二次函数图象的平移和对称变换
专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
二次函数图象的变换

二次函数图象的变换这里研究二次函数图象的平移变换、对称变换和翻折变换.二次函数图象的平移变换二次函数的图象作平移变换时,其开口方向和开口大小不会发生改变,故平移前后a 的值不变;改变的是顶点坐标和对称轴.一般地,二次函数k ax y +=2(0>k )的图象是由二次函数2ax y =的图象沿y 轴正方向向上平移k 个单位长度得到的;二次函数k ax y -=2(0>k )的图象是由二次函数2ax y =的图象沿y 轴正方向向下平移k 个单位长度得到的.抛物线k ax y +=2的对称轴是y 轴,顶点坐标是()k ,0.如例图(1)所示.一般地,二次函数()2h x a y -=的图象是由二次函数2ax y =的图象沿x 轴向左(0<h )或向右(0>h )平移h 个单位长度得到的.抛物线()2h x a y -=的对称轴是直线h x =,顶点坐标是()0,h .如例图(2)所示.一般地,二次函数()k h x a y +-=2的图象是由二次函数2ax y =的图象先沿x 轴向左(0<h )或向右(0>h )平移h 个单位长度,再向上(0>k )或向下(0<k )平移k 个单位长度得到的.抛物线()k h x a y +-=2的对称轴为直线h x =,顶点坐标是()k h ,.如下页例图所示.二次函数图象的对称变换如果两个二次函数的图象关于x 轴对称,那么它们的开口方向相反,开口大小相同,对称轴相同,顶点坐标关于x 轴对称,与y 轴的交点关于x 轴对称.故两个二次函数的解析式a 的值互为相反数.①若二次函数的解析式为顶点式()k h x a y +-=2,则与其图象关于x 轴对称的二次函数的解析式为()k h x a y ---=2;②若二次函数的解析式为一般式c bx ax y ++=2,则与其图象关于x 轴对称的二次函数的解析式为c bx ax y ---=2.高中知识点 函数()x f y =与函数()x f y -=的图象关于x 轴对称.如例图(3)所示.xy y = x 2 ()2 1y = x 2 ()2 + 1图 (3)O–1–21234–1–2–3–41234如果两个二次函数的图象关于y 轴对称,那么它们的开口方向相同,开口大小相同,与y 轴的交点相同,对称轴关于y 轴对称,顶点坐标关于y 轴对称.故两个二次函数的解析式a 的值相等.①若二次函数的解析式为顶点式()k h x a y +-=2,则与其图象关于y 轴对称的二次函数的解析式为()k h x a y ++=2②若二次函数的解析式为一般式c bx ax y ++=2,则与其图象关于y 轴对称的二次函数的解析式为c bx ax y +-=2.高中知识点 函数()x f y =与函数()x f y -=的图象关于y 轴对称.如例图(4)所示.图 (4)x 2 )2 + 1二次函数图象的翻折变换在同一平面直角坐标系中,通过对二次函数c bx ax y ++=2图象的翻折变换,可以得到函数c bx ax y ++=2的图象和函数c x b ax c x b x a y ++=++=22的图象.先画出二次函数c bx ax y ++=2的图象,保留x 轴上及其上方的图象,把x 轴下方的图象翻折到x 轴上方,即可得到函数c bx ax y ++=2的图象如下页例图(5)所示.先画出二次函数c bx ax y ++=2的图象,保留y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧,即可得到函数c x b ax c x b x a y ++=++=22的图象.如下页例图(6)所示.图 (5)图 (6)高中知识点在同一平面直角坐标系中,通过对函数)(x f y =图象的翻折变换,可以得到函数)(x f y =和)(x f y =的图象.(1)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留x 轴上及其上方的图象,把x 轴下方的图象翻折到x 轴上方即可;(2)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧即可. 例题讲解例1. 把抛物线2x y -=向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为【 】(A )()312---=x y (B )()312-+-=x y(C )()312+--=x y (D )()312++-=x y分析 将函数的图象左右平移时,其解析式将发生有规律的变化——遵循自变量“左加右减”,函数值“上加下减”的原则.将二次函数的图象左右平移,其图象的开口方向和开口大小保持不变,所以平移前后a 的值不变,改变的是图象的顶点坐标和对称轴.其中顶点坐标的改变遵循“左减右加”的原则.解析 由题意可知,平移后抛物线的解析式为()312++-=x y .另外,抛物线2x y -=的顶点坐标为()0,0,平移后函数图象的顶点坐标为()3,1-,所以由顶点式可知平移后抛物线的解析式为()312++-=x y .所以选择答案【 D 】.例2. 函数()1122---=x y 的图象可由函数()3222++-=x y 的图象平移得到,平移的方法是【 】(A )先向右平移3个单位,再向下平移4个单位 (B )先向右平移3个单位,再向上平移4个单位 (C )先向左平移3个单位,再向下平移4个单位 (D )先向左平移3个单位,再向上平移4个单位分析 首先,要确定函数()3222++-=x y 的图象是平移的对象,平移后得到抛物线()1122---=x y .解析将函数()3222++-=x y 的图象先向右平移3个单位,得到函数()3122+--=x y 的图象,再向下平移4个单位,得到函数()1122---=x y 的图象.∴选择答案【 A 】.例3. 抛物线向右平移3个单位,再向下平移2个单位后得到抛物线x x y 422+-=,则平移前抛物线的解析式为________________.分析 把抛物线x x y 422+-=向左平移3个单位,在向上平移2个单位,即可得到平移前的抛物线.解析 ∵()2124222+--=+-=x x x y∴平移前抛物线的解析式为()()4222231222++-=+++--=x x y .即4822---=x x y .例4. 已知二次函数()1322+-=x y .(1)图象关于x 轴对称的抛物线的解析式为________________; (2)图象关于y 轴对称的抛物线的解析式为________________.分析 (1)抛物线()k h x a y +-=2关于x 轴对称的抛物线为()k h x a y ---=2;(2)抛物线()k h x a y +-=2关于y 轴对称的抛物线为()k h x a y ++=2.解析 (1)()1322---=x y ;(2)()1322++=x y .例5. 已知二次函数122--=x x y .(1)图象关于x 轴对称的抛物线的解析式为________________; (2)图象关于y 轴对称的抛物线的解析式为________________.分析 (1)抛物线c bx ax y ++=2关于x 轴对称的抛物线为c bx ax y ---=2;(2)抛物线c bx ax y ++=2关于y 轴对称的抛物线为c bx ax y +-=2. 解析 (1)122++-=x x y ;(2)122-+=x x y .例6. 已知二次函数5432+-=x x y .(1)图象关于x 轴对称后再关于y 轴对称的抛物线的解析式为____________; (2)图象关于y 轴对称后再关于x 轴对称的抛物线的解析式为____________. 分析 (1)(2)中的两条抛物线关于原点对称:若二次函数的解析式为顶点式()k h x a y +-=2,则与其图象关于原点对称的二次函数的解析式为()k h x a y -+-=2;若二次函数的解析式为一般式c bx ax y ++=2,则与其图象关于原点对称的二次函数的解析式为c bx ax y -+-=2. 解析 (1)5432---=x x y ; (2)5432---=x x y .例7. 画出函数12-=x y 的图象.分析 把二次函数12-=x y 的图象沿x 轴进行翻折变换,即可得到函数12-=x y 的图象,具体做法是:先画出二次函数12-=x y 的图象,保留x 轴及其上方的图象,然后把x 轴下方的图象翻折到x 轴上方即可得到函数12-=x y 的图象. 解析 函数12-=x y 的图象如下图所示.。
二次函数的变换规律

