第7-8讲 找规律
四年级数学上册数学核心素养(一)——《找规律》奥数培优讲义

四年级数学上册数学核心素养(一)——《找规律》奥数培优讲义第一讲找规律(一)【一】找规律填数:2,4,6,8,,12练习1、1,3,5,7,,112、0,5,10,,20,25【二】找规律填数:18,15,,9,6,练习1、100,98,,,92,902、120,110,,,80,70【三】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1、5、9、13、()、21、25像上面这样按照一定的顺序排列的一串数叫做数列。
在这个数,因为相邻两个数的差都相等,所以叫做等差数列。
练习先找出下列各列数的排列规律,并根据规律在括号里填上适当的数。
(1)2、5、8、11、()、17、20(2)3、6、9、12、()、18、21(3)30、25、20、()、10、()、0(4)55、49、43、()、31、()、19【四】先找出下列各列数的排列规律,并根据规律在括号里填上适当的数。
1、2、4、7、()、16、22练习先找出下列数排列的规律,然后再括号里填上适当的数。
(1)9、10、12、15、19、24、()、37(2)1、4、9、16、25、()、49、64(3)2、1、5、1、8、1、()、()、14、1(4)36、28、21、15、()、6、3【五】先找出规律,然后在括号里填上适当的数。
1、5、3、10、5、15、()、()、9、25练习先找出规律,然后在括号里填上适当的数。
(1)1、6、5、8、9、10、13、()、()(2)13、2、15、4、17、6、()、()(3)3、10、4、11、5、12、6、13、()、()、8、15(4)19、5、17、8、15、11、()、()【六】在数列1、1、2、3、5、8、13、()、34、35、55……中,括号里应填什么数?练习先找出规律,然后在括号里填上适当的数。
(1)3、3、6、9、15、24、()、()(2)34、21、13、8、5、()、2、()(3)0、1、3、8、21、()、144(4)2、6、14、30、62、()【七】下面每个括号里的两个数都是按一定的规律组合的,在上填上适当的数。
人教版一年级下册数学试题-一升二暑期衔接训练:第7讲找规律 (含解析)

2020年人教版数学一升二暑期衔接训练:第7讲找规律一、选择题(共4题;共8分)1.接着摆什么?()A. B. C.2.如果后面接着穿珠子应穿()。
A. B. C.3.中。
△和▲相比()。
A. △比▲多B. ▲比△多C. ▲和△同样多4.……中,第16个图形是()。
A. B. C.二、判断题(共1题;共2分)5.左图是按规律摆放的。
()三、填空题(共21题;共91分)6.摆一摆,填一填。
________、________ 7.找规律,在□里填上合适的数。
8.___ _____9.找规律,写门牌。
10.按规律在第四个图形中画。
________11.上图中,摆一个正方形用了4根,摆两个正方形用了________根,像这样摆3个正方形一共要用________根。
12.按照排列规律,云朵里面应该放________图形。
________个________个13.按规律接着画一画。
________14.找规律填数。
15.16.________17.被叶子遮住了7个珠子,有________个,有________个。
18.按规律填数。
(1)22,24,26,________,30,________,________(2)98,________ ,92,89,________,________;(3)○,○○○,○○○○○,________。
19.下面各题中都有一个数不符合规律,把它圈起来,并改正在横线上。
(1)(2)(3)20.21.看数,按规律接着画。
9△□△□△□10△△○○△△○22.找规律,填一填。
(1)________ (2)________(3)________23.根据规律填出下列各组数中缺失的数。
(1)3,6,________,________,15,18(2)40,36,32,________,24(3)2,5,8,2,5,8,________,________24.按规律填数。
(1)35________3738________________(2)81________79________7776(3)505560________________75________25.按规律接着写。
五年级奥数讲义-第7讲(找规律-a的n次方的个位数是几)

整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a 的乘积叫做a的三次方,记作a3,即a3=a×a×a。
一般地,n个a相乘,叫做a的n次方,记作a n,即本讲主要讲a n的个位数的变化规律,以及a n除以某数所得余数的变化规律。
因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以a n的个位数只与a的个位数有关,而a的个位数只有0,1,2,…,9共十种情况,故我们只需讨论这十种情况。
