《概率论与数理统计》课程自学指导书要点

合集下载

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。

在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。

重点理解事件的概率定义、概率的性质和
概率的运算法则。

2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。

还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。

3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。

4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。

5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。

6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。

总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。

希望以上内容能够帮助你更好地理解概率论与数理统计。

《概率论与数理统计》学习指导

《概率论与数理统计》学习指导

《概率论与数理统计》学习指导一、教学目的与课程性质、任务。

教学目的:本课程为学生讲授概率论与数理统计的基本概念、基本方法、基本技巧和基本理论。

主要培养学生对随机数学理论的掌握和实际问题的分析与理解能力,尽量引导学生针对实际随机现象进行科学的分析,从而达到增强学生动手能力和提高学生数学思维能力。

二、教学要求概率论与数理统计是在理论基础上实践性很强的课程,它主要讲授随机现象统计规律性的一门数学科学。

要求学生能够奠定较扎实的概率论理论基础,同时也能利用随机变量及其分布有关理论知识讨论数理统计中的有关统计推断问题。

要求学生能对现实中的工程实际问题、保险问题、金融问题、可靠性问题等方面利用合理的概率论和数理统计有关理念予以解释和分析。

在教学环节上,对学生的学习提出“掌握”和“了解"两个层次上要求,所谓“掌握”,是指学生在课后,必须能将所学内容用自己理解后的数学术语复述出来,这是将所学知识熟练应用到实践中的基础。

所谓“了解”,是要求学生对所学内容有初步的认知,不要求完全复述出来,但在遇到相关问题时要求能够辨识。

教学以课堂讲授为主,辅之以课堂具体的事例分析等方式.三、教学进度表四、教学内容与讲授方法五、课程的重点内容及习题(一) 课程的重点内容(二) 课程的习题(71道题)[2]第一章随机事件与概率P28—31 2、6、10、11、13、14、15、16、18、20第二章条件概率与独立性P53—56 2、4、6、7、10、12、13、17、18、23、25第三章随机变量及其分布P88—92 3、5、7、9、10、15、16、17、24、27、30第四章多维随机变量及其分布P124—128 1、3、5、7、13、15、20、26第五章随机变量的数字特征P155-159 2、5、11、13、15、1720、21、23、25、28、29第七章数理统计的基本概念P200-203 6、8、9、10、12、13、15第八章参数估计P224—227 1、2、4、5、8、19、20第九章假设检验P254—257 1、3、5、7、8六、本课程的几点说明1. 本课程的板书为中英文目的是了解概率论与数理统计常用词汇、为将来外文文献的阅读与相关问题研究打下扎实的基本功.2。

概率论与数理统计学习指导

概率论与数理统计学习指导

《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................... 错误!未定义书签。

第二章随机变量及其分布.................... 错误!未定义书签。

第三章多维随机变量及其分布................ 错误!未定义书签。

第四章随机变量的数字特征.................. 错误!未定义书签。

第五章大数定律和中心极限定理.............. 错误!未定义书签。

第六章数理统计的基本概念.................. 错误!未定义书签。

第七章参数估计............................ 错误!未定义书签。

第八章假设检验............................ 错误!未定义书签。

第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1(Λ=i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设ΛΛ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2Λ=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设ΛΛ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2Λ=≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1(Λ=n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用的概率确信在1000次试验中A 发生的次数在200到300之间分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX 而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用的概率确信在1000次试验中A 发生的次数在200到300之间. 解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在~之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥ 令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP.95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(,Λ=i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V Λ是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)(Λ=====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21Λ是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21Λ独立同分布,从而其函数22221,,,n X X X Λ也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n ΛΛΛΛ111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim . 4.设随机变量ΛΛ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(lim 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -,Λ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1Λ=.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设ΛΛ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X Pn i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (D) 01lim 212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数. (1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用13.设5021,,,X X X Λ是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21Λ称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21Λ是随机变量n X X X ,,,21Λ的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21Λ是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f Λ称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩 2、经验分布函数设n x x x ,,,21Λ是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤Λ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F ΛΛ为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21Λ是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且YX ,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21Λ是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X Λ是X 的一个样本, 2,,,21n Y Y Y Λ是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S n Sn S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。

