第2章2.2.2第二课时知能优化训练

合集下载

【优化方案】2012高中数学 第2章2.2.2直线与圆的位置关系课件 苏教版必修2

【优化方案】2012高中数学 第2章2.2.2直线与圆的位置关系课件 苏教版必修2

法二: 几何法 几何法) 法二:(几何法 圆 C:(x-1)2+y2=1 的圆心为 C(1,0),半径 r=1. : - , = |k+5| + . 设圆心 C 到直线 l 的距离为 d,则 d= 2 , = k +1 |k+5| + 12 当 d>r,即 2 >, >1 时,k>- , >- 5 k +1 相离. 此时直线 l 与圆 C 相离.
本题满分14分 求过点 求过点(1, 且与圆x 本题满分 且与圆 例2 (本题满分 分 )求过点 , - 7)且与圆 2 + y2 相切的直线方程. =25相切的直线方程. 相切的直线方程 【思路点拨】 思路点拨】 由于直线过定点(1, 由于直线过定点 ,-7),故可设 ,
切点或直线的斜率,采用几何法或代数法求解. 切点或直线的斜率,采用几何法或代数法求解.
法二:已知圆的方程可化为 - 法二:已知圆的方程可化为(x-2)2+(y-1)2=4,即 - , 圆心坐标为(2,1),半径 r=2. 圆心坐标为 , = 圆心(2,1)到直线 mx-y-m-1=0 的距离为 圆心 到直线 - - - = |2m-1-m-1| |m-2| - - - - d= = = 2 2 . 1+m 1+m + + 4 直线与圆相交; 当 d<2,即 m>0 或 m<- 时,直线与圆相交; < , > <- 3 4 直线与圆相切; 当 d=2,即 m=0 或 m=- 时,直线与圆相切; = , = =- 3 4 直线与圆相离. 当 d>2,即- <m<0 时,直线与圆相离. > , < 3
l:(m+2)x+(2m+1)y=7m+8. : + + + = + (1)证明:不论m为何实数,直线 与圆 恒相交; 证明:不论 为何实数 直线l与圆 恒相交; 为何实数, 与圆C恒相交 证明 (2)当直线 被圆 截得的弦长最短时,求m的值. 当直线l被圆 截得的弦长最短时, 的值. 当直线 被圆C截得的弦长最短时 的值

