平面向量等和线及其应用
平面向量等和线法 ,结合高考实例应用,快速秒杀

解析:
过点A作AF DE,设AF与BC的延长线交于点 H, 1 易知AF FH,即DF为BC的中位线,因此 1 2 2
思考:若所求的式子是系数的线性关系式而不是系数和呢?
考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操 作,那么理论上来说,所有的系数之间的线性关系,我们都 可以通过调节基底,使得要求的表达式是两个新基底的系数 和
3
,
解析:
课后巩固:
2009安徽 (文)14在平行四边形 ABCD中, E和F分别是边 CD和 1、
BC的中点,若 AC AE AF , 其中 , R.则 ______ . 2、 (苏州大学 2013 高考考前指导卷 (1)13)已知点 O是ABC的外心, 2 AB 2a, AC , BAC 120 , 若 AO AB AC, 则 最小值为 ____. a 3、 (2014 宁波一模 )已知点 O是ABC的外心,且 AB 3, AC 4, 若 存在非零实数 x, y,使得 AO x AB y AC, 且x 2 y 1, 则cosBAC _____.
本专题存在的意义:
1、等和线法巧妙的将代数问题转化为了图形的关系,将具体的代数 式运算转化为了距离的长短比例关系问题,这是数形结合思想的非常 直接的体现。 2、等和线法将复杂的不等式问题,范围问题,数量积问题转化为了 简单,直接,操作方便的点到直线距离问题,很多时候用相似即可迅 速解决,提高了做题效率与正确率,提升了学生的学习热情与兴趣。
思考:若是基底向量中有一个变化的向量,该如何处理,是否可以用等和线 呢?
思考这个问题,下节课一起探讨:
2011 苏州一模 13如图,在正方形 ABCD中, E为AB的中点,
平面向量基本定理以及“等和线”的应用

突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
问题的提出
平面向量与代数、几何融合的题目综合性强, 难度大,考试要求高。近年,以“等和线”为背景 的试题层出不穷。考生在解决此类问题时,往往因 思路不清、运算繁琐而失分。
本专题将在平面向量基本定理的基础上推导得 出“等和线”解题的原理,并利用“等和线”原理 解决与向量系数有关的最值和范围有关的问题。
所以, 3 y, 3x 3x 3 y 3
当点P与A点重合时,显然有 : 0,所以,选C.
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习:如图,四边形OABC是边长为1的正方形,点D在OA 的延长线上,且OD 2,点P为BCD内(含边界)的动点,
uuur uuur uuur
(二)起点不同,平移改造基底型
F
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
练习: 突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
(三)合理调节、变换基底型 例题:
1 2
uuur uuur PA, PB1
1 3
uuur PB
.
由
2x 2x 3y
3y 2x 3y
1
得点
A1 ,
B1,
D
共线,即点
D
在直线
A1 B1
上.
uuur uuur 再由 PC 5PD 知点 C 的轨迹就是直线 A2B2 ,其中 PA2 5PA1, PB2 5PB1 .如下图:
第6讲 平面向量等和线定理求系数和问题(原卷版)

第6讲 平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题①平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
①平面向量等和线问题平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈,若点P 在直线AB 上或者在平行于AB的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
注意:1.当等和线恰为直线AB 时,1k =;2.当等和线在O 点和直线AB 之间时,(0,1)k ∈;3.当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;4.当等和线过O 点时,0k =;5.若两等和线关于O 点对称,则定值k 互为相反数;【典型例题】题型一: 平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+,则n m +的最大值为( )A .3B .22C .5D .2O【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .1【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+(λ,μ∈R ),则λμ+的取值范围是( )A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是( )A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是_________.【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )A .4B .3C .2D .22.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3B .22C .5D .23.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心Q 在线段CD (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP mAB nAF =+(m ,n 为实数),则m +n 的最大值为______.4.已知ABC 的外接圆圆心为O ,120A ∠=,若AO x AB y AC =+(x ,yR ),则x y +的最小值为( ) A .12 B .23 C .32 D .25.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π,如图所示点C 在以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中x ,y R ∈,则x y +的取值范围为( )A .(1,2]B .[1,2]C .[1,2)D .[2-,2]6.已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.在直角ABC 中,A ∠为直角,1,2AB AC ==,M 是ABC 内一点,且12AM =,若AM AB AC λμ=+,则23λμ+的最大值为_________.8.扇形的半径为1,且0OA OB ⋅=,点C 在弧AB 上运动,若OC xOA yOB =+,则2x y +的最大值是__________。
2024年高考数学复习培优讲义专题31--- 平面向量共线定理与等和线(含解析)