为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,…的个位数字各是什么。
从表看出,a n的个位数字的变化规律可分为三类:(1)当a的个位数是0,1,5,6时,an的个位数仍然是0,1,5,6。
(2)当a的个位数是4,9时,随着n的增大,a n的个位数按每两个数为一周期循环出现。
其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。
(3)当a的个位数是2,3,7,8时,随着n的增大,a n的个位数按每四个数为一周期循环出现。
其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a 的个位数是8时,按8,4,2,6的顺序循环出现。
例1 求67999的个位数字。
分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。
999÷4=249……3,所以67999的个位数字与73的个位数字相同,即67999的个位数字是3。
例2 求291+3291的个位数字。
分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22……3,所以,291的个位数字与23的个位数字相同,等于8。
类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现,291÷4=72……3,所以3291与33的个位数相同,等于7。
北师大七年级上-第8讲-找规律

找规律1.规律型:数字的变化类探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x,再利用它们之间的关系,设出其他未知数,然后列方程.例1.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选A.例2.已知a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,且皆有31项.若a2+b30=29,a30+b2=﹣9,则此两等差级数的和相加的结果为多少?()A.300 B.310 C.600 D.620【解答】解:∵a1+a2+…+a30+a31与b1+b2+…+b30+b31均为等差级数,∵a2+b30=29,a30+b2=﹣9,∴a1+b31+b1+a31=29﹣9,a3+b29+a29+b3=29﹣9,…,∴a1+a2+…+a30+a31+b1+b2+…+b30+b31=(a2+b30+a30+b2)+(a1+b31+b1+a31)+…+(a16+b16)=15×(29﹣9)+=310.故选B.例3.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.例4.如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是()A.48 B.56 C.63 D.74【解答】解:从方格上方的数的数1、3、5、可以推出m=7,第一个方格中:3=1×2+1,第二个方格中:15=3×4+3,第三个方格中:35=5×6+5,∴第四个方格中:n=7×8+7=63.故选:C.例5.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.例6.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为1.【解答】解:把整数1化为,得,,,(),,,…可以发现分子为连续奇数,分母为连续质数,所以,第4个数的分子是7,分母是7,故答案为:1.例7.找出下列各图形中数的规律,依此,a的值为226.【解答】解:根据题意得出规律:14+a=15×16,解得:a=226;故答案为:226.例8.观察下列等式:①=﹣;②=﹣;③=﹣,…按照此规律,解决下列问题:(1)完成第④个等式;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)观察发现:①1×2×3中,1×3=3,剩个2;②2×3×4中,2×4=8,剩个3;③3×4×5中,3×5=15,剩下个4,∴④应该为:==- .(2)结合(1)故猜想:第n个等式为:=.证明:等式右边=,=,=,==左边,∴等式成立,即猜想正确例9.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是62,偶数42对应的有序实数对是(6,6);(2)第n行的最后一个数用含n的代数式表示为n(n+1),并简要说明理由.【解答】解:(1)由题意可知,∵第1行最后一个数2=1×2;第2行最后一个数6=2×3;第3行最后一个数12=3×4;第4行最后一个数20=4×5;…∴第7行最后一个数7×8=56,则第8行第4个数为56+4=60,∵偶数42=6×7,∴偶数42对应的有序实数对(6,7);(2)由(1)中规律可知,第n行的最后一个数为n(n+1);故答案为:(1)60,(6,7);(2)n(n+1).