人教a版高中数学选修2-3全册同步测控知能训练题集含答案

人教a版高中数学选修2-3全册同步测控知能训练题集含答案

人教A版高中数学选修2-3全册知能训练目录第1章1.1知能优化训练第1章1.2.1第一课时知能优化训练第1章1.2.1第二课时知能优化训练第1章1.2.2第一课时知能优化训练第1章1.2.2第二课时知能优化训练第1章1.3.1知能优化训练第1章1.3.2知能优化训练第2章2.1.1知能优化训练第2章2.1.2知能优化训练第2章2.2.1知能优化训练第2章2.2.2知能优化训练第2章2.2.3知能优化训练第2章2.3.1知能优化训练第2章2.3.2知能优化训练第2章2.4知能优化训练第3章3.1知能优化训练第3章3.2知能优化训练1.从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地到B 地有4条路,则从A 地到B 地不同走法的种数是( )A .3+2+4=9B .1C .3×2×4=24D .1+1+1=3解析:选C.由题意从A 地到B 地需过C 、D 两地,实际就是分三步完成任务,用乘法原理.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( )A .3种B .6种C .7种D .9种解析:选C.分3类:买1本书,买2本书和买3本书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).3.(2011年高考课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A.甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P =39=13. 4.将3封信投入6个信箱内,不同的投法有________种.解析:第1封信有6种投法,第2、第3封信也分别有6种投法,因此共有6×6×6=216种投法.答案:216一、选择题1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .81解析:选B.要完成配套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.2.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为( )A .1+1+1=3B .3+4+2=9C .3×4×2=24D .以上都不对答案:B3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线( )A .24种B .16种C .12种D .10种解析:选C.完成该任务可分为四类,从每一个方向入口都可作为一类,如图:从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:选C.第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据乘法计数原理,共有6×6=36种方法.5.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有()A.18条B.20条C.25条D.10条解析:选A.第一步取A的值,有5种取法,第二步取B的值有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).6.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A.36个B.18个C.9个D.6个解析:选B.分3步完成,1,2,3这三个数中必有某一个数字被使用2次.第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.二、填空题7.加工某个零件分三道工序,第一道工序有5人,第二道工序有6人,第三道工序有4人,从中选3人每人做一道工序,则选法有________种.解析:选第一、第二、第三道工序各一人的方法数依次为5、6、4,由分步乘法计数原理知,选法总数为N=5×6×4=120.答案:1208.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,则有________种不同的着色方案.解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从其余的4种颜色中任选1种着色.根据分步乘法计数原理,共有6×5×4×4=480种着色方案.答案:4809.从1,2,3,4,7,9六个数中,任取两个数作对数的底数和真数,则所有不同的对数的值的个数为________.解析:(1)当取1时,1只能为真数,此时对数的值为0.(2)不取1时,分两步:①取底数,5种;②取真数,4种.其中log23=log49,log32=log94,log24=log39,log42=log93,∴N=1+5×4-4=17.答案:17三、解答题10.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排放百位,从1,2,…,7共7个数中选一个有7种选法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一个,有7种选法;最后排个位,从除前两步选出的数外,剩余的6个数中选一个,有6种选法.由分步乘法计数原理,共可以组成7×7×6=294个不同的三位数.11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法?解:若黄瓜种在第一块土地上,则有3×2×1=6种不同种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2×1=6(种).故不同的种植方法共有6×3=18(种).12.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人分别参加市里组织的两项活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类加法计数原理,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步乘法计数原理,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类加法计数原理,共有30+20+24=74种选法.1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个D.60个解析:选B.分2步完成:个位必为奇数,有A13种选法;从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36个无重复数字的三位奇数.2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684解析:选C.(间接法)甲、乙、丙三人在一起的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66.∴符合题意的排法种数为:A66-A44×A33=576.3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法种数为()A.42 B.30C.20 D.12解析:选A.分两类:①两个新节目相邻的插法有6A22种;②两个新节目不相邻的插法有A26种.故N=6×2+6×5=42.4.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允有空袋,且红口袋中不能装入红球,则有______种不同的放法.解析:先装红球,且每袋一球,所以有A14×A44=96(种).答案:96一、选择题1.高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600C.4320 D.5040解析:选B.利用插空法,先将4个音乐节目和1个曲艺节目全排列有A55种,然后从6个空中选出2个空将舞蹈节目全排列有A26种,所以共有A55A26=3600(种).故选B.2.某省有关部门从6人中选4人分别到A、B、C、D四个地区调研十二五规划的开局形势,要求每个地区只有一人,每人只去一个地区,且这6人中甲、乙两人不去A地区,则不同的安排方案有()A.300种B.240种C.144种D.96种解析:选B.A地区有A14种方法,其余地区有A35种方法,共有A14A35=240(种).3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有() A.48个B.36个C.24个D.18个解析:选B.个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.4.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88A210C.A88A27D.A88A26解析:选A.运用插空法,8名学生间共有9个空隙(加上边上空隙),先把老师排在9个空隙中,有A29种排法,再把8名学生排列,有A88种排法,共有A88×A29种排法.5.五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有()A.48种B.192种C.240种D.288种解析:选B.(用排除法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为A55×A22-A44×A22=192.6.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是() A.36 B.32C.28 D.24解析:选A.分类:①若5在首位或末位,共有2A12×A33=24(个);②若5在中间三位,共有A13×A22×A22=12(个).故共有24+12=36(个).二、填空题7.5人站成一排,甲必须站在排头或排尾的不同站法有________种.解析:2A44=48.答案:488.3个人坐8个位置,要求每人的左右都有空位,则有________种坐法.解析:第一步:摆5个空位置,○○○○○;第二步:3个人带上凳子插入5个位置之间的四个空,有A34=24(种),故有24种不同坐法.答案:249.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有________种排法(用数字作答).解析:先让5名大人全排列有A55种排法,两个小孩再依条件插空有A24种方法,故共有A55A24=1440种排法.答案:1440三、解答题10.7名班委中有A、B、C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A、B、C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步计数原理,共有A23A55=720种分工方案.(2)7人中任意分工方案有A77种,A、B、C三人中无一人任正、副班长的分工方案有A24 A55种,因此A、B、C三人中至少有一人任正、副班长的方案有A77-A24A55=3600(种).11.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字的比1325大的四位数?解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 14种,十位和百位从余下的数字中选,有A 24种,于是有A 14×A 24(个);第三类:4在个位时,与第二类同理,也有A 14×A 24(个).