专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
1.当等和线恰为直线AB 时,k 等于1. 2.定值k 的变化与等和线到O 点的距离成正比.2017全国3卷(理)T12 1.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .22 C .5D .22020年江苏省高考2.在中,,,,在边上(不与端点重合).延长到,使得.当为中点时,的长度为 ;若为常数且,则的长度是 .ABC ∆3BC =4AC =90ACB ∠=︒D AB CD P 9CP =D AB PD 3()(2PC mPA m PB m =+−0m ≠3)2m ≠BD题型一 向量共线定理:构造方程组求系数2023·深圳二模1.已知OAB 中,OC CA =,2OD DB =,AD 与BC 相交于点M ,OM xOA yOB =+,则有序数对(,)x y =( )A .11,23⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .11,24⎛⎫ ⎪⎝⎭D .11,42⎛⎫ ⎪⎝⎭江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一)2.在ABC 中,已知2BD DC =,CE EA =,BE 与AD 交于点O .若CO xCB yCA =+(),R x y ∈,则x y += .3.在ABC 中,3BC BD =,2CF FA =,E 是AB 的中点,EF 与AD 交于点P ,若AP mAB nAC =+,则m n +=( ) A .37 B .47 C .67D .1题型二 向量共线定理:结合不等式求最值2024届·湖南师大附中月考(二)4.ABC 中,D 为AC 上一点且满足13AD DC =,若P 为BD 上一点,且满足,,AP AB AC λμλμ=+为正实数,则下列结论正确的是( )A .λμ的最小值为116B .λμ的最大值为1C .114λμ+的最小值为4D .114λμ+的最大值为165.如图,在ABC 中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N .若AM AB λ=,(0,0)AN AC μλμ=>>,则1λμ−的最小值是 .重点题型·归类精讲2024届·重庆市西南大学附中、重庆育才中学十月联考6.(多选)在三角形ABC 中,点D 足AB 边上的四等分点且3AD DB =,AC 边上存在点E 满足()0EA CE λλ=>,直线CD 和直线BE 交于点F ,若()0FC DF μμ=>,则( )A .1344CD CA CB =+B .4λμ=C .2164λμ+的最小值为17D .49CF EA CD CA ⋅≤⋅的延长线交于点F,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A. 3144EB EF EA =+ B. 14λμ=C. 11λμ+的最大值为1 D. 49EC AD EB EA⋅≥−⋅题型三 等和线:求系数和最值,范围8.如图正六边形ABCDEF 中,P 点三角形CDE 内(包括边界)的动点,设AF AB AP y x +=,则y x +的取值范围是________.FEDCB AFED9.如图,在直角梯形ABCD 中,AD AB ⊥,//AB DC ,1AD DC ==,2AB =,动点P 在以点C 为圆心,且与直线BD 相切的圆上或圆内移动,设(,R)AP AD AB λμλμ=+∈,则λμ+取值范围是 .10.给定两个长度为3的平面向量OA 和OB ,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若=OC xOA yOB +,其中,x y R ∈,则x y +的最大值是_____;2x y +的最大值是______.11.如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y R =+∈,则2x+y 的最小值为( )A .-1B .1C .2D .312.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )OACE BDCPA .4B .3C .2D .213.直角梯形中ABCD ,ABD BC AD CD CB ∆⊥,,//是边长为2的正三角形,P 是平面上的动点,1||=CP ,),(R AB AD AP ∈+=μλμλ设,则μλ+的值可以为( ) A. 0 B.1 C.2 D.3专题5-2 平面向量共线定理与等和线一、平面向量共线定理:已知PC PA PB λμ=+,1λμ+=是A B C 、、三点共线的充要条件 证明若点A,B,C 互不重合,P 是A,B,C 三点所在平面上的任意一点,且PC xPA yPB =+,证明:A ,B ,C 三点共线是1x y +=的充要条件.证明:(1)由1x y +=⇒A ,B ,C 三点共线.由1x y +=得(1)()PC xPA yPB xPA x PB PC PB x PA PB BC xBA =+=+−⇒−=−⇒=.即BC ,BA 共线,故A ,B ,C 三点共线. (2)由A ,B ,C 三点共线1x y ⇒+=.由A ,B ,C 三点共线得BC ,BA 共线,即存在实数x 使得BC BA λ=.故()(1)BP PC BP PA PC PA PB λλλ+=+⇒=+−.令,1x y λλ==−,则有1x y +=.AC二、等和线相关性质平面内一组基底OB OA ,及任一向量OP ,OB OA OP μλ+=,若点p 在直线AB 上或在平行于AB 的直线上,则k =+μλ(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
平面向量基本定理系数的等和线