二次函数的变换规律二次函数是高中数学中的重要内容,它是一种常见的数学函数形式。
在学习二次函数时,我们需要了解二次函数的变换规律,即通过对函数中的参数进行变化,能够改变函数的形状和位置。
在本文中,我将详细介绍二次函数的变换规律,以加深对该主题的理解。
1. 平移变换平移变换是指通过改变二次函数的平移量,使函数图像在坐标平面上上下左右移动。
二次函数的标准形式为f(x) = ax² + bx + c,在平移变换中,平移量为h和k,表示在横轴和纵轴上的平移距离。
1.1 沿x轴平移二次函数沿x轴正方向平移h个单位,相当于将函数图像向左移动h个单位;沿x轴负方向平移h个单位,相当于将函数图像向右移动h个单位。
平移后的函数可表示为f(x) = a(x-h)² + bx + c,其中h代表横轴的平移量。
1.2 沿y轴平移二次函数沿y轴正方向平移k个单位,相当于将函数图像向上移动k个单位;沿y轴负方向平移k个单位,相当于将函数图像向下移动k个单位。
平移后的函数可表示为f(x) = ax² + bx + (c-k),其中k代表纵轴的平移量。
2. 缩放变换缩放变换是指通过改变二次函数的参数a和导致函数图像的纵向和横向的缩放。
二次函数的标准形式为f(x) = ax² + bx + c,在缩放变换中,缩放因子为p和q,表示纵向和横向的缩放比例。
2.1 纵向缩放当缩放因子p大于1时,二次函数的图像会纵向收缩;当p在0和1之间时,二次函数的图像会纵向拉伸。
缩放后的函数可表示为f(x) = pax² + bx + c,其中p表示纵向缩放因子。
2.2 横向缩放当缩放因子q大于1时,二次函数的图像会横向拉伸;当q在0和1之间时,二次函数的图像会横向收缩。
缩放后的函数可表示为f(x) =a(qx)² + bx + c,其中q表示横向缩放因子。
3. 翻转变换翻转变换改变了二次函数图像的方向。
二次函数图像的变换