由分类加法计数原理得:共有A 35+2A 14×A 24=156(个).(2)为5的倍数的五位数可分为两类:第一类:个位上为0的五位数有A 45个;第二类:个位上为5的五位数有A 14×A 34(个),故满足条件的五位数共有A 45+A 14×A 34=216(个).(3)比1325大的四位数可分为三类:第一类:形如2,3 ,4 ,5 ,共有A 14×A 35(个);第二类:形如14 ,15 ,共有A 12×A 24(个); 第三类:形如134 ,135 ,共有A 12×A 13(个).由分类加法计数原理可得,比1325大的四位数共有:A 14×A 35+A 12×A 24+A 12×A 13=270(个).12.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.解:(1)2名女生站在一起有站法A 22种,视为一种元素与其余5人全排,有A 66种排法,所以有不同站法A 22×A 66=1440(种).(2)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A 44种,所以共有不同站法A 33×A 44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2×A 77A 44=420(种). (4)中间和两侧是特殊位置,可分类求解如下:①老师站在两侧之一,另一侧由男生站,有A 12×A 14×A 55种站法;②两侧全由男生站,老师站除两侧和正中的另外4个位置之一,有A 14×A 24×A 44种站法,所以共有不同站法A 12×A 14×A 55+A 14×A 24×A 44=960+1152=2112(种).1.5A35+4A24=()A.107B.323C.320 D.348解析:选D.原式=5×5×4×3+4×4×3=348.2.4×5×6×…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n解析:选D.原式可写成n·(n-1)·…×6×5×4,故选D.3.6名学生排成两排,每排3人,则不同的排法种数为()A.36 B.120C.720 D.240解析:选C.排法种数为A66=720.4.下列问题属于排列问题的是________.①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作幂运算.解析:①选出的2人有不同的劳动内容,相当于有顺序.②选出的2人劳动内容相同,无顺序.③5人一组无顺序.④选出的两个数作为底数或指数其结果不同,有顺序.答案:①④一、选择题1.甲、乙、丙三地客运站,需要准备在甲、乙、丙三地之间运行的车票种数是() A.1 B.2C.3 D.6解析:选D.A23=6.2.已知A2n+1-A2n=10,则n的值为()A.4 B.5C.6 D.7解析:选B.由A2n+1-A2n=10,得(n+1)n-n(n-1)=10,解得n=5.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送法种数是() A.5 B.10C.20 D.60解析:选C.A25=20.4.将3张不同的电影票分给10人中的3人,每人一张,则不同的分法种数是() A.2160 B.720C.240 D.120解析:选B.A310=10×9×8=720.5.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是()A.8 B.12C.16 D.24解析:选B.设车站数为n,则A2n=132,n(n-1)=132,∴n =12.6.S =1!+2!+3!+…+99!,则S 的个位数字为( )A .0B .3C .5D .7解析:选B.∵1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,…∴S =1!+2!+3!+…+99!的个位数字是3.二、填空题7.若A m 10=10×9×…×5,则m =________.解析:10-m +1=5,得m =6.答案:68.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧ n +3≤2n ,n +1≤4,n ∈N *,得n =3, ∴A n +32n +A n +14=6!+4!=744. 答案:7449.甲、乙、丙、丁四人轮读同一本书,则甲首先读的安排方法有________种. 解析:甲在首位,相当于乙、丙、丁全排,即3!=3×2×1=6.答案:6三、解答题10.解不等式:A x 9>6A x -29.解:原不等式可化为9!(9-x )!>6·9!(9-x +2)!, 其中2≤x ≤9,x ∈N *,∴(11-x )(10-x )>6,即x 2-21x +104>0,∴(x -8)(x -13)>0,∴x <8或x >13.又∵2≤x ≤9,x ∈N *,∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.11.解方程3A x 8=4A x -19.解:由3A x 8=4A x -19得3×8!(8-x )!=4×9!(10-x )!. ∴3×8!(8-x )!=4×9×8!(10-x )(9-x )(8-x )!. 化简得:x 2-19x +78=0,解得x 1=6,x 2=13.∵x ≤8,且x -1≤9,∴原方程的解是x =6.12.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)、(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题.1.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空档中放入3盏亮灯,即C 35=10.2.某中学要从4名男生和3名女生中选4人参加公益劳动,若男生甲和女生乙不能同时参加,则不同的选派方案共有( )A .25种B .35种C .820种D .840种解析:选A.分3类完成:男生甲参加,女生乙不参加,有C 35种选法;男生甲不参加,女生乙参加,有C 35种选法;两人都不参加,有C 45种选法.所以共有2C 35+C 45=25(种)不同的选派方案.3.(2010年高考大纲全国卷Ⅰ)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种解析:选A.法一:可分两种互斥情况:A 类选1门,B 类选2门或A 类选2门,B 类选1门,共有C 13C 24+C 23C 14=18+12=30种选法.法二:总共有C 37=35种选法,减去只选A 类的C 33=1(种),再减去只选B 类的C 34=4(种),故有30种选法.4.(2011年高考江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:从1,2,3,4中任取两个数的组合个数为C 24=6,满足一个数是另一个数两倍的组合为{1,2},{2,4},故P =26=13.答案:13一、选择题1.9名会员分成三组讨论问题,每组3人,共有不同的分组方法种数为( )A .C 39C 36B .A 39A 36C.C 39C 36A 33 D .A 39A 36A 33 解析:选C.此为平均分组问题,要在分组后除以三组的排列数A 33.2.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( ) A .480 B .240 C .120 D .96 解析:选B.先把5本书中两本捆起来,再分成4份即可,∴分法数为C 25A 44=240.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48解析:选A.6人中选4人的方案有C 46=15(种),没有女生的方案只有一种,所以满足要求的方案总数有14种.4.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有( ) A .36个 B .72个 C .63个 D .126个解析:选D.此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C 49=126(个).5.(2010年高考大纲全国卷Ⅱ)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B.先将1,2捆绑后放入信封中,有C 13种方法,再将剩余的4张卡片放入另外两个信封中,有C 24C 22种方法,所以共有C 13C 24C 22=18种方法.6.如图所示的四棱锥中,顶点为P ,从其他的顶点和各棱中点中取3个,使它们和点P 在同一平面内,不同的取法种数为( )A .40B .48C .56D .62解析:选C.满足要求的点的取法可分为3类:第1类,在四棱锥的每个侧面上除点P 外任取3点,有4C 35种取法; 第2类,在两个对角面上除点P 外任取3点,有2C 34种取法;第3类,过点P 的四条棱中,每一条棱上的两点和与这条棱异面的两条棱的中点也共面,有4C 12种取法.所以,满足题意的不同取法共有4C 35+2C 34+4C 12=56(种). 二、填空题7.在50件产品中有4件是次品,从中任意抽出5件,至少有三件是次品的抽法共有________种.解析:分两类,有4件次品的抽法为C 44C 146(种);有三件次品的抽法有C 34C 246(种),所以共有C 44C 146+C 34C 246=4186种不同的抽法.答案:41868.某运动队有5对老搭档运动员,现抽派4个运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.解析:先抽取4对老搭档运动员,再从每对老搭档运动员中各抽1人,故有C 45C 12C 12C 12C 12=80(种). 答案:809.2011年3月10日是第六届世界肾脏日,某社区服务站将5位志愿者分成3组,其中两组各2人,另一组1人,分别去三个不同的社区宣传这届肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有________种.(用数字作答)解析:分配方案有C 25C 23C 11A 22×A 33=10×3×62=90(种). 答案:90三、解答题 10.四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种? 解:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2,实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有C 14C 13C 22A 22(种),然后将这三组再加上一个空盒进行全排列,即共有C 14C 13C 22A 22·A 44=144(种). 11.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?解:法一:共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).法二:将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个位置放入隔板,将其分为七部分),有C 69=84种放法.故共有84种不同的选法.12.