甲壳素和壳聚糖
壳 聚 糖

农药载体和农药缓释剂
THANK YOU
最终确定了 chitin的化学结 构
甲壳素:又称甲壳质、几丁质,英文名 Chitin,是地球上第二大天然多糖,仅 次于纤维素
自然界中的甲壳素
甲壳素的结构
已知甲壳素是无毒、可生物降解、可食用 、 生物相容、热稳定,并具有抗氧化、抗微生 物和抗癌作用。
不溶于水和几乎所有常用的有机溶剂,它只 能溶于一些氟醇(六氟丙酮、六氟异丙醇),碱 性冰水混合物,CaCl2·2H2O 的饱和甲醇溶液, N,N-二甲基乙酰胺氯化锂 、 (LiCl-DMAc)和低 共熔溶剂以及咪唑基离子液体。
3):壳聚糖的有效基团NH3可以与细菌细胞膜上的类脂、蛋白质复合物反应, 使蛋白质变性,改变了微生物细胞膜的通透性,引起微生物细胞死亡。
4):壳聚糖作为一种螯合剂,能有选择性地螯合对微生物生长起关键作用的 金属离子,尤其是酶的辅助因子,从而抑制微生物的生长和繁殖。
壳聚糖在植保上的应用
植物生长调节剂 用来处理农作物或其种子,可激发种子提早萌芽,促进作物生长,提高产量 和品质。
1):高分子链密集于在微生物细胞表面,形成一层高分子膜,影响细菌对营 养物质的吸收,阻止代谢废物的排泄,导致菌体的新陈代谢紊乱,从而起到 杀菌和抑菌作用。
2):分子量小于5000的壳聚糖可以透过细胞膜,破坏细胞质中内含物的胶体 状态,使其絮凝、变性、无法进行正常的生理活动,导致微生物死亡。
壳聚糖抑菌机理
壳聚糖的结构
壳聚糖的一个糖基中,C3-OH与 相邻的糖基形成氢键
一个糖基的C3-OH与相邻的糖基 的呋喃环上的氧形成氢键
壳聚糖的结构
C3-OH也可以与相邻的另 一条壳聚糖分子链的糖基 形成氢键
甲壳素与壳聚糖综述

甲壳素与壳聚糖综述甲壳素是自然界中最丰富的氨基多糖类有机资源,广泛存在于甲壳纲动物虾蟹的甲壳、昆虫的甲壳、真菌(酵母、霉菌)的细胞壁和植物(菇类)的细胞壁中,它通常与蛋白质、钙质等结合在一起,形成生物体的支撑组织。
在海洋中甲壳类动物就有两万多种,其中最主要的品种有100多种,各种虾类和蟹类是最主要的甲壳类水产。
甲壳素的自然年产量大约与纤维素差不多,估计每年生物合成的甲壳素达100亿吨。
全世界每年水产加工后的甲壳素废弃物约为140多万吨,甲壳素在我国有丰富的自然资源,如何充分利用这一宝贵的自然资源,长期以来一直是人们探索的课题。
早在1811年,H.Bracohnot首次从蘑菇中分离出甲壳素,并命名为“fangin”。
1823年,A.Odier发现昆虫的外皮上分布有大量的甲壳素,并用希腊语命名为“chitin”。
1859年,C.Rouget用浓氢氧化钾处理甲壳素,使其脱乙酰化,制备出能溶于稀有机酸的物质。
1894年Hoppe-seiler[1]将该物质命名为壳聚糖。
1937年,Iobell等人发现能把甲壳素水解成甲壳素低聚糖的甲壳素酶; 1973年,Eveleighdeng等人发现能把壳聚糖水解成低聚糖的壳聚糖酶。
壳聚糖酶对生物体自溶、形态发生和营养代谢中具有一系列重要作用,同时一些疾病和生物共生现象也与壳聚糖酶有关。
1977年,日本人首次将壳聚糖作为天然絮凝剂处理废水。
同年,在美国波士顿召开第一次有关甲壳素/壳聚糖的国际会议。
