stata面板数据操作示例

合集下载

STATA面板数据模型操作命令讲解(word文档良心出品)

STATA面板数据模型操作命令讲解(word文档良心出品)

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型μβit +=x y it itεαμit +=it it 随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。

●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型。

●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

(完整word版)STATA面板数据模型操作命令讲解

(完整word版)STATA面板数据模型操作命令讲解

STATA 面板数据模型估计命令一览表 一、静态面板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型μβit +=x y it itεαμit +=it it 随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。

●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型。

●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

STATA面板大数据模型操作命令讲解

STATA面板大数据模型操作命令讲解

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=xy itiit固定效应模型μβit +=xy ititεαμit+=itit随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。

●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型。

●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

STATA面板数据模型操作命令

STATA面板数据模型操作命令

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=x y it iit 固定效应模型 εαμit +=it it 随机效应模型一数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计统计分析 ●gen lag_y=αi αi αi εit ~e it ~1-t e i ,8858.0~=θ5.0-~=θ验:是否存在门槛效应混合面板:reg is lfr lfr2 hc open psra tp gr,vcecluster sf固定效应、随机效应模型xtreg is lfr lfr2 hc open psra tp gr,feest store fextreg is lfr lfr2 hc open psra tp gr,reest store rehausman fe两步系统GMM 模型xtdpdsys rlt plf1 nai efd op ew ig ,lags1 maxldep2 twostep artests2 注:rlt 为被解释变量,“plf1 nai efd op ew ig ”为解释变量和控制变量; maxldep2表示使用被解释变量的两个滞后值为工具变量;pre 表示以某一个变量为前定解释变量;endogenous 表示以某一个变量为内生解释变量; 自相关检验:estat abond萨甘检验:estat sargan差分GMM模型Xtabond rlt plf1 nai efd op ew ig ,lags1 twostep artests2内生:该解释变量的取值是一定程度上由模型决定的;内生变量将违背解释变量与误差项不相关的经典假设,因而内生性问题是计量模型的大敌,可能造成系数估计值的非一致性和偏误;外生:该解释变量的取值是完全由模型以外的因素决定的;外生解释变量与误差项完全无关,不论是当期,还是滞后期;前定:该解释变量的取值与当期误差项无关,但可能与滞后期误差项相关;。

STATA面板数据模型操作命令

STATA面板数据模型操作命令

STATA 面板数据模型估计命令一览表一、静态面板数据的STATA处理命令(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。

在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。

●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。

可见,随机效应模型也优于混合OLS模型。

●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。

但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless) 可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。

STATA面板数据模型操作命令讲解(word文档良心出品)

STATA面板数据模型操作命令讲解(word文档良心出品)

STATA 面板数据模型估计命令一览表一、静态面板数据的 STATA 处理命令固定效应模型随机效应模型(一)数据处理输入数据• tsset code year 该命令是将数据定义为“面板”形式 • xtdes该命令是了解面板数据结构・ xtdescode: 1i 2, ■■■( 20n 工 20 year : 3004, 2005, ■…,2014T =11Delta(year) =1 unit span(year) =11 periods(code*year uniquely identifies eachobservation)Distribution of:min 8%2璃50^ 75% 95%max1111 11111111 11Freq. Percent Cum. Pattern20 100.00 100.00 1111111111120100.00XXXXXXXXXXX・ summarize sc I cpi unem gse5 InvariableObs Mean Std ・ Dev.Mi nMax sq 220 .Q142798 2.9303464.75e-0626.22301cpi2201*10655 *032496 1.045 1. 25 unem22Q .0349455 .0071556 .012 ,046 g220,10907 .0427523 0246 .2357220 .0268541 011671? .0053.0693220.1219364.0240077,074,203• summarize sq cpi unem g se5 In各变量的描述性统计(统计分析)• gen lag_y=L.y ///////产生一个滞后一期的新变量*= Xitit• ;itto U 一 if对于固定效应模型而言,回归结果中最后一行汇报的F 统计量便在于检验所 有的个体效应整体上显著。