如图,在以AB 为直径的半圆周上,有异于A 、B 的六个点C 1、C 2、C 3、C 4、C 5、C 6,直径AB 上有异于A 、B 的四个点D 1、D 2、D 3、D 4.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含C 1点的有多少个? (2)以图中的12个点(包括A 、B )中的4个点为顶点,可作出多少个四边形?解:(1)可分三种情况处理:①C 1、C 2、…、C 6这六个点任取三点可构成一个三角形;②C 1、C 2、…、C 6中任取一点,D 1、D 2、D 3、D 4中任取两点可构成一个三角形; ③C 1、C 2、…、C 6中任取两点,D 1、D 2、D 3、D 4中任取一点可构成一个三角形.∴C 36+C 16C 24+C 26C 14=116(个).其中含C 1点的三角形有C 25+C 15·C 14+C 24=36(个). (2)构成一个四边形,需要四个点,且无三点共线,∴共有C 46+C 36C 16+C 26C 26=360(个).1.计算C 28+C 38+C 29等于() A .120 B .240C .60D .480解析:选A.原式=C 39+C 29=C 310=120.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15解析:选C.C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14. 3.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是( )A .C 25+C 28+C 23B .C 25C 28C 23C .A 25+A 28+A 23 D .C 216解析:选A.分三类:一年级比赛的场数是C 25,二年级比赛的场数是C 28,三年级比赛的场数是C 23,再由分类加法计数原理可求.4.把8名同学分成两组,一组5人学习电脑,一组3人做生物实验,则不同的安排方法有________种.解析:C 38=56. 答案:56一、选择题1.下面几个问题中属于组合问题的是( )①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A .①③B .②④C .①②D .①②④ 答案:C2.已知平面内A 、B 、C 、D 这4个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为( )A .3B .4C .12D .24解析:选B.C 34=4.3.C 03+C 14+C 25+C 36+…+C 1720的值为( ) A .C 321 B .C 320C .C 420 D .C 421 解析:选D.原式=()C 04+C 14+C 25+C 36+…+C 1720 =()C 15+C 25+C 36+…+C 1720=(C 26+C 36)+…+C 1720=C 1721=C 21-1721=C 421. 4.若A 3n =12C 2n ,则n 等于( ) A .8 B .5或6 C .3或4 D .4解析:选A.A 3n =n (n -1)(n -2),C 2n =12n (n -1),∴n (n -1)(n -2)=6n (n -1),又n ∈N *,且n ≥3.解得n =8.5.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15解析:选A.法一:直接法:分两类,第一类张、王两人都不参加,有C 44=1种选法;第二类张、王两人只有1人参加,有C 12C 34=8种选法.故共有C 44+C 12×C 34=9种选法.法二:间接法:C 46-C 24=9(种).6.把三张游园票分给10个人中的3人,分法有( ) A .A 310种 B .C 310种C .C 310A 310种D .30种 解析:选B.三张票没区别,从10人中选3人即可,即C 310. 二、填空题7.若C 13n =C 7n ,则C 18n =________.解析:∵C 13n =C 7n ,∴13=n -7,∴n =20, ∴C 1820=C 220=190. 答案:1908.C 22+C 23+C 24+…+C 210=________. 解析:原式=C 33+C 23+C 24+…+C 210=C 34+C 24+…+C 210=C 35+C 25+…+C 210=C 311=165. 答案:1659.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________________________________________________________________________种.解析:(间接法)共有C 47-C 44=34种不同的选法. 答案:34 三、解答题10.若C 4n >C 6n ,求n 的取值集合. 解:∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n n ≥6⇒⎩⎨⎧n !4!(n -4)!>n !6!(n -6)!n ≥6⇒⎩⎨⎧ n 2-9n -10<0n ≥6⇒⎩⎨⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6、7、8、9,∴n 的集合为{6,7,8,9}.11.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? (1)甲当选且乙不当选;(2)至少有1女且至多有3男当选.解:(1)甲当选且乙不当选,∴只需从余下的8人中任选4人,有C 48=70种选法.(2)至少有1女且至多有3男时,应分三类:第一类是3男2女,有C 36C 24种选法; 第二类是2男3女,有C 26C 34种选法; 第三类是1男4女,有C 16C 44种选法.由分类计数原理知,共有C 36C 24+C 26C 34+C 16C 44=186种选法. 12.现有10件产品,其中有2件次品,任意抽出3件检查. (1)正品A 被抽到有多少种不同的抽法? (2)恰有一件是次品的抽法有多少种? (3)至少一件是次品的抽法有多少种?解:(1)C 29=9×82=36(种).(2)从2件次品中任取1件有C 12种方法,从8件正品中取2件有C 28种方法,由分步乘法计数原理,不同的抽法共有C 12×C 28=2×8×72=56(种). (3)法一:含1件次品的抽法有C 12C 28种,含2件次品的抽法有C 22×C 18种,由分类加法计数原理,不同的抽法共有C 12×C 28+C 22×C 18=56+8=64(种).法二:从10件产品中任取3件的抽法为C 310种,不含次品的抽法有C 38种,所以至少1件次品的抽法为C 310-C 38=64(种).1.(x +2)6的展开式中x 3的系数是( ) A .20 B .40 C .80 D .160解析:选D.法一:设含x 3的为第r +1项,则T r +1=C r n x6-r ·2r,令6-r =3,得r =3,故展开式中x 3的系数为C 36×23=160.法二:根据二项展开式的通项公式的特点:二项展开式每一项中所含的x 与2分得的次数和为6,则根据条件满足条件x 3的项按3与3分配即可,则展开式中x 3的系数为C 36×23=160.2.(2x -12x)6的展开式的常数项是( )A .20B .-20C .40D .-40解析:选B.由题知(2x -12x )6的通项为T r +1=(-1)r C r 626-2r x 6-2r,令6-2r =0得r =3,故常数项为(-1)3C 36=-20.3.1.056的计算结果精确到0.01的近似值是( ) A .1.23 B .1.24 C .1.33 D .1.34解析:选 D.1.056=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.0375+0.0025+…≈1.34.4.(2011年高考浙江卷)设二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数是A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4, 由B =4A 知,4C 26(-a )2=C 46(-a )4,解得a =±2. 又∵a >0,∴a =2. 答案:2一、选择题1.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( ) A .-5 B .5 C .-10 D .10解析:选D.(1-x )5中x 3的系数-C 35=-10,-(1-x )6中x 3的系数为-C 36·(-1)3=20,故(1-x )5-(1-x )6的展开式中x 3的系数为10.2.(x -2y )10的展开式中x 6y 4项的系数是( ) A .840 B .-840 C .210 D .-210解析:选A.在通项公式T r +1=C r 10(-2y )r x10-r 中,令r =4,即得(x -2y )10的展开式中x 6y 4项的系数为C 410·(-2)4=840.3.(2010年高考陕西卷)⎝⎛⎭⎫x +ax 5(x ∈R )展开式中x 3的系数为10,则实数a 等于( ) A .-1 B.12 C .1D .2解析:选D.由二项式定理,得T r +1=C r 5x 5-r ·⎝⎛⎭⎫a x r =C r 5·x 5-2r ·a r ,∴5-2r =3,∴r =1,∴C 15·a =10,∴a =2.4.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =4,n =3 B .x =4,n =4 C .x =5,n =4 D .x =6,n =5解析:选C.由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1,分别将选项A 、B 、C 、D 代入检验知,仅有C 适合.5.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数指数幂的项数是( ) A .0 B .2 C .4 D .6解析:选B.T r +1=C r 10x 10-r 2·⎝⎛⎭⎫-13r ·x -r =C r 10⎝⎛⎭⎫-13r ·x 10-3r2.若是正整数指数幂,则有10-3r2为正整数,∴r 可以取0,2,∴项数为2.6.(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4解析:选C.(1+2x )3(1-3x )5=(1+6x 12+12x +8x 32)·(1-5x 13+10x 23-10x +5x 43-x 53),x的系数是-10+12=2.二、填空题 7.⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝⎛⎭⎪⎫-13x 3=-160x .答案:-160x8.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________.解析:∵T 4=C 35(x )2·a 3=10x ·a 3. ∴10xa 3=10a 2(a >0),∴x =1a.答案:1a9.(2010年高考辽宁卷)(1+x +x 2)⎝⎛⎭⎫x -1x 6的展开式中的常数项为__________. 解析:(1+x +x 2)⎝⎛⎭⎫x -1x 6=(1+x +x 2)[ C 06x 6⎝⎛⎭⎫-1x 0+C 16x 5⎝⎛⎭⎫-1x 1+C 26x 4⎝⎛⎭⎫-1x 2+C 36x 3⎝⎛⎭⎫-1x 3。