从此,甲壳素的开发应用在世界范围内形成一股热潮[1]。
甲壳素及其衍生物由于其优异的生物性能而具有广泛的应用前景,对其物理与化学结构的研究也一直是高分子材料领域所关注的热点。
随着现代化表征手段的建立和应用,对甲壳素及其衍生物的化学结构,超分子结构以及它们的应用研究得到了极大的发展。
甲壳素及其衍生物己被广泛应用于农业、食品添加剂、化妆品、抗菌剂、医疗保健以及药物开发等众多领域,其中尤为重要的是生物医用领域。
甲壳素与壳聚糖

壳聚糖具有良好的水溶性、生物相容性和生物活性,能够 被生物体内的酶降解。
总结
甲壳素和壳聚糖在性质上的差异主要表现在水溶性和生物降解 性上,甲壳素不易溶于水且不易被生物降解,而壳聚糖具有良
好的水溶性和生物降解性。
应用比较
甲壳素
甲壳素在医学、环保、农业等领域有广泛应用,如制备人工皮肤、药物载体和生物材料 等。
食品工业
02
03
环保领域
甲壳素和壳聚糖在食品工业中的 应用将更加广泛,如食品添加剂、 保鲜剂、食品包装材料等。
甲壳素和壳聚糖在环保领域的应 用将得到发展,如污水处理、土 壤修复等。
甲壳素与壳聚糖的环境影响
减少环境污染
随着提取技术的发展,甲壳素和壳聚糖的生产过程将 更加环保,减少对环境的污染。
资源化利用
甲壳素和壳聚糖的废弃物将得到有效利用,实现资源 化利用,减少浪费。
生态平衡
合理利用甲壳素和壳聚糖资源将有助于维护生态平衡, 促进可
抗菌性
壳聚糖具有广谱抗菌活性,能够抑制多种细菌的 生长繁殖。
生物降解性
壳聚糖可被微生物分解为低分子物质,最终分解 为水和二氧化碳,具有良好的生物降解性。
壳聚糖的应用
食品添加剂
壳聚糖可用于食品保鲜、增稠、稳定等功能, 提高食品品质和口感。
医疗领域
壳聚糖在医疗领域可用于制作止血纱布、药 物载体、组织工程支架等。
02 壳聚糖简介
壳聚糖的来源
甲壳素
壳聚糖是甲壳素经过脱乙酰化反应后 得到的,甲壳素广泛存在于虾、蟹等 甲壳动物的外壳以及菌类、昆虫等节 肢动物的外骨骼中。
提取过程
通过酸碱处理、脱钙、脱蛋白等步骤 ,将甲壳素脱去乙酰基,得到壳聚糖 。
第七章 甲壳素与壳聚糖

1、机能食品
前几丁聚醣在机能性食品上的应用最受到瞩目,具多项生理调节 机能,包括无毒性的抗癌效果、改善消化吸收机能、降低脂肪及 胆固醇摄取、降低高血压、强化免疫力等。 通常造成高血压及心脏病的原因是脂肪、盐分的过量摄取,这也 是目前的主要病因。而几丁质和几丁聚醣具有很好的调节血压能 力,它带有正电荷的纤维分子,可以吸收带有负电性的脂肪酸、 胆固醇、食盐的氯离子等,因而具有调节血压的作用,在临床医 学上已有许多实例。 几丁聚醣在市面上最热门的用途是体重调节。经过医学证实,在 餐前服用几丁聚醣可以在胃中吸收食物中的脂肪球,避免过量脂 肪吸收。通常几丁聚醣可吸收五倍的脂肪酸,已被广泛应用于瘦 身健康食品上。
三、甲壳素的开发应用前景
甲壳素中的主要成分几丁质与几丁聚醣是由天然物质 所制取的生物高分子,与天物体细胞有良好的生物兼 容性(biocompatibility),不具毒性且可以被生物体 分解,具有生物活性,因此广泛地应用在医药食品等 方面。甲壳素的主要应用方向有: 1、机能食品 2、医药用品 3、食品加工 4、纺织品 5、环保用品