5分钟搞定Stata面板数据分析

5分钟搞定Stata面板数据分析

【原创】5分钟搞定Stata面板数据分析简易教程ver2.0作者:张达5分钟搞定Stata面板数据分析简易教程步骤一:导入数据原始表如下,数据请以时间(1998 ,1999,2000, 2001 ??)为横轴,样本名(北京,天津,河北??) 为纵轴1 裁*■■別1A I11 ■u 9K ILEXxl-V,j si aoLL B-iic190 ..1( HJ曲1 1g力«r4 々■l* Mfl 1KM J| JgRi MM3icm*w II7QQ-HQ Siq<XM3 7>D tuff 1'C4 3 4 IftJV-mi KH>loogi liW(0M 3M9WH jaii I MOKai W w ■齐itmxm fill OTI MiltaiK ■5W»U|JTXE HH sia心«9 f Id 叼m in a*ft I*■JtaC如M~4 気HiA|$A rm inoo IM? livra.wvtatr1IJMj X#*4>t1|筑・BF7 ■«|!N I9*V1IRV gw1W1VJ I-J H itW Ml «稠申审砂y li>M l>R Mdw VIM e> mu IM HM 內)944w 命■ n I L BII i mi 靜Ml hw w3K:1ST? *7^ FJE inm ifini uni4 5w 心HtJ TW JTfl 9MI*HAS■ilJto KO >4*461/M31 <141*11诃却4LJt 4ktt VM匸F<MO 4dN,■M I!Wi・】•\ 4 ■R- 呵鬥1皑用MA■J广*»i g Ml* <KM11*K=« 1 31 1MM I“tlM韓!1fi >w g ivt E4M laM■ii T PD w im W i.JV 1P w L*l 1tiZF MM7 <1 H1! liyi将中文地名替换为数字。