【优化方案】2012高中数学 第2章2.2.2等差数列的性质课件 新人教A版必修5

【优化方案】2012高中数学 第2章2.2.2等差数列的性质课件 新人教A版必修5

(4)若{an}是有穷等差数列,则与首、末两项等距 若 是有穷等差数列, 是有穷等差数列 则与首、 离的两项之和都相等,且等于首、末两项之和, 离的两项之和都相等,且等于首、末两项之和, 即a1+an=a2+an-1=…=ai+1+an-i=…. = + - - (5)数列 n+b}(λ、b是常数 是公差为 的等差数 数列{λa 是常数)是公差为 数列 、 是常数 是公差为λd的等差数 列.
方法感悟
若数列{a 是公差为 的等差数列,则有: 若数列 n}是公差为 d 的等差数列,则有: an-a1 am-ak (1)d= (m、n、k∈N*). = = 、 、 ∈ . n-1 m-k - - (2)若 m+n=p+q(m、n、p、q∈N*),则 am+an 若 + = + 、 、 、 ∈ , =ap+aq. m+n + (3)若 若 =k,则 am+an=2ak(m、n、k∈N*). , 、 、 ∈ . 2
差d<0,所以利润构成的数列是一个递减数列, < ,所以利润构成的数列是一个递减数列, 即随着n的增大, 的值越来越小, 即随着 的增大,an的值越来越小,an<0时(此处 的增大 时 此处 暗含a - 成立 公司将出现亏损. 成立)公司将出现亏损 暗含 n-1≥0成立 公司将出现亏损.
变式训练2 变式训练
体考虑问题. 利用 利用2a 利用a 体考虑问题.(1)利用 4=a3+a5,(2)利用 n= 利用 am+(n-m)d. -
解析】 【 解析】 (1)∵a3+ a4+a5=12,∴ 3a4= 12,a4 ∵ , , =4. ∴a1+a2+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+ + + + a4=7a4=28. (2)在等差数列 n}中,根据 an=am+(n-m)d, 在等差数列{a 中 在等差数列 - , 1 ∴a51=a11+40d,∴d= (54+26)=2. , = + = 40 =-26+ × =- =-20. ∴a14=a11+3d=- +3×2=- =-