例10.观察下列各式:3×5=15=42﹣15×7=35=62﹣1…11×13=143=122﹣1…(1)写出一个符合以上规律的式子.(2)用字母表示一般规律,并说明该等式一定成立.【解答】解:(1)13×15=195=142﹣1.(2)结论:(2n﹣1)(2n+1)=4n2﹣1=(2n)2﹣1.证明:左边=4n2﹣1,右边=4n2﹣1,∴左边=右边,∴结论成立.真题解析:1.求1+2+22+23+…+22016的值,可设S=1+2+22+23+…+22016,于是2S=2+22+23+…+22017,因此2S﹣S=22017﹣1,所以S=22017﹣1.我们把这种求和方法叫错位相减法.仿照上述的思路方法,计算出1+5+52+53+…+52016的值为()A.52017﹣1 B.52016﹣1 C.D.【解答】解:设S=1+5+52+53+...+52016,则5S=5+52+53+ (52017)∴5S﹣S=52017﹣1,∴S=.故选C.2.为了求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+24+…+22017,因此2S﹣S=22017﹣1,所以1+2+22+23+…+22016=22017﹣1.仿照以上推理计算出1+3+32+33+…+32016的值是()A.32017﹣1 B.32018﹣1 C.D.【解答】解:令S=1+3+32+33+…+32016,则3S=3+32+33+…+32016+32017,∴S==.故选D.3.下列数据具有一定的排列规律:若整数2016位于第a行,从左数第b个数,则a+b的值是()A.63 B.126 C.2015 D.1002【解答】解:设第n行中最大的数为a n(n为正整数),观察,发现规律:a1=1,a2=1+2=3,a3=1+2+3=6,…,∴a n=1+2+…+n=.令a n≤2016,即≤2016,解得:﹣64≤n≤63.∴1≤n≤63,即整数2016为63行的最后一个数.∴a+b=63+63=126.故选B.4.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是﹣.【解答】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.5.观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为32﹣1=8,第三层:第一个数为32=9,最后一个数为42﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44.课后作业:1.如图,填在各方格中的三个数之间均具有相同的规律,据此规律,n的值是()A.48 B.56 C.63 D.74【解答】解:∵3=22﹣1,15=42﹣1,35=62﹣1,∴n=82﹣1=63,故选C.2.观察下列各数:1,1,,,,…按你发现的规律计算这列数的第7个数为()A.B.C.D.【解答】解:1,1,,,,…整理为,,,,…可发现这列数的分子为奇数排列用2n﹣1表示,而分母恰是2n﹣1,当n=7时,2n﹣1=13,2n﹣1=127,所以这列数的第7个数为:,故选B.3.小明在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第10行左起第一个数是()A.100 B.121 C.120 D.82【解答】解:根据规律可知第10行的右边是102=100,∵左边有2O个数加减,这20个数是120+119+118+…+111﹣110﹣109﹣108﹣…﹣102﹣101,∴左边第一个数是120.故选C.4.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为(32016﹣2)×32016+1=(32016﹣1)2.【解答】解:观察发现,第n个等式可以表示为:(3n﹣2)×3n+1=(3n﹣1)2,当n=2016时,(32016﹣2)×32016+1=(32016﹣1)2,故答案为:(32016﹣2)×32016+1=(32016﹣1)2.5.观察下列计算:=1 -,=- ,=- ,=- …从计算结果中找规律,利用规律计算=.【解答】解:根据=1 -;=- ;=- ;=- …可得:=,=,∴+=(1﹣)+(﹣)+(﹣)+(﹣)+…+()+(﹣)=1﹣=.6.观察下列一组数:,,,,…,它们是按一定规律排列的,那么这一组数的第k个数是(k为正整数).【解答】解:∵2,4,6,8是连续的偶数,则分子是2k,3,5,7,9是连续的奇数,这一组数的第k个数的分母是:2k+1,∴这一组数的第k个数是:.故答案为:.7.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律,若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a199+a200=40000.