二、甲壳素的功效
强化免疫力---甲壳素能提高身体的免疫机能,加强免疫细胞的增殖,因 此有强化免疫力的功效。日本发表的动物实验证实,甲壳素的免疫强化 作用 有助于减少肿瘤细胞的伤害,及促进肝脏受损细胞的新生与正常 化。 无毒性抗癌效果---甲壳素的抗癌效果已由日本东北药科大学确认,且其 抗癌效果适合生物体而无毒性反应出现。北海道大学的研究小组也发现, 甲壳素有抑制恶性肿瘤细胞扩散及移转的效果。 降低胆固醇---甲壳素在体内以带正电的阳离子形态出现,可与胆酸和胆 盐结合,因而抑制小肠对胆固醇的吸收,不但会减少胆固醇在肝脏的堆 积量、 也可降低恶性胆固醇(LDL)的浓度、提高良性胆固醇(HDL)的含 量, 因此对于预防动脉硬化及心血管疾病有很好的效果。 改善消化机能---甲壳素可促进肠内有益菌丛的繁殖,抑制有害菌丛的滋 生,及减少大肠菌生长的机会,因此可以达到健胃整肠的功效。
甲壳素与壳聚糖

2 制成医学功能性纤维 壳聚糖具有一定的流延性及成丝性.可制成纤维形 式。在大分子结构上,甲壳质和壳聚糖与人体内存 在的氨基葡萄糖构成相同及具有类似于人体骨胶原 组织的结构,这赋予了它们极好的生物医药特性, 它具有理想的生物相溶性和生物活性,具有抑菌、 止血、抑制胃酸、抗溃疡、降血脂、降胆固醇、凝 集L。白血病细胞、消炎、镇痛、促进伤口愈合等 作用。甲壳质和壳聚糖纤维可做成手术缝合线、止 血棉、纱布、药布、绷带、创可贴、薄膜等各种医 用敷料,用混式纺丝法还可将壳聚糖制成无纺布的 人造皮肤。
3 用作无纺布粘合剂
壳聚糖溶解在其溶剂中形成溶液后.得到稠 厚、高粘度粘液,可作为粘合剂.但阳荷性 的壳聚糖溶液易与阴荷性物质如海藻酸钠浆 或电荷相反的染料凝结形成沉淀或沾色.因 此在涂料印花粘合剂中较少应用,但它作为 无纺布粘合剂则具有优良的粘合能力。
在化妆品中的应用
壳聚糖在酸性条件下可成为带正电荷的高分 子聚电解质而直接用于香波、洗发精等的配 方中,使乳胶稳定化以保护胶体;壳聚糖本 身的带电性使其具有抑制静电荷的蓄积与中 和负电荷的作用,这种带电防止的效能可以 防止脱发;壳聚糖能在毛发表面形成一层有 润滑作用的覆盖膜,因此可减少摩擦,避免 洗发所引起的对毛发的伤害。
❖ 由于它主要存在于低等动物中,特别是节肢动物的 甲壳中.始称甲壳素。又名甲壳质、几丁质、壳多 糖、壳蛋白、明角质。化学上命名为[(1,4)一2一
乙酰氨基一2一脱氧一β-D一葡萄糖]或【β-(1—4)
一2一乙酰氨基一2一脱氧一D一葡萄糖】,是N一 乙酰基一葡萄糖通过3一(1,4)甙糖键联接而成的直 链状多糖。
制备流程图
甲壳素/壳聚糖制备工艺的细化
❖ 甲壳素的提取过程主要是用酸脱碳酸钙,用 碱脱蛋白质,这个过程中产生一定量的酸碱 废液,对环境有一定的污染,研究人员在甲 壳素的提取工艺方面作了改进。
1 甲壳素与壳聚糖

1 甲壳素与壳聚糖甲壳素(chitin)又名甲壳质、壳蛋白、几丁、几丁质,广泛存在于昆虫和甲壳动物(虾、蟹等)的甲壳中,少数真菌和绿藻等低等植物的细胞壁中也含有甲壳素。
在天然高分子中,其数量仅次于纤维素。
甲壳素是由N-乙酰-2-氨基-2-脱氧-D-葡萄糖经由β-1,4糖苷键聚合而成的线型高分子,分子量100万以上。