2012年苏教数学必修5:第2章2.2.2知能优化训练

2012年苏教数学必修5:第2章2.2.2知能优化训练

1.已知等差数列的前三项依次是m,6m ,m +10,则这个等差数列的第10项是________.解析:因为6m 是m 和m +10的等差中项,所以6m ×2=m +(m +10),解得m =1, 所以首项a 1=1,公差d =6m -m =5.则a 10=1+(10-1)×5=46.答案:462.(2011年南通调研)已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值为__________. 解析:在等差数列{a n }中,a 7+a 9=a 4+a 12,∴a 12=a 7+a 9-a 4=16-1=15.答案:153.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2a 9-a 10的值为________. 解析:∵a 4+a 12=2a 8,a 6+a 10=2a 8,∴由已知5a 8=120,∴a 8=24,于是2a 9-a 10=a 8+a 10-a 10=a 8=24.答案:244.在等差数列{a n }中,若a 2,a 10是方程x 2+12x -8=0的两个根,那么a 6的值为________. 解析:由题意得a 2+a 10=-12,又a 2+a 10=2a 6,∴a 6=-6.答案:-6一、填空题1.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.解析:{a n }是公差为正数的等差数列,设公差为d ,∵a 1+a 2+a 3=15=3a 2,∴a 2=5,又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16⇒d =3或d =-3(舍去),∴a 12=a 2+10d =35,a 11+a 12+a 13=105.答案:1052.已知数列{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________.解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-1,∴a 1=1,又a 3=a 1+2d =0,∴d =-12. 答案:-123.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101=________.解析:∵a n +1-a n =12,∴a n =a 1+(n -1)×12=2+(n -1)×12=12n +32, ∴a 101=12×101+32=52. 答案:524.已知数列{a n }是等差数列,a p =q ,a q =p ,且p ≠q ,则a p +q =________.解析:法一:⎩⎪⎨⎪⎧ a p =a 1+(p -1)d =q ,a q =a 1+(q -1)d =p ,⇒⎩⎪⎨⎪⎧a 1=p +q -1,d =-1. 故a p +q =a 1+(p +q -1)d =0.法二:∵a p =a q +(p -q )d ,∴q =p +(p -q )d .∴d =-1.∴a p +q =a p +(p +q -p )d =0.法三:设a n =kn +b (k ≠0),则⎩⎪⎨⎪⎧ pk +b =q ,qk +b =p ,⇒⎩⎪⎨⎪⎧k =-1,b =p +q , ∴a p +q =k (p +q )+b =0.答案:05.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________.解析:∵a 1=2,a 2+a 3=13,∴3a 2=2+13=15,∴a 2=5,∴d =3,a 5=14,∴a 4+a 5+a 6=3a 5=3×14=42.答案:426.(2010年高考大纲全国卷Ⅱ改编)如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=________.解析:∵a 3+a 4+a 5=12,∴3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=7×4=28.答案:287.(2011年苏州高二检测)如果f (n +1)=2f (n )+12(n =1,2,3…)且f (1)=2,则f (2011)等于________.解析:∵f (n +1)=2f (n )+12=f (n )+12, ∴f (n +1)-f (n )=12.即数列{f (n )}是首项为2,公差为12的等差数列. 所以通项公式为:f (n )=2+(n -1)×12=12n +32, ∴f (2011)=12×2011+32=1007. 答案:10078.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16,则a 2011=________. 解析:设等差数列{a n }的公差为d ,则d >0,由a 2+a 7=16,得2a 1+7d =16,①由a 3a 6=55,得(a 1+2d )(a 1+5d )=55,②由①②得(16-3d )(16+3d )=220,即256-9d 2=220.∴d 2=4,又d >0,∴d =2,代入①得a 1=1.∴a n =1+(n -1)·2=2n -1.所以a 2011=4021.答案:40219.如果有穷数列a 1,a 2,…,a m (m 为正整数)满足条件:a 1=a m ,a 2=a m -1,…,a m =a 1,则称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{c n }中c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,则c 2=________. 解析:因为c 11,c 12,…,c 21是以1为首项,2为公差的等差数列,所以c 20=c 11+9d =1+9×2=19,又{c n }为21项的对称数列,所以c 2=c 20=19.答案:19二、解答题10.已知等差数列{a n }的公差是正数,并且a 3a 7=-12,a 4+a 6=-4,求数列{a n }的通项公式.解:由等差数列{a n }的性质知:a 3+a 7=a 4+a 6,从而a 3a 7=-12,a 3+a 7=-4,故a 3,a 7是方程x 2+4x -12=0的两根,又d >0,解之,得a 3=-6,a 7=2.再解方程组⎩⎪⎨⎪⎧ a 1+2d =-6a 1+6d =2, 解得⎩⎪⎨⎪⎧a 1=-10d =2, 则a n =a 1+(n -1)d =-10+(n -1)×2=2n -12,即a n =2n -12.11.夏季山上的温度从山脚起,每升高100米,降低0.7℃,已知山顶处的温度是14.8℃,山脚处的温度为26℃,问此山相对于山脚处的高度是多少米?解:∵每升高100米温度降低0.7℃,∴该处的温度变化是一个等差数列问题.山脚温度为首项a 1=26,山顶温度为末项a n =14.8,d =-0.7.∴26+(n -1)(-0.7)=14.8,解之可得n =17,故此山相对于山脚处的高度为(17-1)×100=1600(米).12.已知数列{a n }满足(a n +1-a n )(a n +1+a n )=16,且a 1=1,a n >0,(1)求证:数列{a 2n }为等差数列;(2)求a n .解:(1)证明:由(a n +1-a n )(a n +1+a n )=16,得a 2n +1-a 2n =16,∴数列{a 2n }构成以a 21=1为首项,以16为公差的等差数列.(2)由(1)知a 2n =1+(n -1)×16=16n -15,又a n>0,∴a n=16n-15(n∈N*).。

【优化方案】2012高中数学 第2章2.2.2用样本的数字特征估计总体的数字特征同步课件 新人教B版必修3

【优化方案】2012高中数学 第2章2.2.2用样本的数字特征估计总体的数字特征同步课件 新人教B版必修3

【思路点拨】 思路点拨】
由题目可获取以下主要信息: 由题目可获取以下主要信息:
①已知所有球员的具体身高; 已知所有球员的具体身高; ②求球员的平均身高. 求球员的平均身高. 解答本题可利用平均数的公式计算; 解答本题可利用平均数的公式计算; 也可建立 新数据,再利用平均数简化公式计算. 新数据,再利用平均数简化公式计算.
【 思路点拨】 总体的平均数与标准差往往是 思路点拨 】 很难求的, 甚至是不可求的, 很难求的 , 甚至是不可求的 , 通常的做法是用 样本的平均数与标准差去估计总体的平均数与 标准差, 只要样本的代表性好, 标准差 , 只要样本的代表性好 , 这种做法是合 理的. 理的. (1) 各 组 中 平 均 值 可 近 似 取 为 【解】 165,195,225,255,285,315,345,375. 由此可算得平均数约为 165×1% + 195×11% + 225×18% + × × × 255×20% + 285×25% + 315×16% + × × × 345×7%+375×2%=267.9≈268(天). × + × = ≈ 天. 估计这种日光灯的平均使用寿命约为268天. ∴估计这种日光灯的平均使用寿命约为 天
课堂互动讲练
考点突破 样本平均数的计算
例1
一个球队所有队员的身高如下(单位 : 一个球队所有队员的身高如下 单位: 单位
cm): : 178,179,181,182,176,183,176,180,183,175,181,185 ,180,184,问这个球队的队员平均身高是多少?( ,问这个球队的队员平均身高是多少? 精确到1 精确到 cm)
89,93,88,91,94,90,88,87的方差和标准 的方差和标准 标准差结果精确到0.1) 差.(标准差结果精确到 标准差结果精确到