下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。

一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。

2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。

3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。

5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。

二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。

2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。

三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。

2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。

3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。

四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。

2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。

3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。

五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。

《概率论与数理统计》知识点简单汇总

《概率论与数理统计》知识点简单汇总

《概率论与数理统计》知识点简单汇总第一章1.事件的基本关系与运算(和事件、积事件、差事件、对立事件等)2. 加法公式和乘法公式(条件概率,结合事件的独立性)3. 全概率公式、贝叶斯公式(结合书上例题和课后习题)P17例5、例6第二章1.有关这章的概念制表格一(把握概率分布、概率密度与分布函数的关系)2.常用离散型和连续型分布制表二熟记书上P82表4-13.理解第4节随机变量函数的概念(侧重离散型,包括二维离散型)(P36例1 ;P40定理1;P41例4;P43习题1、2 ;P44例1;P46习题1等)(此章概念是重点也同时是基础,与后续3,4章紧密关联)第三章1 . 理解离散型的联合分布律和边缘分布律(结合书上P51例1、P55例1)2 . 理解连续型的联合概率密度和边缘概率密度(结合P52例3、P57例3、P59习题4)3. 理解随机变量的独立性(P60例题)4. 随机变量函数(P62 例1)第四章1. 熟练数学期望的定义、性质、计算(P71例2、例3;P74例7)2. 熟练方差的定义、性质、计算(书上例题)期望和方差两个概念与第2章和后面的统计部分紧密关联,重点掌握3. 熟悉协方差、相关系数和矩三个概念及计算公式 建议上述数字特征自制表格三第五章1. 熟练 切比雪夫不等式 (P92 定理、P92例1)2. 了解大数定律和中心极限定理(P101定理2、P102例4) 第六章1. 理解样本和总体的概念;(统计就是用样本来研究总体)2. 熟练常用统计量 109P ; 掌握P110两个例题;3. 三个重要分布自制表格四 (0,1)N )4. 上分位点 (P42定义5、P113定义3 、P115定义5)结合2()n χ和()t n 两个的图形来理解; 注意与随机变量的分布函数()F x (特别是标准正态分布()x Φ)的区别 上述所有都是重点,必须理解加熟记,是整个统计部分的基础。

第七章1. 第一节,熟练掌握点估计的矩估计法和极大似然估计法;P127例2、3P130例62. 第二节,理解无偏性和有效性3. 区间估计P136例1,例139例2,例3(见P140表7-1)以上都结合书上例题,予以熟练掌握。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。

在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。

•样本空间:随机试验所有可能结果的集合。

•事件:样本空间的子集。

•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。

1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。

离散型随机变量和连续型随机变量是概率论中两个重要的概念。

•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。

•连续型随机变量:在一个范围内,有无限个可能值的随机变量。

概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。

•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。

•连续型概率分布:包括正态分布、指数分布、卡方分布等。

1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。

统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。

•区间估计:使用样本数据来推断总体参数的一个区间。

二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。

•中位数:将数据按大小排序,位于中间位置的数。

(浙大第四版)概率论与数理统计学习知识重点情况总结

(浙大第四版)概率论与数理统计学习知识重点情况总结

An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P(A)P(B) ,则称事件 A 、B 是相互独 立的。
若事件 A 、 B 相互独立,且 P(A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都 相互独立。
布。 X 的分布函数为
F(x)
1 ex , 0,
记住积分公式:
x nex dx n!
0
x 0,
x<0。
*-
正态分布
设随机变量 X 的密度函数为
f (x)
1
(x)2
e , 2 2 x ,
2 其中 、 0 为常数,则称随机变量 X 服从参数为
0-1 分布 P(X=1)=p, P(X=0)=q
*-
二项分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
P( X
k)
Pn(k )
C
k n
p k q nk

q 1 p,0 p 1, k 0,1,2,, n ,
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用
Pn(k) 表示 n 重伯努利试验中 A 出现 k(0 k n) 次的概率,
C Pn(k)
k n
pk qnk
,k
0,1,2,, n

(1)离 散型随 机变量 的分布 律
第二章 随机变量及其分布
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的 概率,即事件(X=Xk)的概率为

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

以下是对概率论与数理统计知识点的超详细总结。

一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

随机事件通常用大写字母 A、B、C 等来表示。

(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。

(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。

2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。

3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。

4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。

5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。

6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。

(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。

2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。

3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》课程自学指导书前言.. 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。

