数学分析定义、定理、推理一览表复习课程

数学分析定义、定理、推理一览表复习课程
数学分析定义、定理、推理一览表复习课程

数学分析定义、定理、推理一览表

定义1 给定两个非负实数

012..,n x a a a a =L L 012..,n y b b b b =L L 其中00,a b 为非负整数,(),1,2,k k a b k =L 为整数,若有 09,09.k k a b ≤≤≤≤ 则称x 与y 相等,记为x y =.

()0011,0,1,2,,

,.

k k l l a b l a b k l a b x y y x x y y x ++>==>>

定义2

012012..1100,1,2,.n n

n n n

x a a a a x a a a a x n x x x n n ===+

=L L L L 设为非负实数.称有理数 为实数的位不足近似,而有理数 称为的位过剩近似,

1.R 00.

2.b b,b, b.

3.b,b c, c.

4.b R,b>>0,n n >b.

5.a a a a a a a a a R >=<>>>∈实数的一些主要性质

实数集对加、减、乘、除(除数不为)四则运算是封闭的,即任意两个实数的和、差、积、商(除数不为)仍然是实数实数集是有序的,即任意两个实数、必满足下述三个关系之一:实数的大小关系具有传递性,即若则有实数具有阿基米德性,即对任何、若则存在正整数,使得实数具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数也有无理数.

6.如果一直线(通常画成水平直线)上确定一点o 作为原点,指定一个方向为正方向(通常把指向右边的方向为正方向),并规定一个单位长度,则称此直线为数轴.任意实数都对应数轴上唯一的一点;反之,数轴上的每一个点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着一一对应关系.

定义3

,0,

,0.

a a a a a a a a a ≥?=?

-

绝对值得一些性质

1.0;=00.

2..

3.;(0).

4..

5..

6.

(0).a a a a a a a a h h a h a h h a h h a b R a b a b a b ab a b a a

b b b

=-≥=-≤≤∈∈-≤±≤+==≠当且仅当时有对于任何、有如下三角形不等式: 定义4 区间和邻域

(){}[]{}[){}{}{}{}{}(),,,,,

,,.,],

(,),(,),(,),,0.;,(),(a b x a x b a b x a x b a b x a x b a b R a x x a a x x a a x x a x x R a R x a x a U a U a U δδδδ??=<

=≤≤??

??

=≤

∈?-∞=≤???

+∞=>??

??-∞=

??-∞+∞=-∞<<+∞=??

∈>-<开区间:,有限区间闭区间:半开半闭区间:区间(无限区间邻域:满足的全体实数的集合称为点的邻域,记作或即有;){|||}(,).(;){|0||}.(;)[,);(;),];(;)(,);(;)(,);(){|||}(){|a x x a a a a U a x x a a U a a a a U a a a a U a a a a U a a a U X x M M U X δδδδδδδδδδδδδδδδδδ+-+

-

=-<=-+=<-<=+=

-=+=-∞∞=>+∞+∞=。。

点的空心邻域:

点的右邻域:点的左邻域:(点的空心右邻域:点的空心左邻域:邻域,其中为充分大正数;邻域}(){|}x M M U X x M M >-∞-∞=<-,其中为充分大正数;邻域,其中为充分大正数;

定义5 有界的定义

(),(),(),0,,S R M L x S x M x L S M L S S R M x S x M S S S S ∈≤≥??>?∈?≤设为中的一个数集.若存在,使得对一切都有则称为有上界(下界)的数集,数称为的一个上界(下界).

简记:称有界.若数集既有上界又有下界,则称为有界集.若不是有界集,

则称为无界集.

定义6 确界的定义

()()()()00001..,,,,,=sup ..,,,,,S R i x S x S ii x S x S S S S R i x S x S ii x S x S S ηηηαηαηηηξξξβξβξξ??∈≤???∈≥?>?∈<设若数满足:

有即是的上界;

使得即又是的最小上界,

则称为数集的上确界,记作

2.设若数满足:

有即是的下界;

使得即又是的最大下界,

则称为数集的下确界,记作

=S ξ inf

定理1

min .