【解答】解:∵a1+a2=4=22,a2+a3=9=32,a3+a4=16=42,…由此推算a199+a200=2002=40000,故答案为40000.8.下列数据是按一定规律排列的,则七行的第一个数为22.第一行:1第二行:2 3第三行:4 5 6第四行:7 8 9 10…【解答】解:设第n行第一个数为a n(n为正整数),观察,发现规律:a1=1,a2=2=1+a1,a3=4=2+a2,a4=7=3+a3,…,∴a n=a1+1+2+…+n﹣1=1+.当n=7时,a7=1+=22.故答案为:22.9.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第8个三角形数是36.【解答】解:设第n个三角形数为a n,观察,发现规律:a1=1,a2=3=1+2,a3=6=1+2+3,a4=10=1+2+3+4,…,∴a n=1+2+…+n=.将n=8代入a n,得:a8==36.故答案为:36.10.定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=4a+b;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.【解答】解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.11.观察下列算式:①1×5+4=32,②2×6+4=42,③3×7+4=52,④4×8+4=62,…请你在察规律解决下列问题(1)填空:2013×2017+4=20152.(2)写出第n个式子(用含n的式子表示),并证明.【解答】解:(1)由以上四个等式可以看出:每一个等式第一个因数等于序号数,第二个因数比第一个大4,等式右边的底数比第一个数大2;所以有:2013×2017+4=20152.答案为:2013,2017;(2)第n个等式为:n(n+4)+4=(n+2)2;∵左边=n2+4n+4=(n+2)2=右边∴n(n+4)+4=(n+2)2成立.。
奥数讲座(3年级-下)(15讲)

三年级奥数讲座(二)目录第一讲从数表中找规律第二讲从哥尼斯堡七桥问题谈起第三讲多笔画及应用问题第四讲最短路线问题第五讲归一问题第六讲平均数问题第七讲和倍问题第八讲差倍问题第九讲和差问题第十讲年龄问题第十一讲鸡兔同笼问题第十二讲盈亏问题第十三讲巧求周长第十四讲从数的二进制谈起第十五讲综合练习第一讲从数表中找规律在前面学习了数列找规律的基础上,这一讲将从数表的角度出发,继续研究数列的规律性。
例1 下图是按一定的规律排列的数学三角形,请你按规律填上空缺的数字.分析与解答这个数字三角形的每一行都是等差数列(第一行除外),因此,第5行中的括号内填20,第6行中的括号内填 24。
例2 用数字摆成下面的三角形,请你仔细观察后回答下面的问题:①这个三角阵的排列有何规律?②根据找出的规律写出三角阵的第6行、第7行。
③推断第20行的各数之和是多少?分析与解答①首先可以看出,这个三角阵的两边全由1组成;其次,这个三角阵中,第一行由1个数组成,第2行有两个数…第几行就由几个数组成;最后,也是最重要的一点是:三角阵中的每一个数(两边上的数1除外),都等于上一行中与它相邻的两数之和.如:2=1+1,3=2+1,4=3+1,6=3+3。
②根据由①得出的规律,可以发现,这个三角阵中第6行的数为1,5,10,10,5,1;第7行的数为1,6,15,20,15,6,1。
③要求第20行的各数之和,我们不妨先来看看开始的几行数。
至此,我们可以推断,第20行各数之和为219。
[本题中的数表就是著名的杨辉三角,这个数表在组合论中将得到广泛的应用]例3将自然数中的偶数2,4,6,8,10…按下表排成5列,问2000出现在哪一列?分析与解答方法1:考虑到数表中的数呈S形排列,我们不妨把每两行分为一组,每组8个数,则按照组中数字从小到大的顺序,它们所在的列分别为B、C、D、E、D、C、B、A.因此,我们只要考察2000是第几组中的第几个数就可以了,因为2000是自然数中的第1000个偶数,而1000÷8=125,即2000是第125组中的最后一个数,所以,2000位于数表中的第250行的A列。
一年级下册数学教案-7找规律(10)-人教版

一年级下册数学教案7 找规律(10)人教版教案:一年级下册数学教案7 找规律(10)人教版一、教学内容今天我们要学习的是人教版一年级下册的数学内容,具体是第7单元的找规律(10)。
我们将通过观察和分析一些数学序列,找出它们之间的规律。
二、教学目标通过本节课的学习,我希望学生们能够:1. 培养观察和思考的能力,能够发现并描述数学序列的规律。
2. 培养逻辑思维能力,能够运用规律解决问题。
3. 培养合作能力,能够与同学一起探讨并分享规律的发现。
三、教学难点与重点重点:引导学生观察和分析数学序列,找出规律。
难点:能够运用规律解决问题,并能够清晰地表达和解释规律。
四、教具与学具准备教具:多媒体教学设备,数学序列的PPT或卡片。
学具:学生们自己准备的数学笔记本,铅笔,尺子。
五、教学过程1. 引入:我会通过一个有趣的数学游戏引入今天的主题。
我会展示一系列的数字,让学生们观察并尝试找出它们之间的规律。