甲壳素和壳聚糖有不同的化学结构,甲壳素分子链上存在羟基和乙酰基,壳聚糖分子链上还含有游离的氨基可以通过各种化学改性,获得多种功能和用途。
甲壳素和壳聚糖可以与一氯乙酸、环氧乙烷、丙烯腈等醚化剂进行羧甲基化、羟乙基化、氰乙基化反应,生成相应的离子型醚和非离子型醚。
例如,在碱性(NaOH)条件下,以异丙醇为溶剂,加入一氯乙酸与甲壳素或壳聚糖反应,经中和、洗涤、干燥得到羧甲基甲壳素或羧甲基壳聚糖,是一类水溶性离子型醚。
2 甲壳素和壳聚糖的应用甲壳素、壳聚糖及其多种多样的化学改性产品具有种种功能,在纺织、印染、造纸、生化、食品、医疗、日用化工、农业和环境保护等方面都得到了广泛应用。
壳聚糖是一种阳离子聚电解质,对固体悬浮物有很好的凝聚作用,壳聚糖本身无毒性,所以可作为絮凝剂应用。
例如:用于水质净化和饮料(果汁、果酒)的除浊澄清;仪器工业下脚废水处理及对淀粉、蛋白质的回收;活性污泥的凝集及脱水;印染废水染料的凝集等。
根据美国商业部估计,目前全世界甲壳素的工业用量每年约15万t,主要用作环保处理剂及净水剂、约占50%。
它涉及的行业有食品业、屠宰业、染整业、电镀业。
甲壳素本身是天然材料,在发达国家环保管理机构均鼓励业界优先考虑使用,因对于其凝集之沉淀物不需考虑“二次污染”问题。
以甲壳素为主的滤材目前已使用于游泳池及其他大型水池除污及饮水净化。
甲壳素和壳聚糖及其衍生物在农业、纺织、造纸、生化、化学分析、重金属富集回收等方面还有多种用途。
甲壳素及其衍生物由于分子中羟基、氨基及其他基团的存在,对许多金属离子具有螯合作用,所以能有效地吸附或捕集溶液中的重金属离子,但不吸附水中的K+、Na+、Ca2+、Mg2+、Cl-、SO42-、CO32-、HCO3-等离子,因而不影响天然水的本底浓度。
第五节甲壳素和壳聚糖

壳聚糖: 葡萄糖胺为基本单位, 脱乙酰度由60%~100%不等。 脱乙酰度55-70%(低脱乙酰度壳聚糖),
70-85%(中~),85-95%(高~) 95-100%(超高~),不能达到100%
分子量10-50万
略带珍珠般的光泽
不溶于水、乙醇、酮和碱溶液,可溶于大多数稀酸 (如醋酸、环烷酸和苯 甲酸) 。在pH低于6.5时,可得到黏稠的溶液。
u 应用 手术线,人工透析膜,非纺造织物,纺织原料
6. 甲壳素和壳聚糖的应用
u 生物医用材料 相关性能:
(1) 抑菌抗感染 壳聚糖形成质子化铵盐,吸附带负电的细胞壁,改变细胞膜的选择透过性, 扰乱了细菌正常的新陈代谢,导致细胞质壁分离,抑菌杀菌。 (2) 抗病毒和抑制肿瘤 促进巨噬细胞活性,影响非杀伤性细胞(NK)活性IL22的分泌,提高机体的 非特异性免疫功能 (3) 降脂和防治动脉硬化 (4)止血作用 壳聚糖被质子化,可和许多带负电生物大分子如黏多糖、磷脂及细胞外基 质蛋白发生静电作用而形成血栓,起到止血作用。
(3)制造人造血管 内壁光滑不会凝集血球、抑制人成纤维细胞生长
(4)固定化酶载体
(5)药物辅料和载体
u 水处理材料 (1)吸附金属离子:
-NH2 和-OH与Pb2+、Cr6+、Cu2+等重金属离子形成稳定的五环状螯合物
交联微球+磁铁,去除率达98%
(2)絮凝剂、络合剂、吸附剂处理废水和饮用水 酸性条件,静电作用 碱性条件,化学吸附和物理吸附 高效絮凝剂,无毒副作用,易降解