《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。

概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。

通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。

其内容可分为三大部分。

第一部分概率论部分,包括第一、二、三、四、五章。

作为基础知识,为读者提供了必要的理论基础。

第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。

第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。

本指导书是作为函授学员在集中授课后,指导自学而编制的。

内容较为简明扼要。

主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。

本指导书的主要参考书目:1.景泰等编。

概率论与数理统计.上海科学技术文献出版社,1991.2.玉麟主编。

概率论与数理统计.复旦大学出版社,1995。

3.大茵,陈永华编。

概率论与数理统计。

浙江大学出版社.1996本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。

主要考核方式为笔试。

第一章概率论的基本概念一、内容概述#本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。

二、教学目的要求#(1)理解并掌握概率论的基本概念。

(2)理解掌握等可能概型问题。

(3)理解并掌握条件概率。

(4)了解独立性。

三、重、难点内容解析#1.随机试验,样本空间,概率的概念。

自然界和社会经济生活中存在许多随机现象,我们通过随机试验研究随机现象的统计规律.随机试验的研究采用集合的方法,因而引入样本空间、随机事件和概率的概念。

需要掌握事件的运算关系、概率的定义及性质。

2.等可能概型(古典概型)。

掌握古典概型的特点及计算公式:P(A)= k/n。

掌握超几何分布的概率公式。

3.条件概率。

掌握条件概率的定义、公式,乘法定理,全概率公式,贝叶斯公式4.独立性。

两个事件的相互独立,三个及多个事件的相互独立。

四、复习思考与作业题#1.(P32T2)。

设A,B,C为三事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生,(2)A与B都发生,而C不发生,(3)A,B,C中至少有一个发生,(4)A,B,C都发生(5)A,B,C都不发生(6)A,B,C中不多于一个发生(7)A,B,C中不多于两个发生(8)A,B,C中至少有两个发生2.(P33T6)。

在房间里有10个人,分别佩带从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号号码为5的概率。

(2)求最大号为5的概率3.(P33T10)。

在11张卡片上分别写上probability这11个字母,从中任意连抽7张,求其排列结果为ability的概率。

4.(P33T16)。

据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病|孩子得病}=0.5,P{父亲得病|母亲及孩子得病}=0.4。

求母亲及孩子得病但父亲位得病的概率。

5.(P34T19)设甲袋中抓哏内有n 只白球,m只红球;乙袋中装有N只白球,M只红球。

今从甲袋中任意取一只放入乙袋中,再从乙袋中任意取一只球。

问取到白球的概率是多少?6.(P35T29)设第一只盒子装有3只蓝球,2只绿球,2只白球,第二只盒子中装有2只蓝球,3只绿球,4只白球。

独立地分别在两只盒子中各取一只球,(1)求至少有一只蓝球的概率;(2)(2)求有一只蓝球一只白球的概率;(3)(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率7.(P36T33)设根据以往的记录的数据分析,某船只余数的某种物品损坏的情况共有三种:损坏2%(这一事件记为A1),损坏10%(事件A2),损坏90%(事件A3),且知P(A1)=0.8,P(A2)=0.15,P(A3)=0.05,现在从已被运输的物品中随机得取三件,发现这3件都是好的(这一事件记为B),试求:P(A1|B),P(A2|B),P(A3|B)。

(这里设物品件数很多,取出一件后不影响取后一件是否为好品的概率)第二章随机变量及其分布一、内容概述本章包含随机变量、离散型随机变量及其分布、随机变量的分布函数、连续型随机变量及其概率密度、随机变量的函数的分布。

二、教学目的要求(1)正确理解并掌握随机变量、概率密度、分布函数等基本概念及性质。

(2)牢固掌握二项分布、指数分布、泊松分布、正态分布等重要类型的分布的概率分布、分布函数及有关概率计算。

(3)了解随机变量的函数的分布。

三、重、难点内容解析1.离散型随机变量及其分布律 (1)、二项分布:()qp c kn k nkk X P -==(2) 泊松分布:()ek k X P kλλ-==!2.随机变量的分布函数.分布函数的定义和性质(){}x X P x F ≤= 3.连续型随机变量及其概率密度(1)连续型随机变量概率密度的定义和性质 ()()dt t f x F x⎰∞-=(2)均匀分布:(),1a b x f -=b x a <<;()0=x f ,其他。

(3)指数分布:()θ1=x f e x θ/-,0<x ;()0=x f ,其他。

(4)正态分布:()()e x x f σπσμ22221--=,+∞<<∞-x 4.随机变量的函数的分布四、复习思考与作业题1. (P69T6)。

一大楼装有5个同类型的供水设备。

调查表明在任一时刻t 每个设备被使用的概率为0.1,问在同一时刻(1) 恰有2个设备被使用的概率是多少? (2) 至少有3个设备被使用的概率是多少? (3) 至多有3个设备被使用的概率是多少? (4) 至少有1个设备被使用的概率是多少? 2. (P70T12)。