STATA面板数据模型操作命令讲解

STATA面板数据模型操作命令讲解

STATA面板数据模型操作命令讲解面板数据模型主要用于分析在一段时间内,多个个体上观察到的数据。

在面板数据模型中,个体可以是个人、家庭、公司等。

面板数据模型的分析主要包括汇总统计、描述性统计、回归分析等。

下面是一些STATA中常用的面板数据分析命令的介绍和使用说明:1. xtset命令:该命令用于设置数据集的面板数据特征。

在使用面板数据模型之前,需要先将数据集设置为面板数据。

使用xtset命令可以指定面板数据集的个体维度和时间维度。

示例:xtset id year该命令将数据集按照id(个体)和year(时间)进行分类。

2. xtsummary命令:该命令用于生成面板数据的汇总统计信息,包括平均值、标准差、最小值、最大值等。

示例:xtsummary var1 var2该命令将变量var1和var2的汇总统计信息显示出来。

3. xtreg命令:该命令用于进行固定效应模型(Fixed Effects Model)的估计,其中个体效应被视为固定参数,时间效应被视为随机参数。

示例:xtreg y x1 x2, fe该命令将变量y对x1和x2进行固定效应模型估计。

4. xtfe命令:该命令用于进行固定效应模型的估计,并提供了更多的选项和功能。

示例:xtfe y x1 x2, vce(robust)该命令将变量y对x1和x2进行固定效应模型估计,并使用鲁棒标准误。

5. xtlogit命令:该命令用于进行面板Logistic回归分析,适用于因变量为二分类变量的情况。

示例:xtlogit y x1 x2, re该命令将变量y对x1和x2进行面板Logistic回归分析,并进行随机效应的估计。

6. areg命令:该命令用于进行差别法(Difference-in-Differences)模型的估计,适用于时间和个体差异的面板数据分析。

上述命令只是STATA中一部分常用的面板数据模型操作命令。

在实际应用中,根据具体的研究需求和数据特征,还可以使用其他面板数据模型命令进行分析,如xtlogit、xtprobit等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另外,有些学者认为具体采用哪一种模型主要决定于我们的分析目的。如果主要目的在于
8.2. 静态面板数据模型
4
估计模型的参数,而模型中个体的数目又不是很大的情况下,采用固定效应模型是个不错的选 择,因为它非常容易估计。但当我们需要对模型的误差成分进行分析时(通常分解为长期效果 和短期效果),就只能采用随机效应模型。在这种情况下,即使模型中的部分解释变量与个体 效应相关,我们仍然可以通过工具变量法对模型进行估计。
8.2.4 STATA 实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.3 非均齐方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 静态面板数据模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
8.2.1 固定效应模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
8.2. 静态面板数据模型
3
8.2 静态面板数据模型
我们一般所说的静态面板数据模型,是指解释变量中不包含被解释变量的滞后项(通 常为一阶滞后项)的情形。但严格地讲,随机干扰项服从某种序列相关(如 AR(1), AR(2), MA(1)等)的模型也不是静态模型。动态模型和静态模型在处理方法上往往有较大的差异。本 节中我们重点介绍两种最为常用的静态模型—固定效应模型和随机效应模型。
8.3.3 方差形式未知时的稳健性估计 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.3.4 STATA 实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2.2 随机效应模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.2.3 假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2. 静态面板数据模型
5
任。所以我们有必要先进行一些变换以消除固定效应,进而对简化的模型进行估计,本小节和 下一小节介绍的这两种方法都是基于此目的进行的。
我们首先将所有观察值进行堆叠,于是模型 (8.1) 可用矩阵形式表示为:
y = Da + Xβ + ε
(8.6)
其 中 , y = (y1, y2, · · · , yN ) , ε = (ε1, ε2, · · · , ε N ) , 均 为 N T × 1 向 量, D = IN ⊗ 1T , a = (a1, a2, · · · , aN ) 。考虑到 D 矩阵的构造形式,它事实上对应着 N 个虚拟变量。因此,模型 (8.6) 等价于给混合 OLS 模型 y = Xβ + ε 加入 N 个虚拟变量。
这两种模型的差异主要反映在对“个体效应”的处理上。固定效应模型中的个体差异反映 在每个个体都有一个特定的截距项上;随机效应模型则假设所有的个体具有相同的截距项,个 体的差异主要反应在随机干扰项的设定上,因此该模型通常也称为“误差成分模型”。基于 此,一种常见的观点认为,当我们的样本来自一个较小的母体时,我们应该使用固定效应模 型,而当样本来自一个很大的母体时,应当采用随机效应模型。比如在研究中国地区经济增长 的过程中,我们以全国 28 个省区为研究对象,可以认为这 28 个省区几乎代表了整个母体。同 时也可以假设在样本区间内,各省区的经济结构、人口素质等不可观测的特质性因素是固定不 变的,因此采用固定效应模型是比较合适的。而当我们研究西安市居民的消费行为时,即使样 本数为 10000 人,相对于西安市 600 万人口的母体而言仍然是个很小的样本。此时,可以认为 不同的居民在个人能力、消费习惯等方面的差异是随机的,此时采用随机效应模型较为合适。