u 聚乙二醇 PEG400交联壳聚糖,pH7条件下,对Pb吸附容量为20mg/g
5. 甲壳素纤维的成形加工
u 工艺路线 甲壳素(壳聚糖)-->(改性处理)--> 溶解--> 纺丝原液--> 过滤--> 脱 泡--> 计量--> 纺丝--> 一浴 -->拉伸--> 二浴--> 定型--> 后处理--> 干燥--> 纤维 u 制备方法 (1)甲壳素纤维
甲壳素与壳聚糖综述

二、壳聚糖的制备方法
二步碱液法 ( 传统法)
改进碱液法
该工艺具有制备周期短、节约能源; 节约烧碱用量, 降低成本, 省去漂白, 确保产品质量的优点。
微波法
该工艺的特点不仅作用时间短, 能耗低, 而且比常 规加热碱液处理效率提高 11 倍多, 同时反应重复性好。
三、甲壳素、壳聚糖的应用
功能 材料
存在状态:
甲壳素的结构因氢键类型不同而有 三种结晶体: ➢α-甲壳素,由两条反向平行的糖链组成 ➢β-甲壳素,由两条同向平行的糖链组成 ➢γ-甲壳素,由三条糖链组成,其中两条 同向,一条反向。
壳聚糖: 也称几丁聚糖(chitosan),它是由甲壳素在 碱性条件下加热,脱去N—乙酰基后生成的。其学名为(1, 4)—2—氨基—2—脱氧—β—D—葡聚糖。壳聚糖外观是 白色或淡黄色半透明状固体,略有珍珠光泽。
8.在功能材料中的应用
膜材料:
(1)反渗透膜:具有较高的脱盐率和透水率,还 具有强耐碱性,交链后的膜有耐酸性。 (2)渗透蒸发膜:用甲壳素制成的分离水和乙醇 的高性能功能分离膜,与蒸馏法分离水和乙醇相 比,能耗降低。 (3)超过滤膜:甲壳素制成的壳质膜,改变成膜 温度及用丙酮等有机溶剂浸处理,可调整分离膜 的强度及透过性能,可用作超过滤膜。
1.在农业上的应用
植物病害的防治:
壳聚糖可诱导植物产生广谱抗性, 增强植物自身的防卫能力,抑制多种 病源微生物的生长。
低聚壳聚糖可以诱导植物产生抗 性蛋白,具有明显的抗微生物活性, 在体外抑制真菌的生长。
2.在化妆品原料上的应用
1)洗发香波、头发调理剂:甲壳素粉沫比表面积 大,孔隙率高,吸收皮脂类油脂远大于淀粉或其 他活性物质,是洗发剂理想的活性物质。
一是通过电荷中和而使胶体颗粒脱稳并形成细小 的絮凝体;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备注第7章甲壳素和壳聚糖7.1 甲壳素和壳聚糖的结构、性能7.2 甲壳素的存在状态与提取方法7.3 甲壳素与壳聚糖的改性7.4 甲壳素与壳聚糖及其改性产物的应用掌握甲壳素和壳聚糖的基本结构和反应性能了解甲壳素和壳聚糖的结构改性和应用7.1 甲壳素和壳聚糖的结构、性能7.1.1甲壳素的发现与命名1、1811年 H.Braconnot 温热的稀碱溶液反复处理蘑菇,提取甲壳素,命名Fungine,真菌纤维素。
2、1823年 A.Odier 甲壳类昆虫翅鞘中分离,命名Chitin3、4、1878年 G.Ledderhose 从Chitin水解反应液中检出氨基葡萄糖和乙酸5、1894年 E.Gilson 进一步证明Chitin中含有氨基葡萄糖,后来研究盐酸、硫酸、磷酸和无水甲酸,但同时主链发生降解。