S S S S S S S ηηξξ∈?∈?=设数集有上确界.

i)=sup =max .ii)=inf 定理一 确界原理

.S S S S 设为非空数集若有上界,则必有上确界;

若有下界,则必有下确界.

定理2

.sup inf .

A B x A y B x y A B A B ∈∈≤≤设、为非空数集,满足:对一切和有数集有上确界,数集有下确界,且

推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的).

函数的概念 定义1

{}:,.

().()|(),().D M f D x y M f D f D M x y D f x y f x f x f D y y f x x D M f ∈→==∈?a 给定两个实数集和,若有对应法则,使对内每一个,都有唯一的一个数与它相对应,则称是定义在数集上的函数,记作数集称为函数的定义域,所对应的数,称为在点的函数值,

常记为全体函数值的集合称为函数的值域

函数的四则运算

{}1212*12*,,,=,.()()(),,()()(),,()()(),.

()0|()0,,()()/(),.f x D g x D D D D D f g D F x f x g x x D G x f x g x x D H x f x g x x D D g x x D D x g x x D L x f x g x x D ∈∈≠?=+∈=-∈=∈==≠∈≠?=∈I I 给定两个函数和记并设定义与在上的和、差、积运算如下:若在中剔除的值,即令则除法如下

初等函数

()()(0,1);log (0,1);

sin ,cos ,tan ,cot ;arcsin ,arccos ,arctan ,cot .x a y c c y x y a a a y x a a y x y x y x y x y x y x y x y arc x αα===>≠=>≠========常量函数为常数;幂函数为实数;指数函数对数函数三角函数反三角函数

定义2

0, 1.{|}1{|}01.sup inf r x r x

r

r x

a a x a r a a a r a <<>≠?>?

=?<

为有理数,当时

几个重要的等式(不等式)

数列极限 定义1

(){}{}{}{}{}'10;.

2lim 0,.

2.1.n n n n n n n U a a a a a a a a a a εε→∞

>=-定义任给,若在之外数列中的项至多只有有限个,则称数列收敛于极限定义若则称为无穷小数列定理数列收敛于的充要条件是:为无穷小数列

收敛数列的性质

定义1 设{}n a 为数列,{}k n 为正整数集N +的无限子集,且

12k n n n <<<

则数列12,,,,k n n n a a a L L 称为数列{}n a 的一个子列,简记为{}

k n a . 平凡子列:数列{}n a 本身以及去掉有限项后得到的子列. 非平凡子列:不是平凡子列的子列.

数列{}n a 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限. 定理2.9 数列{}a 收敛的充要条件是:{}a 的任何非平凡子列都收敛.

定理二 (单调有界定理)在实数系中,有界的单调数列必有极限.

函函数数极极限限 定定义义

函数极限的性质

无穷小量阶的比较(定义见下页末)

()

()

()()()()()()

()

()

()

()

()

()()()0

0000001.lim

0,.

2.,lim

0.3.lim

=1~.x x o x x x x f x x x f g g x f x o g x x x f x K L U x K L g x f g x x f x c f g g x f x f g x x g x f x g x x x →→→=→=→≤

≤→=≠→→若则称当时为的高阶无穷小量记作若存在正数和,使得在某上有则称与为当时的同阶无穷小量.特别的当

时,与必为同阶无穷小量若,则称与为当时的等价无穷小量.记作

函数极限存在的条件

两个重要极限

0sin lim 11lim 1x x

x x x e x →→∞

=??

+= ???

()()()0

0000lim 0,

.

o x x o f U x f x f x x g U x g x x →=→→设在某内有定义,若无穷小量:

则称为当时的无穷小量有界量:若函数在某内有界,则称为当时的有界量.无穷小量的和、差、积仍为无穷小量.无穷小量与有界量的积为无穷小量.