E[εi |xi , ai ] = 0
(8.4)
假设 2 :
V ar [εi |xi , ai ] = σ 2IT
(8.5)
假设 1 表明干扰项 ε 与解释变量 x 的当期观察值、前期观察值以及未来的观察值均不相关,也 就是说我们的模型中所有的解释变量都是严格外生的。假设 2 就是一般的同方差假设,在此假 设下模型 (8.1) 的 OLS 估计是 BLUE 的。当此假设无法满足时,我们就需要处理异方差或序列 相关以便得到稳健性估计量。
• 包含的信息量更大,降低了变量间共线性的可能性,增加了自由度和估计的有效性。
• 便于分析动态调整。
1如宁夏属于回族自治区,那里的回民因为信仰伊斯兰教,所以不允许饮酒的,而生活在宁夏的许多汉民也往往 因为自己的回民朋友无法饮酒而无形中减少了啤酒的消费量。
2如中国南部地区啤酒的消费量比较大,而北方很多地区只有在夏天才会饮用较多的啤酒,冬天他们一般是只喝 白酒的。
在正式估计模型之前,我们先定义一些有用的矩阵运算,它们将在后面的分析中反复 使用。定义 DD = IN ⊗ JT , 其中, JT = 1T 1T 为 T × T 维矩阵,每个元素均为 1。同时, 我们定义 P = D(D D)−1D = IN ⊗ J¯T , J¯T = (1/T )JT 是 T × T 维矩阵,每个元素均为 1/T ; Q = IN T − D(D D)−1D = IN T − P 。矩阵 P 和 Q 都具有如下性质:
组内估计量
上面我们已经提到,在假设 1 和假设 2 同时成立的情况下,模型 (8.1) 的 OLS 估计是 BLUE 的。但在实际操作的过程中,如果 N 比较大,那么我们的模型中将包含 (N+K) 个解释变 量,4计算的工作量往往很大,对于 N 相当大的情况(如 N=10000 ),一般的计算机都无法胜
8.4 参考文献 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1
第八章 面板数据模型
8.1 简介
面板数据,简言之是时间序列和截面数据的混合。严格地讲是指对一组个体(如居民、国 家、公司等)连续观察多期得到的资料。所以很多时候我们也称其为“追踪资料”。近年来, 由于面板数据资料获得变得相对容易,使得其应用范围也不断扩大。而关于面板数据的计量理 论也几乎涉及到了以往截面分析和时间序列分析中所有可能出现的主题,如近年来发展出的 面板向量自回归模型(Panel VAR)、面板单位根检验(Panel Unit Root test)、面板协整分析 (Panel Cointegeration)、门槛面板数据模型(Panel Threshold)等,都是在现有截面分析和时 间序列分析中的热点主题的基础上发展起来的。
遗憾的是,很多情况下,我们并不能明确地区分我们的样本来自一个较大母体还是较小的 母体。因此有些学者认为,区分固定效应模型和随机效应模型应当看使用二者的假设条件是否 满足。由于随机效应模型把个体效应设定为干扰项的一部分,所以就要求解释变量与个体效应 不相关,而固定效应模型并不需要这个假设条件。所以如果我们的检验结果表明该假设满足, 那么就应该采用随机效应模型,因为它更为有效,反之,就需要采用固定效应模型。
简言之,两种模型有各自的优缺点和适用范围,在实证分析的过程中,我们一方面要根据 分析的目的选择合适的模型,同时也要以 8.2.3 节中介绍的假设检验方法为基础进行模型筛选。
8.2.1 固定效应模型
模型的基本设定和假设条件 若视 ai 为固定效应,模型 (8.1) 可以采用向量的形式表示为:
yi = ai 1T + xi β + εi
Estimation with STATA
连玉君 (西安交通大学金禾经济研究中心)
arlion@ 2005.10
目录
第八章 面板数据模型
2
8.1 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
(8.3)
其中, yi = (yi1, yi2, · · · , yiT ) , xi = (xi1, xi2, · · · , xiT ) , εi = (εi1, εi2, · · · , εiT ) , 1T 是一个所有元 素都为 1 的 T × 1 列向量。
我们有如下两个基本假设:3
假设 1 :
8.3.1 异方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.3.2 序列相关 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
考虑如下模型:
yit = xit β + uit uit = ai + εit
(8.1) (8.2)
其中, i = 1, 2, · · · , N , t = 1, 2, · · · , T ;xit 为 K ×1 列向量, K 为解释变量的个数, β 为 K × 1 系数列向量。对于特定的个体 i 而言, ai 表示那些不随时间改变的影响因素,而这些因 素在多数情况下都是无法直接观测或难以量化的,如个人的消费习惯、国家的社会制度等,我 们一般称其为“个体效应”(individual effects)。对“个体效应”的处理主要有两种方式:一种是 视其为不随时间改变的固定性因素,相应的模型称为“固定效应”模型;另一种是视其为随机 因素,相应的模型称为“随机效应”模型。
相关文档
最新文档