用的。

钢化玻璃自爆的主要原因及解决方案

钢化玻璃自爆的主要原因及解决方案

钢化玻璃自爆的主要原因及解决方案在广义上,钢化玻璃自爆一般定义为钢化玻璃在无直接外力作用下发生自动炸裂的现象。

实际上,钢化加工过程中的自动爆裂与储存、运输、使用过程中的自爆是两个完全不同的概念,二者不可混淆。

钢化玻璃生产过程中的自爆钢化玻璃在生产过程中的自爆一般由玻璃中的砂粒、气泡等夹杂物及冷加工时造成的缺口、刮伤、爆边和钢化不合理等工艺缺陷引起的。

对于玻璃在加工过程中炸裂,应采取以下措施:选用优质的玻璃原片:玻璃原片对于钢化玻璃成品质量的玻璃在炉内炸裂是至关重要的。

若玻璃内含有气泡、结石、冷裂纹以及表面划伤过重都会使用在热处理过程中产生应力集中,从而容易破裂。

但是,浮法玻璃生产线不稳定时也可能出现上述缺陷,应该认真做好每片原片玻璃的质检工作。

注意预处理方式:切割玻璃时应选用正确角度的刀轮和施加压力,使玻璃切面的上部裂纹带很窄,而下部的镜面较宽,从而获得良好切口,减少边部裂纹。

玻璃切割后边部都会存在微裂纹,钢化前尽量使用抛光边或精磨边,减少玻璃微裂纹的存在和对后期使用的影响。

角部尽量选用圆形角,减少钢化过程中的应力集中。

一般厚度≥8mm的玻璃要求进行精磨边,厚度≤6mm的玻璃可以用湿砂带磨边机磨边。

合理设置炉温:从玻璃受热及内应力变化分析来看,温度的剧烈变化是引起玻璃炉内炸裂是主要的外部因素。

温度越高,玻璃厚度方向上温度梯度越大,内应力越大,玻璃炸裂概率越高。

12mm、15mm、19mm厚的玻璃危险性更大。

因此,在钢化温度范围内不宜采用过高的温度。

合理设置输送速度:当玻璃从上片台输入钢化炉时,玻璃前端先进入炉内受热膨胀,而处于炉外的玻璃后端较冷。

在冷热交界处平面方向上产生的温度差,使冷端产生张应力,热端产生压应力。

输送速度越快,这种温差越小。

但是,如果加快输送速度,玻璃迅速处于高温之中,受热冲击增大,即在厚度方向上的温度梯度相对增大,玻璃炉内炸裂概率随之增大。

因此,在实际生产中就要权衡利弊,然后选择合理输送速度。

钢化玻璃自爆的原因是什么

钢化玻璃自爆的原因是什么

自爆及其分类钢化玻璃自爆可以表述为钢化玻璃在无外部直接作用的情况下而自动发生破碎的现象。

在钢化加工、贮存、运输、安装、使用等过程中均可发生钢化玻璃自爆。

自爆按起因不同可分为两种:一是由玻璃中可见缺陷引起的自爆,例如结石、砂粒、气泡、夹杂物、缺口、划伤、爆边等;二是由玻璃中硫化镍(NiS )杂质膨胀引起的自爆。

这是两种不同类型的自爆,应明确分类,区别对待,采用不同方法来应对和处理。

前者一般目视可见,检测相对容易,故生产中可控。

后者则主要由玻璃中微小的硫化镍颗粒体积膨胀引发,无法目测检验,故不可控。

在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。

硫化镍类自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失,造成业主的不满甚至更为严重的其他后果。

所以,硫化镍引发的自爆是我们讨论的重点。

钢化玻璃自爆机理钢化玻璃内部的硫化镍膨胀是导致钢化玻璃自爆的主要原因。

玻璃经钢化处理后,表面层形成压应力。

内部板芯层呈张应力,压应力和张应力共同构成一个平衡体。

玻璃本身是一种脆性材料,耐压但不耐拉,所以玻璃的大部分破碎是张应力引发的。

钢化玻璃中硫化镍晶体发生相变时,其体积膨胀,处于玻璃板芯张应力层的硫化镍膨胀使钢化玻璃内部产生更大的张应力,当张应力超过玻璃自身所能承受的极限时,就会导致钢化玻璃自爆。