常见的几个等价无穷小量

()()()()

()()()

()()()()()

()()()()()()()

2

0001.1~02.11~03.1cos 02

~~~~~~x e x x x x x x x x x x x x x x x x x x x x x x x x x x μ

μαααββααββγαγ-→+-→-→→?→?→:自赖性:对称性:传递性:,

()()()()()()()()0

000000

0.0,0,;,lim .

1

.o o o x x o f U x G x U x U x f x G f x x f x x n f U x f x x x x f

δδ→>>∈?>→∞=∞→∞∞∞∞→→无穷大量

设函数在某内有定义若对任给的存在使得当时有则称函数当时有非常极限,记作对于自变量趋于某种趋向或时,所有以,+或-为非正常极限的函数(包括数列),都称为无穷大量.定理3.13

(i )设在内有定义且不等于0.若为 时的无穷小量,则

为时的无穷大量001

ii .

g x x x x g →→()若为时的无穷大量,则为时的无穷小量

函数的连续

()()()()()()()()()()()()0

000000000000000lim ,

0,0,,.

2.lim lim .4.1

o x x o

o x x x x f U x f x f x f x x x f x f x f x f U x U x f x f x f x f x f x f x f x εδδε+-→+-→→=>>-<-

1.设函数在某内有定义.若则称在点连续;也可表述为:若对任给的存在使得当时有则称在点连续设函数在某内有定义.若

,则称在点右(左)连续函数在点连续的充要条件是:定理在点即()()()()()0

000000000.

.lim ,4.,.5.lim lim .

6.o

x x x x x x f U x f x f x x f f x A f x f x A x f f x f x f x x f +-→→→=≠≠是右连续,又是左连续间断点及其分类3.设函数在某内有定义.若在点无定义,

或在点有定义不连续,则称为函数的间断点

或不连续点若在点无定义,或有定义

可去间断点

但则称为函数的可去间断点若函数在点的左右极限都存在,但

跳跃间断点,则称为函数的

跳跃间断点以上两种间断点统称为第一类间断点,其他所有形式的间断点统称为第二类间断点.

区间上的连续函数

[][],,f I f I f a b f a b 若函数在区间上的每一点都连续,则称为上的连续函数。对于闭区间或半开半闭区间的端点,函数在这些点上的连续是指左连续或右连续.若函数在区间上仅有有限个第一类间断点,则称在上分段连续.

连续函数的性质

()()()()()()()()()()()()00000000000004.2.

00,4.3,.4.4,.

f x f U x f x f x r f x r f x U x x U x f x r f x r f x

g u u f x g f x ><<<-∈><-=。定理(局部有界性)若函数在点连续,则在某内有界若函数在点连续,且或则

定理(局部保号性)对任何正数或,存在某

使得对一切有定理(四则运算)两个函数连续,则他们加减乘除之后依旧连续.定理4.5若函数在点连续,在点连续,则复合函数在点连续

()()()()()()()()()[][]()

[][]()

[]()()()()0000.,1.,,.,4.6,.

,,.

,,4.7f D x D x D f x f x f x f x f D f x f D f a b f a b f a b f a b f a b f a f b f a f b μ∈∈≥≤≠设为定义在数集上的函数若存在使得对一定义切有则称在上

有最大最小值,并称为在上有最大最小值若函数在闭区间上连续,则定理最大、最小值定理称在上有最大值与最小值若函数在闭区间上连续,则推论有界性定理在上有界设函数在闭区间上连续,且若为介于与之间定理介值性定理()()()()()()()()[]()()()()()()0000,,.

,,

,,00,.

f a f b f a f b x a b f x f a b f a f b x a b f x f x a b μμμ<<>>∈=∈==的任何实数

或,则至少

存在一点使得设函数在闭区间上连续,且与异号推论根的存在定理则至少存在一点使得,即方程

在内至少有一个根

()()4.100,,,.4.1104.12.4.13.

x a a a a a a a a R β

αβαβααβαβ+>?==>初等函数的连续性

定理设为任意实数,则有定理指数函数在上是连续的.

定理一切基本初等函数都是其定义域上的连续函数定理任何初等函数都是在其定义区间上的连续函数

导数和微分

()()()

()()()()()()0

0000

'00'00'000=1lim

.

=

0==..

x x y f x x f x f x f x x x f x f x y

f x x f x x

x x o x y f x x o x f x f x εε→--?-??→?????+?设函数在点的某邻域内有定义,若极限

定义导数:存在,则称函数在点处可导,

并称该极限为函数在点处的导数,记作设在点可导,那么是当有限增量公式:时的无穷小量,于是,即