2. 讲解:我会通过PPT或卡片展示一些数学序列,让学生们观察并找出规律。
我会引导学生思考,鼓励他们提出自己的观点和解释。
3. 实践:我会给学生一些练习题,让他们自己尝试找出规律。
我会鼓励学生们相互讨论,共同解决问题。
六、板书设计1. 数学序列的展示:我会将一些数学序列写在黑板上,以便学生们观察和分析。
七、作业设计作业题目:1, 2, 3, 4, 52, 4, 6, 8, 103, 6, 9, 12, 15答案:1, 2, 3, 4, 5 (每个数字比前一个数字大1)2, 4, 6, 8, 10 (每个数字比前一个数字大2)3, 6, 9, 12, 15 (每个数字比前一个数字大3)八、课后反思及拓展延伸课后反思:通过本节课的学习,我发现学生们对于找规律的题目比较感兴趣,他们能够积极参与讨论和解决问题。
但是,有些学生对于表达和解释规律还有一定的困难,需要在今后的教学中加强练习和指导。
拓展延伸:如果时间允许,可以给学生一些更复杂的数学序列,让他们尝试找出规律。
初一年级数学找规律方法初一年级数学找规律方法,初一年级数学找规律的一些窍门

初一数学找规律方法初一数学找规律方法,初一数学找规律的一些窍门导读:就爱阅读网友为大家分享的“初一数学找规律方法,初一数学找规律的一些窍门”资料,内容精辟独到,非常感谢网友的分享,希望这篇资料对您有所帮助。
初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。
初一数学找规律方法一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:[3+(2n-1)](n-1)÷2=(n+1)(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,.试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,.序列号: 1,2,3, 4, 5,.容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26,同时减去2后得到新数列:0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例: 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,2,5,10,17,26,0,6,16,30,48(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、 3-1=81 5-3=82 7-5=83 用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196, (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3-1=81 5-3=82 7-5=83用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,1 4583)18894)(N+2)-N=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切.正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.以上关于“[读书技巧]初一数学找规律方法,初一数学找规律的一些窍门”的信息由网友上传分享,希望对您有所帮助,感谢您对就爱阅读网的支持!。
小学 奥数 数学课本 二年级 打印版

99+98+97+96+95=97×5=485
(2)9+99+999=10+100+1000-3
=1110-3=1107
5.解:(1)5+6+7+8&5+10+15+20+25+30+35
=20×7=140
(3)9+18+27+36+45+54
=(9+54)×3=63×3=189
第一讲速算与巧算 一、“凑整”先算
1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的 和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带 着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑 整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和, 再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以 凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2 减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运 算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算 19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲找规律(一)我们在三年级已经见过“找规律”这个题目,学习了如何发现图形、数表和数列的变化规律。