国外研究证明:玻璃主料石英砂或砂岩带入镍,燃料及辅料带入硫,在1400r〜1500C高温熔窑燃烧熔化形成硫化镍。

当温度超过1000C时,硫化镍以液滴形式随机分布于熔融玻璃液中。

当温度降至797C时,这些小液滴结晶固化,硫化镍处于高温态的a -NiS晶相(六方晶体)。

当温度继续降至379C时,发生晶相转变成为低温状态的B -NiS (三方晶系),同时伴随着2.38%的体积膨胀。

这个转变过程的快慢,既取决于硫化镍颗粒中不同组成物(包括Ni7S6、NiS、NiS1.01 )的百分比含量,还取决于其周围温度的高低。

钢化玻璃自爆率标准

钢化玻璃自爆率标准

钢化玻璃自爆率标准同学们,今天咱们来聊聊钢化玻璃自爆率标准这个有点专业的话题。

你们可能会好奇,啥是钢化玻璃自爆率呀?其实很简单,就是钢化玻璃自己突然破裂的概率。

那为啥钢化玻璃会自爆呢?这是因为在生产过程中,可能会有一些微小的杂质或者缺陷留在玻璃里面,时间长了或者在某些条件下,就可能导致玻璃自己破裂。

那自爆率标准是多少呢?一般来说,行业内认为钢化玻璃的自爆率在千分之三左右是比较正常的。

也就是说,一千块钢化玻璃里,可能会有大概三块会自己破裂。

这个标准可不是随便定的,是经过很多研究和实践得出来的。

比如说,如果一块钢化玻璃用在家庭的窗户上,自爆了,那可能会有危险,还得花钱重新换玻璃,很麻烦。

所以自爆率不能太高,得控制在一个大家能接受的范围内。

不同用途的钢化玻璃,自爆率标准可能会有一些细微的差别。

像用在高层建筑外墙上的钢化玻璃,因为一旦自爆后果更严重,所以对自爆率的要求可能会更严格。

给大家举个例子,假如一个工厂生产了一万块钢化玻璃,如果按照千分之三的自爆率标准,大概会有30 块玻璃可能会自爆。

如果实际自爆的数量远远超过了这个数,那就说明这批玻璃的质量可能有问题,生产工艺需要改进。

再比如说,一家商场的玻璃门用的是钢化玻璃,如果自爆率太高,不仅影响美观,还可能会伤到顾客,所以在选择玻璃的时候,就得按照标准选择自爆率低的产品。

为了降低自爆率,生产厂家会采取很多措施。

比如提高生产工艺,让玻璃中的杂质更少;加强质量检测,把有缺陷的玻璃挑出来。

安装和使用过程中的一些因素也会影响钢化玻璃的自爆率。

比如安装的时候玻璃受到了不恰当的压力,或者使用过程中温度变化太大,都可能增加自爆的风险。

了解钢化玻璃自爆率标准很重要,这样厂家能生产出更安全的玻璃,我们在使用的时候也能更放心。

同学们,现在是不是对钢化玻璃自爆率标准有更清楚的认识啦?。

钢化玻璃自爆原因及解决办法

钢化玻璃自爆原因及解决办法

钢化玻璃自爆原因以及解决方法1、自爆的定义及其分类:钢化玻璃自爆可以定义为:钢化玻璃在无外部作用力直接作用与玻璃的情况下而玻璃本身自动发生裂纹、破碎的的自然现象。

表现为玻璃在钢化加工、贮存、运输、搬运、安装、使用等过程中均可发生钢化玻璃自爆。

自爆按起因不同主要可分为两种:一是:由玻璃中产生可见缺陷所引起的自爆现象,例如砂粒、结石、气泡、渗杂物、爆边、缺口、裂纹纹理、划伤等各种原因;二是:由玻璃中内部硫化镍(NiS)杂质相变体积膨胀引起的自爆。