该式即为有限增量公式.

定理5.1 若函数在点可导,则在点连续

高数定理定义总结

高数定理定义总结 第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1, 1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即

f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果l im(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐 近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘 积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限 lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也 成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x) 当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即 lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的 函数。

离散数学结构 第3章 命题逻辑的推理理论复习

第3章命题逻辑的推理理论 主要内容 1. 推理的形式结构: ①推理的前提 ②推理的结论 ③推理正确 ④有效结论 2. 判断推理是否正确的方法: ①真值表法 ②等值演算法 ③主析取范式法 3. 对于正确的推理,在自然推理系统P中构造证明 4. ①自然推理系统P的定义 ②自然推理系统P的推理规则: 前提引入规则、结论引入规则、置换规则、假言推理规则、附加规则、化简规则、拒取式规则、假言三段式规则、构造性二难规则、合取引入规则。 ③附加前提证明法 ④归谬法 学习要求 1. 理解并记住推理的形式结构的三种等价形式,即 ①{A1,A2,…,A k}├B ②A1∧A2∧…∧A k→B ③前提与结论分开写: 前提:A1,A2,…,A k 结论:B 在判断推理是否正确时,用②;在P系统中构造证明时用③。 2. 熟练掌握判断推理是否正确的三种方法(真值表法,等值演算法,主析取范式法)。 3. 牢记P系统中的各条推理规则。 4. 对于给定的正确推理,要求在P系统中给出严谨的证明序列。 5. 会用附加前提证明法和归谬法。 3.1 推理的形式结构 定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意一组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。

二、有效推理的等价定理 定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当 (A1∧A2∧…∧A k )→B 为重言式。 A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。 由此定理知,推理形式: 前提:A1,A2,…,A k 结论:B 是有效的当且仅当(A1∧A2∧…∧A k)→B为重言式。(A1∧A2∧…∧A k)→B称为上述推理的形式结构。从而推理的有效性等价于它的形式结构为永真式。于是,推理正确 {A1,A2,…,A k} B 可记为 A1∧A2∧…∧A k B 其中同一样是一种元语言符号,用来表示蕴涵式为重言式。 而判断命题公式永真性有三个方法: 1.真值表法 2.等值演算法 3.主析取范式法 三、重言蕴涵式 由上一个小节可以看出:形如A→B的重言式在推理中十分重要。

数学分析教学现状调查与分析

作为学院院级精品课程,我们以素质教育观为指导思想,对数学分析教学现状进行了调查与研究.调查地目标是教学内容、教学方法和手段.调查地方式有:.在全省范围内向师范院校毕业地中学数学分析教师发出问卷(以下简称卷Ⅰ),(回收份);.向学院在职与退休地数学分析教师发出问卷(以下简称卷Ⅱ),(回收份);.对在职和退休地数学分析教师是行访谈;.召开在校学生座谈会;.查阅部分学校地数学分析教学档案.现梳理出调查结果并作出分析.数学分析在数学教育专业中所处地地位 教学管理机构,院、系对数学分析课地重视程度. 数学分析地形成发展有着悠久地历史,它地内容丰富、诚厚,很多数学分支是由它派生地.也有很多数学分支要以它为思想、知识、方法地基础,同时它还直接或间接地应用于自然、人文、社会科学地诸多方面.无论是哪方面地现代人才,都必须掌握足够地数学分析知识.对此,我省有关教学管理机构,各学院地院、系两级认识深刻、清楚,在学院数学教育专业地课程体系中始终把数学分析课放在“基础、主干”地地位.个人收集整理勿做商业用途 第一,保证了课时.各校给数学分析地排课都是三,四学期课时以上.年全省各校为拓宽专业口径,压缩了专业课,甚至提出淡化专业课地口号,但各校均未减少数学分析地课时.个人收集整理勿做商业用途 第二,在恢复高考招生制度后,全省高师系统首次组织地统考,就是对数学分析地统考.年省教委又组织了部分院校为数学分析摸底考试而命题.个人收集整理勿做商业用途 第三,各校都重视数学分析课地课程建设.象咸阳师院、渭南师院、安康学院都把数学分析定为校级重点建设课程.