一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布。

求:(1) 某一分钟恰有8次呼唤的概率。

(2) 某一分钟的呼唤次数大于3的概率。

3. (P71T16)。

以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),X 的分布函数是{0,10,04.0)(>-≤-=x x x ex xF , 求下述概率:(1)P{至多3分钟};(2) P{至少4分钟}(3) P{3分钟至4分钟之间}(4) P{至多3分钟或至少4分钟} (5)P{恰好2.5分钟}4. (P71T18)。

设随机变量X 的概率密度为(1){,21),/11(2,02)(≤≤-=x x x f 其他,(2)⎪⎩⎪⎨⎧<≤-≤≤= 其他1 ,021,2,0,)(x x x x x f 求X 的分布函数F (x ),并画出(2)中的f (x )及F(x )的图形5. (P72T21)。

设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布,其概率密度为⎪⎩⎪⎨⎧>=- 其他,0,0,51)(5/x x f e x 某顾客在窗口等待服务,若超过10分钟,他就离开。

他一个月要来银行5次。

以Y 表示一个月内他未等到服务饿而离开窗口的次数。

写出Y 的分布律,并求P{Y ≥1}6. (P72T24)。

某地区18岁的女青年的血压(收缩压,以mm-Hg 计)服从N (110,122)。

在该地区任选一18岁的女青年,测量她的血压X 。

(1)求P{X ≤105),P{100<X ≤120};(2)确定最小的x ,使P{X>x}≤0.05. 7. (P73T29)。

设X-N (0,1)。

(1)求eX=Y 的概率密度;(2)求12Y 2+=X的概率密度。

(3)求Y=|X|的概率密度。

8. (73T33)某物体的温度)(F T o 是一个随机变量,且有T —N (98.6,2),已知)32)(9/5(-=ΘT ,试求)(C o Θ的概率密度。

第三章 多维随机变量及其分布一、内容概述 #二维随机变量和分布函数,条件分布函数;离散型随机变量(X,Y )的分布律,边缘分布律,条件分布律;连续型随机变量(X,Y )的概率密度,边缘概率密度,条件概率密度;两个随机变量X,Y 的独立性;Y X Z +=的概率密度,),min(),,max(Y X N Y X M ==的概率密度。

二、教学目的要求 #(1) 理解并掌握二维随机变量和分布函数,条件分布函数。

(2) 理解并掌握离散型随机变量(X,Y )的分布律,边缘分布律,条件分布律。

(3) 理解并掌握连续型随机变量(X,Y )的概率密度,边缘概率密度,条件概率密度(4) 理解两个随机变量X,Y 的独立性。

(5) 掌握Y X Z +=的概率密度,),min(),,max(Y X N Y X M ==的概率密度。

三、重、难点内容解析 # 1. 二维随机变量二维离散型随机变量的联合分布律,二维连续型随机变量的联合概率密度 2. 边缘分布二维离散型随机变量的边缘分布律,二维连续型随机变量的边缘概率密度 3.条件分布二维离散型随机变量的条件分布律,二维连续型随机变量的条件概率密度4.相互独立的随机变量相互独立的随机变量的定义及性质 5.两个随机变量的函数的分布Y X Z +=的概率密度,),min(),,max(Y X N Y X M ==的概率密度四、复习思考与作业题 #1. (P104T4)将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数。

求X ,Y 的联合分布律以及(X ,Y )的边缘分布。

2. (P104T6)设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧<<=- 其他,),(0,0,y x y x f e y 求边缘概率密度3. (P105T9)以X 记某医院一天出生婴儿的个数,Y 记其中男婴的个数,设X 和Y的联合分布律为。

,⋯=-===--,2,1,0,)!(!}{86.6)14.7(14m m n m m Y n X P mn me (1)求边缘分布规律;(2)求条件分布律;(3)特别,写出当X=20时,Y 的条件分布律。

4. (P105T11)(1)求条件密度)|(|y x fYX ,特别,写出当Y=1/2时X 的条件概率密度;(2)求条件概率密度)|(|y x fYX ,特别,分别写出当X=1/3,X=1/2时Y 的条件概率密度;(3)求条件概率。

相关文档
最新文档