玻璃的这是两种不同类型的自爆现象,人们应明确分类,区别对待,采用相对应的方法来应对和处理,减少玻璃引自爆而产生的损失。

前者一般可见现象,在检测检验时注意观察即可相对容易发现,因此在生产的过程之中可以控制好玻璃的质量;后者主要表现由玻璃中存在着很多微小的硫化镍颗粒体积发生膨胀而引发的自爆现象,与前者不同,其是在检验检测时无法目测到,所以该现象无法控制。

在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。

由于硫化镍类引起的自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失等问题,造成业主的不满意甚至出现危机生命财产等更为严重的其他后果,所以硫化镍引发的自爆是我们讨论的重点。

二、钢化玻璃发生自爆现象机理钢化玻璃内部的硫化镍膨胀是造成钢化玻璃自爆的主要原因。

由于玻璃经过钢化处理后,玻璃表面层会形成压应力。

内部板芯层则形成张应力,同时压应力和张应力共同构成一个平衡体。

但是玻璃这种材料脆性很高,耐压型很强,但受拉性却很弱,因此玻璃破碎大多数是张应力的变化而引发的。

当钢化玻璃中硫化镍晶体(处在玻璃板芯张应力层)在发生相变时,其体积发生膨胀使钢化玻璃内部产生更大的张应力,张应力就会大于压应力,当张应力超过玻璃自身所能承受的极限时,压应力和张应力这对平衡体就会发生破坏,就会导致钢化玻璃自爆。

多年来国内外研究证明:制造玻璃主要原料石英砂或者砂岩带入镍,在生产过程之中燃料及辅料会带入硫,在1400℃~1500℃高温熔窑中燃烧发生化学反应形成硫化镍。

钢化玻璃自爆与热浸

钢化玻璃自爆与热浸


NiS晶体图片
• 自爆是钢化玻璃的固有特性,半钢化玻璃不存在
• •
自爆。 每4吨玻璃液中含有一个NiS晶体 按国外玻璃行业界的统计,钢化玻璃自爆的概率 约为0.3—0。5%
• 钢化玻璃自爆的概率与大小、玻璃的厚度外界温
度的变化都有影响。
钢化玻璃自爆图片
减少钢化玻ቤተ መጻሕፍቲ ባይዱ自爆率的措施
• 均质处理也叫热浸处理 • 实际上就是一种引爆措施 • 下图天津南玻热浸炉
热浸处理的标准
标准 升温时间 保温时间 (~300℃) 降温时间 (至75℃以下)
DIN18516
4 hs 1 hs 1 hs
4 hs 2 hs 2 hs
4 hs 1 hs 1 hs
EN14179 JGJ102条文
热浸 并不能完全消除钢化玻璃自爆!
热浸处理后钢化玻璃自爆率 ≤1‰
钢化玻璃自爆的原因
• 玻璃自爆机理:玻璃经钢化处理后,表面形成压
应力,内部形成张应力,张应力与压应力保持平 衡,该平衡受到破坏,超过玻璃的抗张极限--玻 璃破裂。 钢化玻璃自爆是由于钢化玻璃内部的硫化镍晶体 发生相变转变,其体积膨胀,导致钢化玻璃内部 应力失衡而自爆。 硫化镍由制造玻璃的原材料石英砂带入玻璃
• •
• NiS高温状态时以 α-NiS六方晶体存在,常温时以
• •
β- NiS三方晶体存在。 当α-NiS六方晶体转变为β- NiS三方晶体时,伴 随着体积膨胀2.38%。 NiS在278℃有一个相变过程:这个转变过程的快 慢,取决于硫化镍(包括Ni7S6、 NiS、 NiSX)在 玻璃中的成份比含量,还有温度的变化。当膨胀 的数量足够并位于钢化玻璃的张应力层时,足以 引爆钢化玻璃。 玻璃钢化时(温度600-700℃),然后快速冷却 到常温(23 ℃)α-NiS到 β- NiS无法及时转 换始终处在转换进程中。