这一讲重点学习具有“周期性”变化规律的问题。
什么是周期性变化规律呢?比如,一年有春夏秋冬四季,百花盛开的春季过后就是夏天,赤日炎炎的夏季过后就是秋天,果实累累的秋季过后就是冬天,白雪皑皑的冬季过后又到了春天。
年复一年,总是按照春、夏、秋、冬四季变化,这就是周期性变化规律。
再比如,数列0,1,2,0,1,2,0,1,2,0,…是按照0,1,2三个数重复出现的,这也是周期性变化问题。
下面,我们通过一些例题作进一步讲解。
例1 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、……这样排下去。
问:(1)第100盏灯是什么颜色?(2)前150盏彩灯中有多少盏蓝灯?分析与解:这是一个周期变化问题。
彩灯按照5红、4蓝、3黄,每12盏灯一个周期循环出现。
(1)100÷12=8……4,所以第100盏灯是第9个周期的第4盏灯,是红灯。
(2)150÷12=12……6,前150盏灯共有12个周期零6盏灯,12个周期中有蓝灯4×12=48(盏),最后的6盏灯中有1盏蓝灯,所以共有蓝灯48+1=49(盏)。
例2 有一串数,任何相邻的四个数之和都等于25。
已知第1个数是3,第6个数是6,第11个数是7。
问:这串数中第24个数是几?前77个数的和是多少?分析与解:因为第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同。
进一步可推知,第1,5,9,13,…个数都相同。
同理,第2,6,10,14,…个数都相同,第3,7,11,15,…个数都相同,第4,8,12,16…个数都相同。
也就是说,这串数是按照每四个数为一个周期循环出现的。
所以,第2个数等于第6个数,是6;第3个数等于第11个数,是7。
前三个数依次是3,6,7,第四个数是25-(3+6+7)=9。
这串数按照3,6,7,9的顺序循环出现。
第24个数与第4个数相同,是9。
由77÷4=9……1知,前77个数是19个周期零1个数,其和为25×19+3=478。
例3 下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数。
问:这串数中第88个数是几?628088640448…分析与解:这串数看起来没有什么规律,但是如果其中有两个相邻数字与前面的某两个相邻数字相同,那么根据这串数的构成规律,这两个相邻数字后面的数字必然与前面那两个相邻数字后面的数字相同,也就是说将出现周期性变化。
我们试着将这串数再多写出几位:当写出第21,22位(竖线右面的两位)时就会发现,它们与第1,2位数相同,所以这串数按每20个数一个周期循环出现。
由88÷20=4……8知,第88个数与第8个数相同,所以第88个数是4。
从例3看出,周期性规律有时并不明显,要找到它还真得动点脑筋。
例4 在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字。
那么在这串数中,能否出现相邻的四个数是“2000”?135761939237134…分析与解:无休止地将这串数写下去,显然不是聪明的做法。
按照例3的方法找到一周期,因为这个周期很长,所以也不是好方法。
那么怎么办呢?仔细观察会发现,这串数的前四个数都是奇数,按照“每个数都是它前面四个数之和的个位数字”,如果不看具体数,只看数的奇偶性,那么将这串数依次写出来,得到奇奇奇奇偶奇奇奇奇偶奇……可以看出,这串数是按照四个奇数一个偶数的规律循环出现的,永远不会出现四个偶数连在一起的情况,即不会出现“2000”。
例5 A,B,C,D四个盒子中依次放有8,6,3,1个球。
第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子……当100位小朋友放完后,A,B,C,D四个盒子中各放有几个球?分析与解:按照题意,前六位小朋友放过后,A,B,C,D四个盒子中的球数如下表:可以看出,第6人放过后与第2人放过后四个盒子中球的情况相同,所以从第2人放过后,每经过4人,四个盒子中球的情况重复出现一次。
(100-1)÷4=24……3,所以第100次后的情况与第4次(3+1=4)后的情况相同,A,B,C,D盒中依次有4,6,3,5个球。
练习71.有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的。
问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?2.将1,2,3,4,…除以3的余数依次排列起来,得到一个数列。
求这个数列前100个数的和。
3.有一串数,前两个数是9和7,从第三个数起,每个数是它前面两个数乘积的个位数。
这串数中第100个数是几?前100个数之和是多少?4.有一列数,第一个数是6,以后每一个数都是它前面一个数与7的和的个位数。
这列数中第88个数是几?5.小明按1~3报数,小红按1~4报数。