【优化方案】2012高中数学 第2章2.2.2用样本的数字特征估计总体的数字特征课件 新人教A版必修3

【优化方案】2012高中数学 第2章2.2.2用样本的数字特征估计总体的数字特征课件 新人教A版必修3

方差及标准差的应用 方差、 方差、标准差是样本数据到平均数的一种平均 距离,表示各个样本数据在样本平均数的周围 距离, 分散程度. 分散程度.
例3 甲 、 乙两机床同时加工直径为 乙两机床同时加工直径为100 cm的 的
零件,为检验质量,各从中抽取6件测量 件测量, 零件,为检验质量,各从中抽取 件测量,数据 为: 甲:99 乙:99 100 100 98 102 100 99 100 100 103 100
思维总结】 【思维总结】
要先找清每个小矩形的高、 要先找清每个小矩形的高、宽
及其意义,就可求相应的样本数字. 及其意义,就可求相应的样本数字. 变式训练1 变式训练 根据频率分布直方图(如图 估计 根据频率分布直方图 如图)估计 如图 估计(1)
众数; 中位数 中位数; 平均数 平均数. 众数;(2)中位数;(3)平均数.
课堂互动讲练
考点突破 众数、中位数、 众数、中位数、平均数的综合应用 众数体现了样本数据的最大集中点; 众数体现了样本数据的最大集中点 ; 中位数 是样本数据所占频率的等分线; 是样本数据所占频率的等分线 ; 平均数与每 一个样本数据有关. 一个样本数据有关.
例1
某工厂人员及工资构成如下表: 某工厂人员及工资构成如下表:
2
【 思维总结】 本题易出现判断甲机床质量 思维总结 】 更稳定的错误, 更稳定的错误 , 其原因是对方差的概念理解 错误. 错误.
互动探究2 互动探究
在本例中, 甲机床所加工的6个 在本例中 , 甲机床所加工的 个
零件的数据全都加10, 零件的数据全都加 , 那么所得新数据的平 均数及方差分别是多少? 均数及方差分别是多少?
(1)分别计算两组数据的平均数及方差; 分别计算两组数据的平均数及方差; 分别计算两组数据的平均数及方差 (2)根据计算结果判断哪台机床加工零件的质量 根据计算结果判断哪台机床加工零件的质量 更稳定. 更稳定.

人教A选修二第2章2.2.2

人教A选修二第2章2.2.2

课堂互动讲练
考点突破 用反证法证明否定性命题 结论中含有“不 、 不是 不是”、 不可能 不可能”、 不存在 不存在” 结论中含有 不”、“不是 、“不可能 、“不存在 等词语的命题,此类命题的反面比较具体, 等词语的命题,此类命题的反面比较具体,适于 应用反证法. 应用反证法.
x-2 - 例1 已知 f(x)=a + (a>1),证明 = , x+1 +
2
用反证法证明唯一性问题 结论以“有且只有一个 、“只有一个 、“唯一存 结论以 有且只有一个”、 只有一个”、 唯一存 有且只有一个 只有一个 等形式出现的命题, 在”等形式出现的命题,由于反设结论易于导出 等形式出现的命题 矛盾,所以用反证法证其唯一性简单明了. 矛盾,所以用反证法证其唯一性简单明了. 例3 已知:一点 和平面 已知:一点A和平面 和平面α. 求证:经过点A只能有一条直线和平面 垂直. 只能有一条直线和平面α垂直 求证:经过点 只能有一条直线和平面 垂直.
在平面β内经过点 有两条直线都和 垂直, 在平面 内经过点A有两条直线都和 垂直,这 内经过点 有两条直线都和BC垂直 与平面几何中经过直线外一点只能有已知直线的 一条垂线相矛盾. 一条垂线相矛盾. 综上,经过一点A只能有平面 的一条垂线. 只能有平面α的一条垂线 综上,经过一点 只能有平面 的一条垂线.
(2)如图 ,点A在平面 外,假设经过点 至少有 如图2, 在平面α外 假设经过点A至少有 如图 在平面 平面α的两条垂线 的两条垂线AB和 为垂足), 平面 的两条垂线 和AC(B、C为垂足 ,那么 、 为垂足 AB、AC是两条相交直线,它们确定一个平面 , 是两条相交直线, 、 是两条相交直线 它们确定一个平面β, 平面β和平面 相交于直线BC,因为AB⊥平面α, 和平面α相交于直线 平面 和平面 相交于直线 ,因为 ⊥平面 , AC⊥平面 ,BC⊂α,所以 ⊥BC,AC⊥BC. ⊥平面α, ⊂ ,所以AB⊥ , ⊥ 图2