二、结构特征研究证实,甲壳素与其他多糖一样,其分子链也是螺旋形,XRD照片给出的螺距为0.515nm,一个螺旋平面由6个糖残基组成。
测定方法:红外、核磁共振三、壳聚糖的主要特性1. 不能完全溶解于水和碱溶液中,但可溶于稀酸(pH<6),游离氨基质子化促进溶解。
溶于稀酸呈黏稠状,在稀酸中壳聚糖的β-1,4糖苷键会慢慢水解,生成低相对分子质量的壳聚糖。
2. 壳聚糖在溶液中是带正电荷多聚电解质,具有很强的吸附性。
3. 壳聚糖的溶解性与脱乙酰度、相对分子质量、黏度有关,脱乙酰度越高,相对分子质量越小,越易溶于水.4. 壳聚糖具有很好的吸附性、成膜性、通透性、成纤性、吸湿性和保湿性N-脱乙酰度和黏度(平均分子量)是壳聚糖的两项主要性能指标脱乙酰度(1)脱乙酰度(D.D.)的高低,直接关系到它在稀酸中的溶解能力、黏度、离子交换能力、絮凝性能和与氨基有关的化学反应能力。
(2)测定的方法有酸碱滴定法、电位滴定法、氢溴酸盐法、胶体滴定法、苦味酸分光光度法、UV、IR法等5、黏度黏度反应了高分子物质的分子量大小,在壳聚糖的生产上,常用旋转黏度计来测定其黏度,这是表观黏度,其数值可大体反映出壳聚糖分子量的大小。
常由此说高黏度壳聚糖、中黏度壳聚糖、低黏度壳聚糖。
7.2 甲壳素的存在状态与提取方法7.2.1 甲壳素的存在状态天然有机化合物中,数量最大的是纤维素(植物生成),其实是甲壳素(动物生成)。
估计自然界每年生物合成的甲壳素将近100亿~1000亿吨。
甲壳素是地球上除蛋白质外数量最大的含氮天然有机化合物。
一、在自然界的存在甲壳素广泛存在于甲壳纲动物虾和蟹的甲壳、昆虫外壳、真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中。
二、存在状态甲壳类动物外壳的结构材料就是甲壳素,它既有生理作用,又能保护机体防止外来机械性冲击;同时,还具有吸收高能辐射的性能。
在真菌的细胞壁中,甲壳素与其他多糖相连,在动物体内,则是与蛋白质结合成蛋白聚糖。
甲壳素的结构因氢键类型不同而有三种结晶体:? α-甲壳素,由两条反向平行的糖链组成? β-甲壳素,由两条同向平行的糖链组成? γ-甲壳素,由三条糖链组成,其中两条同向,一条反向。
壳聚糖(chitosan)是天然多糖中唯一的碱性多糖,也是少数具有电荷特性的天然产物之一,具有许多特殊的物理、化学性质和生理功能。
7.2.2 甲壳素与壳聚糖的提取一、甲壳素的制备制备甲壳素的主要操作是:脱钙和脱蛋白。
制备甲壳素的传统工艺。
(1)酸的作用即为脱钙,即用于浸泡虾蟹壳时使其中的碳酸钙和无机盐变为水溶性溶液和二氧化碳等。
(2)碱的作用即为脱蛋白,因为蛋白质在碱液中比在酸液中溶解得较快也较完全。
(3)剩余下来的就是甲壳素。
【举例子】《EDTA处理虾壳制备甲壳素的研究》黄俊娴,杨建男在提取工艺上大多围绕着如何将脱钙和脱蛋白进行得更彻底更完全1、实验原理:(1)传统工艺用虾壳制备甲壳素,一般是酸脱钙,用碱脱蛋白质,不仅消耗较多的酸和碱,且易破坏甲壳素的结构,脱蛋白时往往还需加热。
(2)前人Foster和Hackman曾用EDTA先在pH 9,后在pH 3条件下处理蟹壳,钙和蛋白质的脱除率为100%和95%(存在10%~20%的误差)。