个人收集整理勿做商业用途 学生心目中地数学分析 卷Ⅰ题地统计结果是:有地人在校学习期间对数学分析课最感兴趣;地人对数学分析学习投入地精力最大;地人认为毕业后仍留下深刻影响地课是数学分析课.但只有地人将该课列为对中学数学教学作用最大地课.个人收集整理勿做商业用途 教学内容现状及分析 教学文件 2.1.1教学大纲 年原教育部委托部分院校编过一部数学分析教学大纲,其内容扎实、结构严谨.它是此后近二十年各师专数学教育专业选择教材、编写讲义、命题考试地主要依据,其作用不可低估.但用现在地眼光看,不对其“革新”就不能适应发展地教育形势,在幅员辽阅地国土上,各地经济、文化发展不平衡,生源素质不一,办学特色不同,用一个大纲覆盖万平方米是不现实地.再之,年地大纲没用具体地教学要求.仅列教学目录,不便操作.这部大纲看不出师范特点,也没能考虑专科生地接受能力,盲目向本科看齐,这个大纲是不能进入世纪地.此后,原国家教委及现教育部都从未颁过统一地数学分析教学大纲,师专数学分析教学内容地遴选无“法”学可依由来已久.年调整教学计划后,各校都自行编写了数学分析教学大纲,以教学内容地遴选、组织起到了一定地规范作用.个人收集整理勿做商业用途 2.1.2原国家教委年地“教学方案” 年原国家教委颁发了《高等师范专科研教育二、三年制教学方案》.随后陕西省教委通知各师专自级执行这一方案.这是一次力度较大地改革.其中学科必修课改革力度最大,表现在课程门类地精减和课时地压缩上,这个方案没有配置相应地大纲,只有一个学科必修课地“课程设置说明”,各科地说明都很原则.对数学分析地“说明”列举有内容要点及课程设置目地.它指出:“设置课程地目地是使学生系统地掌握数学分析地基本理论、基础知识、能熟练地进行基本运算,具有较强地分析论证能力,能深入分析和处理中学数学教材,具备一定地解决实际问题地能力,办学习后继课程打下基础”.这是适应时代要求地.“方案”不配大纲,我们要作积极地理解,这本身就是改革,是在统一目地、统一要求地前提下,充分发挥各院校在

数值分析公式、定理等

第一章 绪论 1. *x = n 21k a a a .010?±,如果|*x -x|≤0.5n k 10-?(这里n 是使此式成立的最大正整数),则称*x 为x 的具有n 位有效数字的近似值。 2.定理:设x 的近似值*x 有(1-1)的表示式: (1)如果*x 有n 位有效数字,则 n 11 10a 21|x ||x x |-**?≤ - (2)如果n 1110) 1a (21 | x ||x x |-* *?+≤ -,则*x 至少有n 位有效数字。 第二章 非线性方程根求解 1. (零点存在定理)如果f(x)在[a,b]上连续,使f(a)?f(b)<0,则必存在α∈(a,b),使f(α)=0。 2.二分法的误差: |1 k 1k k k 2a b |x x ||x x +-*-=-≤- 3. 局部收敛性:设α是f(x)=0的根,若存在α的一个邻域?,当迭代初值属于?时,迭代法得到的序列{k x }收敛到α,则称该迭代法关于根α具有局部收敛性。 4. 收敛速度:设i x 为第i 次迭代值,α是f(x)=0的根,令α-=εi i x ,且假设迭代收敛,即α=∞ →i i x lim 。若存在实数P ≥1,使 c | |||lim p i 1i i =εε+∞ →≠0 ,则称此方法关于根α具有P 阶收敛速度。C 称为渐近误差常数,渐近误差常数C 与f(x)有关。C ≠0保证了P 的唯一性。对于特殊的函数,C 可能为零,此时,由这个函数针对此方法迭代产生的序列收敛得更快。一般情况下,P 越大,收敛就越快。当P=1时,我们称为线性收敛。P>1,称为超线性收敛。P=2,称为平方收敛。 5.牛顿迭代法:) x (f ) x (f x x k k k 1k '- =+ 定理3:如果方程f(x)=0的根α是单根,且在α的某领域内f(x)具有二阶的连续导数,则Newton 迭代法必是局部收敛的 且 ) (f 2)(f lim 2i 1 i i α'α''- =εε+∞ →(即具有二阶收敛速度) 定理4:如果α是方程f(x)=0的r 重根(r>1),且f(x)在α的某邻域内具有r 阶连续导数,则Newton 法具有局部收敛性,且具有线性收敛速度。 定理5:如果α是方程f(x)=0的r 重根(r>1),且f(x)在α的某邻域内具有r+2阶连续导数,则修正Newton 迭代公式:)x ()x (f r x x i i i 1i '?-=+,具有局部收敛性,且具有二阶收敛速度。

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

初中数学定义、定理汇总

初中数学定义、定理超级大全 1.1有理数 1.1.1有理数的定义:整数和分数的统称。 1.1.2有理数的分类: (1)分为整数和分数。而整数分为正整数、零和负整数;分数分为正分数和负分数。 (2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。 1.1.3数轴 1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 1.1.3.2数轴的三要素:①原点②正方向③单位长度 1.1.3.3每个有理数都能用数轴上的点表示 1.1.4相反数 1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0 1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数 1.1.4.3相反数的判别 (1)若,则、互为相反数 (2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。 