两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?6.A,B,C,D四个盒子中依次放有9,6,3,0个小球。
第1个小朋友找到放球最多的盒子,从中拿出3个球放到其它盒子中各1个球;第2个小朋友也找到放球最多的盒子,也从中拿出3个球放到其它盒子中各1个球……当100个小朋友放完后,A,B,C,D四个盒子中各放有几个球?第8讲找规律(二)整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a的乘积叫做a的三次方,记作a3,即a3=a×a×a。
一般地,n个a相乘,叫做a的n次方,记作a n,即本讲主要讲a n的个位数的变化规律,以及a n除以某数所得余数的变化规律。
因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以an 的个位数只与a的个位数有关,而a的个位数只有0,1,2,…,9共十种情况,故我们只需讨论这十种情况。
为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,…的个位数字各是什么。
从表看出,a n的个位数字的变化规律可分为三类:(1)当a的个位数是0,1,5,6时,a n的个位数仍然是0,1,5,6。
(2)当a的个位数是4,9时,随着n的增大,a n的个位数按每两个数为一周期循环出现。
其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。
(3)当a的个位数是2,3,7,8时,随着n的增大,a n的个位数按每四个数为一周期循环出现。
其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a的个位数是8时,按8,4,2,6的顺序循环出现。
例1 求67999的个位数字。
分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。
999÷4=249……3,所以67999的个位数字与73的个位数字相同,即67999的个位数字是3。
例2 求291+3291的个位数字。
分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22……3,所以,291的个位数字与23的个位数字相同,等于8。
类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现,291÷4=72……3,所以3291与33的个位数相同,等于7。
最后得到291+3291的个位数字与8+7的个位数字相同,等于5。
例3 求28128-2929的个位数字。
解:由128÷4=32知,28128的个位数与84的个位数相同,等于6。
由29÷2=14……1知,2929的个位数与91的个位数相同,等于9。
因为6<9,在减法中需向十位借位,所以所求个位数字为16-9=7。
例4 求下列各除法运算所得的余数:(1)7855÷5;(2)555÷3。
分析与解:(1)由55÷4=13……3知,7855的个位数与83的个位数相同,等于2,所以7855可分解为10×a+2。
因为10×a能被5整除,所以7855除以5的余数是2。
(2)因为a÷3的余数不仅仅与a的个位数有关,所以不能用求555的个位数的方法求解。
为了寻找5n÷3的余数的规律,先将5的各次方除以3的余数列表如下:注意:表中除以3的余数并不需要计算出5n,然后再除以3去求,而是用上次的余数乘以5后,再除以3去求。
比如,52除以3的余数是1,53除以3的余数与1×5=5除以3的余数相同。
这是因为52=3×8+1,其中3×8能被3整除,而53=(3×8+1)×5=(3×8)×5+1×5,(3×8)×5能被3整除,所以53除以3的余数与1×5除以3的余数相同。
由上表看出,5n除以3的余数,随着n的增大,按2,1的顺序循环出现。
由55÷2=27……1知,555÷3的余数与51÷3的余数相同,等于2。
例5 某种细菌每小时分裂一次,每次1个细茵分裂成3个细菌。
20时后,将这些细菌每7个分为一组,还剩下几个细菌?分析与解:1时后有1×3=31(个)细菌,2时后有31×3=32(个)细菌 (20)时后,有320个细菌,所以本题相当于“求320÷7的余数”。
由例4(2)的方法,将3的各次方除以7的余数列表如下:由上表看出,3n÷7的余数以六个数为周期循环出现。
由20÷6=3……2知,320÷7的余数与32÷7的余数相同,等于2。
所以最后还剩2个细菌。
最后再说明一点,a n÷b所得余数,随着n的增大,必然会出现周期性变化规律,因为所得余数必然小于b,所以在b个数以内必会重复出现。
练习81.求下列各数的个位数字:(1)3838;(2)2930;(3)6431;(4)17215。
2.求下列各式运算结果的个位数字:(1)9222+5731;(2)615+487+349;(3)469-6211;(4)37×48+59×610。
3.求下列各除法算式所得的余数:(1)5100÷4;(2)8111÷6;(3)488÷7。