平面向量基本定理系数的等和线
【适用题型】平面向量基本定理的表达式中,研究两系数的和差及线性表达式的范围与最值。
【基本定理】
(一)平面向量共线定理
已知OA OB OC λμ=+ ,若1λμ+=,则,,A B C 三点共线;反之亦然
(二)等和线
平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈ ,若点P 在直线
AB 上或者在平行于AB 的直线上,则k λμ+=(定值)
,反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
(1)当等和线恰为直线AB 时,1k =;
(2)当等和线在O 点和直线AB 之间时,(0,1)k ∈;
(3)当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;
(4)当等和线过O 点时,0k =;
(5)若两等和线关于O 点对称,则定值k 互为相反数;
【解题步骤及说明】
1、确定等值线为1的线;
2、平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;
3、从长度比或者点的位置两个角度,计算最大值和最小值;
说明:平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究的两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和。
【典型例题】
例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为0120,如图所示,点C 在以
O 为圆心的圆弧 AB 上变动。
若OC xOA yOB =+ ,其中,x y R ∈,则x y +的最大值
是__________。
重难点专题04 妙用等和线解决平面向量系数和差商方问题(五大题型)(课件)-高一数学新教材讲义

O
P
A
l
A1
03
典型例题
典型例题
题型一: + 问题(系数为1)
【例1】(2024·山东滨州·统考一模)在△ 中,M为BC边上任意一点,N为线段AM上任意一点,
若 = + ( , ∈ ),则 + 的取值范围是(
1
A. 0, 3
B.
1 1
,
3 2
C.[0,1]
所以 = + ,即 =
因为 、 、 三点共线,所以 +
+
,
= 1,即 + = ∈ 0,1 .
综上, + 的取值范围是 [0,1].故选:C.
典型例题
题型一: + 问题(系数为1)
【变式1-1】(2024·重庆铜梁·高一统考期末)在 △ 中,点 是线段 上任意一点,点 满足 =
)
D.[1,2]
【答案】C
【解析】由题意,设 = , 0 ≤ ≤ 1 ,
当 = 0时, = 0 ,所以 + = 0 ,
所以 = = 0,从而有 + = 0;
当0 < ≤ 1时,因为 = + ( , ∈ ),
由向量加法的 平 行 四 边 形 法则 , 为 平 行 四 边 形的 对
角线,
该四边形应是 以 与 的 反 向 延长 线 为 两 邻 边 ,
1
∴当 = − 2 时,要使 点 落 在 指 定 区 域内 , 即 点 应 落
在 上,
1
2
, =
平面向量的线性运算与应用