1.1.5倒数 1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数)注:零没有倒数。 1.1.6绝对值 1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣) 1.1.6.2绝对值的性质:∣a∣≥0 1.1.7有理数大小的比较 1.1.7.1正数大于0,负数小于0 1.1.7.2正数大于负数 1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。 1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。 1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。 1.1.8有理数的加法 1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)③任何有理数加0仍等于这个数。 1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a 1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c 1.1.9有理数的减法 1.1.9.1运算法则:减去一个数等于加上这个数的相反数 1.1.9.2有理数减法—转化→有理数加法 1.1.10有理数的乘法 1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。 1.1.10.2乘法交换律在有理数乘法中仍然适用,即 1.1.10.3乘法结合律在有理数乘法中仍然适用,即

Rudin数学分析原理第一章答案

The Real and Complex Number Systems Written by Men-Gen Tsai email:b89902089@https://www.360docs.net/doc/5a8979664.html,.tw 1. 2. 3. 4. 5. 6.Fix b>1. (a)If m,n,p,q are integers,n>0,q>0,and r=m/n=p/q,prove that (b m)1/n=(b p)1/q. Hence it makes sense to de?ne b r=(b m)1/n. (b)Prove that b r+s=b r b s if r and s are rational. (c)If x is real,de?ne B(x)to be the set of all numbers b t,where t is rational and t≤x.Prove that b r=sup B(r) where r is rational.Hence it makes sense to de?ne b x=sup B(x) for every real x. (d)Prove that b x+y=b x b y for all real x and y. 1

Proof:For(a):mq=np since m/n=p/q.Thus b mq=b np. By Theorem1.21we know that(b mq)1/(mn)=(b np)1/(mn),that is, (b m)1/n=(b p)1/q,that is,b r is well-de?ned. For(b):Let r=m/n and s=p/q where m,n,p,q are integers,and n>0,q>0.Hence(b r+s)nq=(b m/n+p/q)nq=(b(mq+np)/(nq))nq= b mq+np=b mq b np=(b m/n)nq(b p/q)nq=(b m/n b p/q)nq.By Theorem1.21 we know that((b r+s)nq)1/(nq)=((b m/n b p/q)nq)1/(nq),that is b r+s= b m/n b p/q=b r b s. For(c):Note that b r∈B(r).For all b t∈B(r)where t is rational and t≤r.Hence,b r=b t b r?t≥b t1r?t since b>1and r?t≥0.Hence b r is an upper bound of B(r).Hence b r=sup B(r). For(d):b x b y=sup B(x)sup B(y)≥b t x b t y=b t x+t y for all rational t x≤x and t y≤y.Note that t x+t y≤x+y and t x+t y is rational. Therefore,sup B(x)sup B(y)is a upper bound of B(x+y),that is, b x b y≥sup B(x+y)=b(x+y). Conversely,we claim that b x b r=b x+r if x∈R1and r∈Q.The following is my proof. b x+r=sup B(x+r)=sup{b s:s≤x+r,s∈Q} =sup{b s?r b r:s?r≤x,s?r∈Q} =b r sup{b s?r:s?r≤x,s?r∈Q} =b r sup B(x) =b r b x. And we also claim that b x+y≥b x if y≥0.The following is my proof: 2