(3)但是经实验测定,用该方法处理已粉碎的虾壳时,效果不如上述文献中的理想。
2、实验过程概述及结论:(1)根据pH 13时,EDTA-Ca的lgk′=lgk的特征,且EDTA的溶解度接近最大的特点,建立用EDTA在室温下一步处理虾壳制备甲壳素的方法,40 min 时脱钙和脱蛋白率分别为100%和98.7%,且EDTA可回收循环使用。
(2)EDTA一步法处理虾壳制备甲壳素,可操作性强,操作步骤简单,生产周期短、原料和能量消耗小,生产成本低,对环境污染小等优点。
且在制100%脱乙酰度的壳聚糖。
3、水溶性壳聚糖壳聚糖只能溶于一些稀的无机酸或有机酸中,不能直接溶于水。
(1)水溶性壳聚糖:能溶于水的壳聚糖能溶于水的壳聚糖盐能溶于水的羧甲基壳聚糖能溶于水的低分子甲壳素能溶于水的低分子壳聚糖(2)判断是何种水溶性壳聚糖的方法:把壳聚糖溶于水,看溶液有无黏性,没有黏性的是低分子甲壳素或壳聚糖往水溶液中滴加NaOH溶液,产生浑浊或沉淀,是壳聚糖盐。
如果滴加HCl溶液产生浑浊,则是羧甲基壳聚糖。
R-COONa+H+→R-COOH+Na+R为氨基葡萄糖残基甲壳素在均相条件下进行脱乙酰化应,当脱乙酰度为50%左右时,这种壳聚糖能溶于水。
对较高脱乙酰度的壳聚糖进行乙酰化,控制其脱乙酰度在50~60%,也可得到水溶性壳糖。
4、羧甲基壳聚糖羧甲基壳聚糖是一种水溶性壳聚糖衍生物,其抗菌性、具有保鲜作用、是一种两性聚电解质等。
羧甲基壳聚糖可以在碱性条件下用氯乙酸与壳聚糖反应而得到,但羧甲上发生取代,生成O-羧甲基壳聚糖和基既会在-OH上发生取代,也会在-NH2N-羧甲基壳聚糖。
羧甲基壳聚糖的水溶性,除了因为它是一种羧酸钠盐而溶于水外,还有一个原因是羧甲基的导入破坏了壳聚糖分子的二次结构,使其结晶度大大降低,几乎成为无定形。
羧甲基壳聚糖的制备方法:(很多)将壳聚糖溶于稀乙酸中,用过量丙酮沉淀,得到壳聚糖乙酸盐;转入带有搅拌的反应瓶中,加入一定量的NaOH溶液和异丙醇,边搅拌边滴加氯乙酸的异丙醇溶液,控制反应温度为70度,反应数小时,冷却至室温,用稀酸调pH至中性,用85%甲醇洗涤,干燥,即得到羧甲基壳聚糖。
5、低聚糖低聚糖也叫做寡糖,过去把双糖到十糖称为寡糖,现在一般把范围扩大到二十糖,称作低聚糖。
相对分子量低于10000的壳聚糖具有许多优于高分子量壳聚糖的功能。
比如具有生物活性的甲壳素和壳聚糖的五糖至九糖,特别是六糖和九糖在抑制肿瘤方面有着令人鼓舞的作用。
低聚糖的常见的制备方法:(1)酸水解法:壳聚糖在酸性溶液中不稳定,会发生长链的部分水解,即糖苷键的断裂,形成许多分子量大小不等的片段。
(2)氧化法:过氧化氢氧化法最为常见,加入H2O2进行降解反应。
(3)酶解法:利用专一性或非专一性酶对甲壳素或壳聚糖进行降解。
6、微晶壳聚糖和磁性壳聚糖微晶壳聚糖由于颗粒小,比表面积大大增加,具有更优越的性能,如保水性好、成氢键能力强、成膜性好、生物相容性和抗菌性强等,在农业、纺织、医药、水处理等领域有着广泛的应用。
可用2%的醋酸水溶液溶解一定量的壳聚糖,经过滤除去不溶物及凝胶颗粒;再于一定温度下进行热降解,并用氢氧化钠水溶液中和,使之产生絮状凝聚物,最后用蒸馏水洗涤并在真空下干燥,即得微晶壳聚糖。