平面向量的线性运算与应用平面向量是数学中一个重要的概念,具有广泛的应用。
在本文中,我们将探讨平面向量的线性运算及其应用。
通过学习和理解这些概念,我们可以更好地应用平面向量解决实际问题。
一、平面向量的定义和表示方式平面向量可以用有序数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
例如,向量a可以表示为a = (a1,a2)。
平面向量也可以使用箭头表示,箭头的指向表示向量的方向,箭头的长度表示向量的大小。
二、平面向量的线性运算平面向量可以进行加法、减法和数乘等线性运算。
1. 向量加法:向量的加法是指将两个向量相加的运算。
由于向量有方向,所以向量相加要根据有向线段法则进行运算。
2. 向量减法:向量的减法是指将一个向量减去另一个向量得到的运算。
向量减法也要遵循有向线段法则。
3. 数乘:数乘是指将向量的每个分量都乘以一个实数得到的运算。
数乘可以改变向量的大小和方向。
三、平面向量的应用平面向量在许多领域中都有广泛的应用,包括几何、物理、工程等。
1. 几何应用:平面向量可以用于求解几何问题,如点的坐标、线段的长度、角的夹角等。
通过将几何问题转化为向量问题,可以简化计算过程。
2. 物理应用:平面向量在物理学中有着重要的应用。
例如,力可以表示为一个平面向量,通过对力的合成和分解,可以求解物体的运动、受力分析等问题。
3. 工程应用:平面向量的应用在工程领域中也非常广泛。
例如,力的分解、矢量图形的绘制、力矩的计算等都需要运用平面向量的知识。
四、平面向量的线性运算与应用实例为了更好地理解平面向量的线性运算及其应用,我们来看一个实例:假设有一辆汽车沿着某条道路行驶,速度为v1,风的速度为v2,向量v1表示汽车的速度,向量v2表示风的速度。
1. 向量加法的应用:汽车的实际速度可以表示为v = v1 + v2。
如果风向相反于汽车行驶的方向,那么汽车的实际速度会减小;如果风向与汽车行驶的方向一致,那么汽车的实际速度会增加。
平面向量共线定理和等和线课件

平面向量和等和线的方向是相同的,即如果一个向量和一个等和线对应,那么它们的方向也是一致的。
平面向量与等和线在解析几何中的应用
解析几何的基本问题
在解析几何中,平面向量和等和线是解 决基本问题的工具。例如,两点间的距 离问题、直线的斜率问题等,都可以通 过平面向量和等和线来表示和解决。
定义
在平面上,如果一条直线上的任意点 与给定点(非该直线上任意点)所确 定的向量与该直线方向相反,则称该 直线为等和线。
性质
等和线上的任意点与定点的连线和该 直线方向相反。
等和线的判定与性质的应用
判定
若一直线上任意点与定点所确定的向量与该直线方向相反,则该直线为等和线。
应用
利用等和线性质可以证明共线定理,也可以解决一些解析几何问题。
等和线在解析几何中的应用
解析几何中常常涉及到直线、曲线等几何对象,而等和线是研究这些对象的重要工 具之一。
利用等和线可以研究直线与定点之间的位置关系,也可以研究曲线上的点的性质。
在一些较复杂的解析几何问题中,等和线还可以与其他数学工具结合使用,从而解 决更为复杂的问题。
平面向量与等和
03
的系
平面向量与等和线的相互转换
2. 已知点 P(2,3) ,圆 C : x^2+y^2=100 ,求点 P 关于圆C的等和线方程。
等和线的习题与解析
解析
1. 根据等和线的定义,点A(1,2)关于点B(3,-1)的等和线方程就是向量AB与x轴正向夹角 的正切值的相反数的绝对值乘以x轴正向夹角的正切值。根据已知条件,可以计算出向 量AB与x轴正向夹角的正切值为-1/4,因此点A关于点B的等和线方程为y=-1/4x+5。