钢化国标自爆率

钢化国标自爆率

钢化国标自爆率
钢化玻璃的国标自爆率是非常低的。

根据中国国家标准 GB 15763.2-2005《玻璃幕墙》中的规定,钢化玻璃自爆率应小于0.1‰。

这意味着在每1000块钢化玻璃中,平均只有不到1块
会发生自爆现象。

钢化玻璃的自爆原因主要有以下几种情况:1. 生产过程中的瑕疵,如表面缺陷、内部应力过大等。

2. 安装过程中的不规范操作,如玻璃边缘损伤、不均匀受力等。

3. 环境温度差异较大,如突然的温度变化可导致玻璃破裂。

为了减少钢化玻璃的自爆风险,需要选择正规生产厂家的产品,并采取合适的安装和使用方法。

此外,在选择玻璃类型时,可以考虑采用有机玻璃等其他材料,以降低自爆风险。

钢化玻璃自爆的原因

钢化玻璃自爆的原因

个人收集整理仅供参考学习
钢化玻璃自爆的原因
钢化玻璃自爆的原因,是由于在玻璃的制造过程中,在原料或耐火材料等的熔出物中混有一些含镍杂质,这些杂质在玻璃熔融过程中,互相使用形成了硫化镍晶体。

硫化镍晶体超过380℃高温是α相态,常温下是β相。

当硫化镍晶体从α相态,转变为β相时,晶体的体积会有2-4%的变化,引起钢化玻璃自爆的硫化镍晶体的直径平均为0.2mm左右。

在原片玻璃成型时,需经过一个缓慢的退火过程,硫化镍晶体基本不会影响玻璃的强度。

但是当对玻璃进行钢化加工时情况就大不相同了。

由于钢化玻璃采用的是淬火工艺。

在冷却风的作用下玻璃冷却速度非常快,当玻璃被冷却到常温,结构完全固定后,α相的硫化镍晶体还来不及转换成低温态的β相,而仍以高温的α相态存在。

如果硫化镍晶体出现在钢化玻璃的张应力区,那么只要出现晶型转变,就一定会发生自爆。

由于晶型转变的时间不定,常温下钢化玻璃的自爆也是完全不确定的。

引爆处理降低自爆概率
解决钢化玻璃自爆的办法,是对钢化玻璃进行均质处理:就是将钢化玻璃重新加热到280-300℃,然后保温2-4小时,使有条件发生自爆的钢化玻璃在这个过程中爆裂。

钢化玻璃的均质还称为钢化玻璃的引爆处理或钢化玻璃的热浸处理。

据统计表明,经严格的均质处理后,钢化玻璃自爆概率会大大降低,每1万平方米玻璃在1年内发生1片自爆的概率仅为1%以下。

此时的钢化玻璃才可以称得上真正的安全玻璃。

1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢化玻璃自爆分类从钢化玻璃诞生开始,就伴随着自爆问题。

钢化玻璃自爆可以表述为钢化玻璃在无外部直接作用的情况下而自动发生破碎的现象。

在钢化加工、贮存、运输、安装、使用等过程中均可发生钢化玻璃自爆。

自爆按起因不同可分为两种:
一是由玻璃中可见缺陷引起的自爆,例如结石、砂粒、气泡、夹杂物、缺口、划伤、爆边等;
二是由玻璃中硫化镍(NIS)杂质和异质相颗粒引起钢化玻璃自爆。

钢化玻璃不可控自爆的原因-硫化镍(NiS)及异质相颗粒钢化玻璃不可控自爆的来源不仅是传统认识中的nis微粒,还有许多其它异质相颗粒。

玻璃中的裂纹萌发和扩展主要是由于在颗粒附近处产生的残余应力所致的。

这类应力可分为两类,一类是相变膨胀过程中的相变应力,另一类是由热膨胀系数不匹配产生的残余应力。

硫化镍(nis)及异质相颗粒。

玻璃内部包含硫化镍杂质,以小水晶状态存在,在一般情况下,不会造成玻璃破损,但是由于钢化玻璃重新加热,改变了硫化镍杂质的相态,硫化镍的高温α态在玻璃急冷时被冻结,他们在恢复到β态可能需要年的时间,由于低温β态的硫化镍杂质将产生体积增大,在玻璃内部产生局部的应力集中,这时钢化玻璃自爆将发生。