数学分析·下定义及定理

第十二章 数项级数 1、级数的收敛性 定义1 给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 ???++???++n u u u 21 (1) 称为数项级数或无穷级数(也常简称级数),其中n u 称为数项级数(1)的通项. 数项级数(1)也常写作: ∑∞ =1 n n u 或简单写作 ∑n u . 数项级数(1)的前n 项之和,记为 n n k k n u u u u S +???++==∑=211 , (2) 称它为数项级数(1)的第n 个部分和,也简称部分和. 定义 2 若数项级数(1)的部分和数列{}n S 收敛于S (即S S n n =∞ →lim ),则称数项级 数(1)收敛,称S 为数项级数(1)的和,记作 ???++???++=n u u u S 21或∑=n u S . 若{}n S 是发散数列,则称数项级数(1)发散. 定理12.1(级数收敛的柯西准则)级数(1)收敛的充要条件是:任给正数ε,总存在正整数N ,使得当m >N 以及对任意的正整数,都有 p m m m u u u ++++???++21<ε. (6) 定理12.2 若级数∑n u 与 ∑n υ 都收敛,则对任意常数,,d c 级数 ()∑+n n d cu υ亦收 敛,且 ()∑∑∑+=+. n n n n d u c d cu υυ 定理12.3 去掉、增加或改变级数的有限个项并不改变级数的收敛性.

定理12.4 在收敛级数的项中任意加括号,即不改变级数的收敛性,也不改变级数的和。 正向级数 定理12.5 正项级数 ∑n u 收敛的充要条件:部分和数列{}n S 有界,即存在某个正数M , 对一切正整数n 有n S N 都有,n n u υ≤,则 (i )若级数 ∑n υ 收敛,则级数 ∑n u 也收敛; (ii )若级数∑n υ 发散,则级数 ∑n υ 也发散. 推论 设 ???++???++???++???++n n u u u υυυ2121, ()()43 是两个正项级数,若 , lim l u n n n =∞ →υ 则 (i )当+∞<

高考数学二项式定理总结

高考数学二项式定理总结 作者:佚名 【考纲要求】 1.能用计数原理证明二项式定理; 2.掌握二项展开式系数的性质及计算的问题; 3.会用二项式定理解决与二项展开式有关的简单问题. 【知识网络】 【考点梳理】 要点一、二项式定理 公式叫做二项式定理。其中叫做二项式系数。叫做二项展开式的通项,它表示第项。 其中: ①公式右边的多项式叫做的二项展开式; ②展开式中各项的系数叫做二项式系数; ③式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为. 要点诠释: 二项展开式的通项公式集中体现了二项展开式中的指数、项数、系数的变化,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数以及数、式的整除等方面有着广泛的应用。使用时要注意:(1)通项公式表示的是第“r+1”项,而不是第“r”项;

(2)通项公式中a和b的位置不能颠倒; (3)展开式中第r+1项的二项式系数与第r+1项的系数,在一般情况下是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心以防出差错; (4)在通项公式中共含有a,b,n,r,这5个元素,在有关二项式定理的问题中,常常会遇到:知道5个元素中的若干个(或它们之间的关系),求另外几个元素的问题。这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组),这里要注意n为正整数,r为非负数,且r≤n。 要点二、二项展开式的特性 ①项数:有n+1项; ②次数:每一项的次数都是n次,即二项展开式为齐次式; ③各项组成:从左到右,字母a降幂排列,从n到0;字母b 升幂排列,从0到n; ④系数:依次为. “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也

高数部分知识点总结

高数部分知识点总结 1 高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法 0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0, 0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0, 1xx1x,1(1,x),e限,包括、、;4.夹逼定理。 (1,),exlimlimlimsinxxx,0,0x,, 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答, 案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加 f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,, f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了, 这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下 a f(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,a aaa f(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0 ,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利 aaa 奇函数,0偶函数,2偶函数用性质、。在处理完积分上下,,,,a,a0 限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3 高数第五章《中值定理的证明技巧》 由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用 E、(AB)C、以下这组逻辑公式来作模型:假如有逻辑推导公式A:,, DE)F,由这样一组逻辑关系可以构造出若干难易程度不等的(C::, 证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以 E就从中找出有用的一个。如对于证明F成立必备逻辑公式中的A,可能有AH、A(IK)、(AB) M等等公式同时存在,有的逻辑::,,,

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

七年级数学定理概念公式汇总

一、有理数 (一)有理数 1、有理数的分类: 按有理数的定义分类:按有理数的性质符号分类: 正整数正整数整数零正有理数 有理数负整数正分数 正分数有理数0 分数负整数 负整数负有理数 负分数 2、正数和负数用来表示具有相反意义的数。 (二)数轴 1、定义:规定了原点、正方向和单位长度的直线叫做数轴。 2、数轴的三要素是:原点、正方向、单位长度。 (三)相反数 1、定义:只有符号不同的两个数互为相反数。 2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫 做互为相反数。 3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。 (四)绝对值 1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。 2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。 3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值 是0。 a (a>0), 即对于任何有理数a,都有|a|=0(a=0) –a(a<0) 4、绝对值的计算规律: (1)互为相反数的两个数的绝对值相等. (2)若|a|=|b|,则a =b或a =-b. (3)若|a|+|b|=0,则|a|=0,且|b|=0. 相关结论: (1)0的相反数是它本身。 (2)非负数的绝对值是它本身。 (3)非正数的绝对值是它的相反数。 (4)绝对值最小的数是0。 (5)互为相反数的两个数的绝对值相等。 (6)任何数的绝对值都是它的正数或0,即|a|≥0。 (五)倒数 1、定义:乘积为“1”的两个数互为倒数。 2、求法:颠倒这个数的分子和分母。 3、a(a≠0)的倒数是1 a. 有理数的运算

第一章复习题解答(数学分析)

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 1 ,下确界为 -1 。 2、 =∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 3、)(lim 2 n n n n -+∞ → = _______ 1 2 ________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = {}sup n a . 5. 设,2 12,21221 2n n n n n n x x +=-=- 则 =∞→n n x lim 1 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( B )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( B ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( D ) A 、}1 { 2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( D ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( D ) (A) ∞=∞ →n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

考研数学函数与极限部分定理定义汇总

1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

相关文档
最新文档