壳聚糖由于具有生物相容性、生物亲和性和无毒等特性,分子链上大量存在的羟基和氨基又使其易于进行化学改性,因此常被用作磁性高分子材料的“外壳”。
壳聚糖与Fe3O4复合形成的磁性壳聚糖微球具有磁响应性,可作为分离富集、靶向药物、固定化酶的载体,从而广泛应用于医药、生物等领域。
7、俄罗斯研制壳聚糖碳纤维材料活性碳纤维的壳聚糖改性,可以解决活性碳纤维生物材料的杀菌性、疏水性、与酶的相容性,这些进一步发展,有望制成生物传感器和微电极。
不溶形态的壳聚糖沉淀在碳纤维表面,电位是负900毫伏,热加工100-120℃,时间4h,壳聚糖沉淀实现在初始纤维,比表面积:平均700 m2/g,孔容积0.4cm3/g,孔的平均半径0.4纳米。
7.2.3 壳聚糖的质量控制脱乙酰度的测定黏度的测定灰分的测定砷、汞、铅的测定含氮量的测定水分测定微生物检测7.3 甲壳素与壳聚糖的改性7.3.1 甲壳素与壳聚糖化学一、碱化C6-OH和C3-OH与浓碱反应,生成碱化甲壳素。
常温下进行甲壳素的碱化反应,会伴随着甲壳素的脱乙酰化反应。
二、O-酰化和N-酰化壳聚糖可与多种有机酸的衍生物(酸酐、酰卤)反应,导入不同分子量的脂肪族或芳香族酰基。
壳聚糖分子链的糖残基上既有羟基,又有氨基,酰化反应既可在羟基上成酯,也可在氨基上成酰胺。
甲壳素的乙酰化反应在非均相条件下进行缓慢,而且必须在乙酸酐和盐酸存在条件下才能获得乙酰化的产物。
乙酰化反应优先发生在游离氨基上,其次发生在羟基上。
壳聚糖在乙酸水溶液或吡啶溶剂中先形成高度溶胀的胶体,然后进行N-乙酰化反应。
针对不同的酰化要求,大致有三类不同的酰化体系。
1、甲磺酸酰化体系 :双O-长链酰基化壳聚糖产物,也可用于制备N-芳酰基化壳聚糖产物。
2、氯仿和吡啶等非质子极性溶剂中壳聚糖或甲壳素与酰氯反应 ,得到N,O-酰基化的产物 .反应之前原料需经过特殊处理 .3、甲醇或乙醇、有机酸和水组成的均相体系由于有机醇羟基的竞争作用,酰化反应优先在吡喃环的氨基上进行,使本反应体系具有优良的位置选择性,只在C2位氨基发生酰化反应。
该反应可以方便地制得N-酰化壳聚糖产物,而且可以通过酸酐用量的多少控制产物的酰化程度。
三、酯化含氧无机酸酯化甲壳素和壳聚糖的羟基,尤其是C6-OH,可与一些含氧无机酸(或其酸酐)发生酯化反应,类似于纤维素的反应。
在壳聚糖的氨基上也可能发生反应。
在含氧无机酸的酯化反应中,最常见的是甲壳素和壳聚糖的硫酸酯。
这些酯类的结构与肝素相似,也具有抗凝血作用,而肝素的提取和生产较为困难,价格很高。
肝素还有引起血浆脂肪酸浓度增高的副作用。
四、醚化甲壳素和壳聚糖的羟基与烃基化试剂反应生成醚(甲基醚、乙基醚、苄基醚等),广泛用于日化工业。
此外,用低分子冠醚通过接枝于高分子化合物分子上,可制备具有高分子化合物和冠醚化合物双重结构特性的高分子冠醚。
五、N-烷基化壳聚糖的氨基是一级氨基,有一孤对电子,具有很强的亲核性,能发生很多反应。
甲壳素的乙酰氨基的N上只有一个H,很稳定,但在一些强烈条件下,也能发生取代反应。
六、氧化甲壳素和壳聚糖可以被氧化剂氧化。
氧化剂不同,反应的pH不同,机理和产物也不同,既可使C6-OH氧化成醛基或羧基,也可使C3-OH氧化成羰基(成酮),还可能发生部分脱氨基或脱乙酰氨基,甚至破坏吡喃环及糖苷键。