然而,仅仅比较大的杂质将引起自爆,而且仅仅当杂质在拉应力的核心部位时才能发生钢化玻璃自爆。

nis是一种晶体,存在二种晶相:高温相α-nis和低温相β-nis,相变温度为379℃,玻璃在钢化炉内加热时,因加热温度远高于相变温度,nis全部转变为α相。

然而在随后的淬冷过程中,α-nis来不及转变为β-nis,从而被冻结在钢化玻璃中。

在室温环境下,α-nis是不稳定的,有逐渐转变为β-nis的趋势。

这种转变伴随着约2~4%的体积膨胀,使玻璃承受巨大的相变张应力,从而致自爆。

从自爆后玻璃碎片中提取的nis结石的扫描电镜照片中可看到,其表面起伏不平、非常粗糙。

异质相颗粒引起钢化玻璃自爆,可以破裂源处玻璃碎片的横截面照片中看到,一个球形微小颗粒引起的首次开裂痕迹与二次碎裂的边界区。

1、自爆率国内的自爆率各生产厂家并不一致,从3%~0.3%不等。

一般自爆率是按片数为单位计算的,没有考虑单片玻璃的面积大小和玻璃厚度,所以不够准确,也无法进行更科学的相互比较。

为统一测算自爆率,必须确定统一的假设。

定出统一的条件:每5~8吨玻璃含有一个足以引发自爆的硫化镍;每片钢化玻璃的面积平均为1.8mm;硫化镍均匀分布。

则计算出6mm厚的钢化玻璃计算自爆率为0.64%~0.54%,即6mm钢化玻璃的自爆率约为3‰~5‰。

这与国内高水平加工企业的实际值基本吻合。

即使完全按标准生产,也不能彻底避免钢化玻璃自爆。

大型建筑物轻易就会用上几百吨玻璃,这意味着玻璃中硫化镍和异质相杂质存在的率很大,所以钢化玻璃虽经热浸处理,自爆依然不可避免。

3、如何鉴别钢化玻璃的自爆首先看起爆点(钢化玻璃裂纹呈放射状,均有起始点)是否在玻璃中间,如在玻璃边缘,一般是因为玻璃未经过倒角磨边处理或玻璃边缘有损伤,造成应力集中,裂纹逐渐发展造成的;如起爆点在玻璃中部,看起爆点是否有两小块多边形组成的类似两片蝴蝶翅膀似的图案(蝴蝶斑),如有仔细观察两小块多边形公用边(蝴蝶的躯干部分)应有肉眼可见的黑色小颗粒(硫化镍结石),则可判断是自爆的;否则就应是外力破坏的。

玻璃自爆典型特征是蝴蝶斑。

玻璃碎片呈放射状分布,放射中心有二块形似蝴蝶翅
膀的玻璃块,俗称“蝴蝶斑”。

nis结石位于二块"蝴蝶斑"的界面上。

怎么判别呢?
明显的特征是,爆心玻璃如果还在框上,可以看到蝴蝶纹,尽管形状不同,但都是类似蝴蝶状的,显微镜下可以看到杂质在中心,对光反射也可以见到,围绕着这个特征纹向外放射状呈现裂纹碎裂。

如果外力击打,则没有蝴蝶纹,被击打的中心是个点状向外放射裂纹。

就是这个证据,曾经的某几百万工程项目案例,成功索赔5%。

事情过去很久后,对方的项目经理聊天时承认说,有段时间恰好其个领导的亲戚插手采购部工作,本来一直没问题,那段时间可能货源换了一部分,发生这个问题。

如果生活中遇到这个问题,恰好还能保存碎裂玻璃的证据,那放心和厂商交涉好了,什么你把它砸坏的,有了蝴蝶纹,证据就能说话。

看对光反射下,很明显的蝴蝶纹中心的杂质黑点。

相关文档
最新文档