2013年沪科物理选修3-5课件:第2章2.2

2013年沪科物理选修3-5课件:第2章2.2

A.增大黄光强度
B.延长照射时间
C.改用蓝光照射
D.改用红光照射
解析:选C.由题意知eU=Ekm ,根据光电效应
方程Ekm=hν-W,由以上两式可知,欲使U增
大,可增加入射光的频率,故选项C正确.
一、光电效应 1.定义 在光的照射下物体_________的现象叫光电效应, 发射电子 发射出来的电子叫________. 光电子 2.光电效应规律 (1)对于各种金属都存在着一个_________,当入 极限频率 极限频率 射光的频率高于这个____________时,才能产生 光电效应;如果入射光的频率低于这个极限频 率,无论光多么强,照射时间多长,都不会产 生光电效应.
2.存在遏止电压和截止频率:当所加电压 U 为零 时,电流 I 并不为零.只有施加反向电压,也就是 阴极 K 接电源正极、阳极 A 接电源负极,在光电 管两极间形成使电子减速的电场, 这时电流才有可 能为零. 使光电流减小到零的反向电压 U 称为遏止 电压. 遏止电压的存在意味着光电子具有一定的初 速度.众多光电子的初速度不一定一样,它的上限 1 v 应该满足以下关系: mev2=eU.实验表明, 2
对于一定颜色(频率)的光,无论光的强弱如何, 遏止电压都是一样的.光的频率ν改变时,遏止 电压U也会改变.当入射光的频率减小到某一数 值ν0时,U减小到零,即不施加反向电压也没有 光电流,这表明已经没有光电子了,ν0称为截止 频率或极限频率.这就是说,当入射光的频率 ν≤ν0 时,不论光多强,光电效应都不会发生; 光电效应具有瞬时性:当入射光的频率超过极 限频率ν0时,无论入射光怎样微弱,几乎在照到 金属时就立即产生光电流,精确测量表明产生 电流的时间不超过10-9 s,即光电效应几乎是瞬 时的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2010年高考天津卷)设a =log 54,b =(log 53)2
,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c
解析:选D.a =log 54<1,log 53<log 54<1,b =(log 53)2<log 53,c =log 45>1,故b <a
<c .
2.已知f (x )=log a |x -1|在(0,1)上递减,那么f (x )在(1,+∞)上( ) A .递增无最大值 B .递减无最小值 C .递增有最大值 D .递减有最小值 解析:选A.设y =log a u ,u =|x -1|. x ∈(0,1)时,u =|x -1|为减函数,∴a >1.
∴x ∈(1,+∞)时,u =x -1为增函数,无最大值. ∴f (x )=log a (x -1)为增函数,无最大值.
3.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )
A.12
B.14 C .2 D .4
解析:选C.由题可知函数f (x )=a x +log a x 在[1,2]上是单调函数,所以其最大值与最小值之和为f (1)+f (2)=a +log a 1+a 2+log a 2=log a 2+6,整理可得a 2+a -6=0,解得a =2或a =-3(舍去),故a =2.
4.函数y =log 13
(-x 2+4x +12)的单调递减区间是________.
解析:y =log 13
u ,u =-x 2+4x +12.
令u =-x 2
+4x +12>0,得-2<x <6.
∴x ∈(-2,2]时,u =-x 2+4x +12为增函数, ∴y =log 13(-x 2+4x +12)为减函数.
答案:(-2,2]
1.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞)
C .(0,1)∪(1,2)
D .(0,1
2
)
解析:选B.当a >1时,log a 2<log a a ,∴a >2;当0<a <1时,log a 2<0成立,故选B.
2.若log a 2<log b 2<0,则下列结论正确的是( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 解析:选B.∵log a 2<log b 2<0,如图所示, ∴0<b <a <1.
3.已知函数f (x )=2log 12
x 的值域为[-1,1],则函数f (x )的定义域是( )
A .[
2
2,2] B .[-1,1] C .[1
2,2]
D .(-∞,
2
2
]∪[2,+∞)
解析:选A.函数f (x )=2log 12x 在(0,+∞)上为减函数,则-1≤2log 12x ≤1,可得-1
2≤log 1
2
x ≤1
2
, 解得
2
2
≤x ≤ 2. 4.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14 B.12 C .2 D .4
解析:选B.当a >1时,a +log a 2+1=a ,log a 2=-1,a =1
2
,与a >1矛盾;
当0<a <1时,1+a +log a 2=a ,
log a 2=-1,a =1
2
.
5.函数f (x )=log a [(a -1)x +1]在定义域上( ) A .是增函数 B .是减函数 C .先增后减 D .先减后增
解析:选A.当a >1时,y =log a t 为增函数,t =(a -1)x +1为增函数,∴f (x )=log a [(a -1)x +1]为增函数;当0<a <1时,y =log a t 为减函数,t =(a -1)x +1为减函数,
∴f (x )=log a [(a -1)x +1]为增函数.
6.(2009年高考全国卷Ⅱ)设a =lge ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a
解析:选B.∵1<e<3,则1<e<e<e 2<10,
∴0<lg e<1.则lg e =1
2lg e<lg e ,即c <a .
∵0<lg e<1,∴(lg e)2
<lg e ,即b <a .
又c -b =12lg e -(lg e)2=1
2
lg e(1-2lg e)
=12lg e·lg 10e
2>0,∴c >b ,故选B. 7.已知0<a <1,0<b <1,如果a log b (x -
3)<1,则x 的取值范围是________.
解析:∵0<a <1,a log b (x -
3)<1,∴log b (x -3)>0. 又∵0<b <1,∴0<x -3<1,即3<x <4. 答案:3<x <4
8.f (x )=log 21+x
a -x
的图象关于原点对称,则实数a 的值为________.
解析:由图象关于原点对称可知函数为奇函数, 所以f (-x )+f (x )=0,即
log 21-x a +x +log 21+x a -x =0⇒log 21-x 2a 2-x 2=0=log 21,
所以1-x 2
a 2-x 2=1⇒a =1(负根舍去).
答案:1
9.函数y =log a x 在[2,+∞)上恒有|y |>1,则a 取值范围是________.
解析:若a >1,x ∈[2,+∞),|y |=log a x ≥log a 2,即log a 2>1,∴1<a <2;若0<a <1,
x ∈[2,+∞),|y |=-log a x ≥-log a 2,即-log a 2>1,∴a >12,∴1
2
<a <1.
答案:1
2
<a <1或1<a <2
10.已知f (x )=⎩
⎪⎨⎪⎧
(6-a )x -4a (x <1)
log a x (x ≥1)是R 上的增函数,求a 的取值范围.
解:f (x )是R 上的增函数,
则当x ≥1时,y =log a x 是增函数, ∴a >1.
又当x <1时,函数y =(6-a )x -4a 是增函数. ∴6-a >0,∴a <6.
又(6-a )×1-4a ≤log a 1,得a ≥6
5
.
∴6
5
≤a <6. 综上所述,6
5
≤a <6.
11.解下列不等式.
(1)log 2(2x +3)>log 2(5x -6);
(2)log x 12>1.
解:(1)原不等式等价于⎩⎪⎨⎪

2x +3>05x -6>0
2x +3>5x -6,
解得6
5
<x <3,
所以原不等式的解集为(6
5,3).
(2)∵log x 12>1⇔log 2
12log 2x >1⇔1+1
log 2x <0
⇔log 2x +1log 2x <0⇔-1<log 2x <0
⇔⎩⎪⎨⎪⎧
2-1<x <20x >0
⇔12<x <1.
∴原不等式的解集为(1
2
,1).
12.函数f (x )=log 12
(3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.
解:令t =3x 2-ax +5,则y =log 12
t 在[-1,+∞)上单调递减,故t =3x 2-ax +5在[-1,
+∞)单调递增,且t >0(即当x =-1时t >0).
因为t =3x 2-ax +5的对称轴为x =a 6,所以⎩⎪⎨⎪⎧
a 6≤-18+a >0
⇒⎩⎪⎨⎪⎧
a ≤-6a >-8⇒-8<a ≤-6.。

相关文档
最新文档