二次函数图像的变换第一环节 【知识储备】一、二次函数图象的平移变换(1)具体步骤:先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”.二、二次函数图象的对称变换二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称 2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.第二环节 【新知探究】【问题一】 平移变换求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位。
二次函数的像变换

二次函数的像变换二次函数是数学中的一种特殊函数形式,其表达式为f(x) = ax^2 +bx + c,其中a、b、c为常数,且a ≠ 0。
二次函数的图像呈现出一种特殊的形状——拱形或抛物线,且拥有一条对称轴。
在学习二次函数时,我们会涉及到像变换,即通过对函数图像进行平移、缩放或翻转等操作,从而改变函数图像的位置、大小和方向。
一、平移变换平移变换指的是将函数图像沿x轴或y轴方向进行移动,可以使图像向左、向右、向上或向下平移。
1. 向左平移将函数图像沿x轴的正方向平移k个单位,可记作f(x - k),其中k为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向左平移k个单位后的新函数为y = a(x + k)^2 + b(x + k) + c,图像相对于原函数的平移方向相反,距离为k。
2. 向右平移将函数图像沿x轴的负方向平移k个单位,可记作f(x + k),其中k为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向右平移k个单位后的新函数为y = a(x - k)^2 + b(x - k) + c,图像相对于原函数的平移方向相反,距离为k。
3. 向上平移将函数图像沿y轴的正方向平移k个单位,可记作f(x) + k,其中k 为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向上平移k个单位后的新函数为y = a(x)^2 + b(x) + (c + k),图像相对于原函数的平移方向相同,距离为k。
4. 向下平移将函数图像沿y轴的负方向平移k个单位,可记作f(x) - k,其中k 为平移的距离。
例如,对于二次函数y = ax^2 + bx + c,向下平移k个单位后的新函数为y = a(x)^2 + b(x) + (c - k),图像相对于原函数的平移方向相同,距离为k。
二、缩放变换缩放变换指的是改变函数图像的大小,可以使图像变窄或变宽,变高或变矮。
二次函数图像的转化与性质

二次函数图像的转化与性质二次函数是初中数学中的重要内容,它的图像具有独特的特点和性质。
在学习二次函数时,我们不仅需要了解它的基本形式和图像特点,还需要学习如何进行图像的转化。
本文将介绍二次函数图像的转化方法以及转化后的性质,帮助中学生更好地理解和应用二次函数。
一、平移变换平移变换是指将二次函数的图像沿着横轴或纵轴方向移动一定的单位长度。
平移变换可以改变二次函数图像的位置,但不改变其形状。
常见的平移变换有水平平移和垂直平移两种。
1. 水平平移水平平移是指将二次函数的图像沿着横轴方向移动。
具体操作是,在二次函数的自变量x中加上一个常数h,即可实现水平平移。
例如,对于二次函数y=x^2,若要将其向右平移2个单位,则可得到新的函数y=(x-2)^2。
这样,二次函数的图像将整体向右平移2个单位。
2. 垂直平移垂直平移是指将二次函数的图像沿着纵轴方向移动。
具体操作是,在二次函数的因变量y中加上一个常数k,即可实现垂直平移。
例如,对于二次函数y=x^2,若要将其向上平移3个单位,则可得到新的函数y=x^2+3。
这样,二次函数的图像将整体向上平移3个单位。
二、翻折变换翻折变换是指将二次函数的图像沿着横轴或纵轴方向翻折。
翻折变换可以改变二次函数图像的形状,但不改变其位置。
常见的翻折变换有关于x轴翻折和关于y 轴翻折两种。
1. 关于x轴翻折关于x轴翻折是指将二次函数的图像沿着x轴翻折。
具体操作是,将二次函数的因变量y取相反数,即可实现关于x轴翻折。
例如,对于二次函数y=x^2,若要将其关于x轴翻折,则可得到新的函数y=-x^2。
这样,二次函数的图像将关于x 轴对称。
2. 关于y轴翻折关于y轴翻折是指将二次函数的图像沿着y轴翻折。
具体操作是,将二次函数的自变量x取相反数,即可实现关于y轴翻折。
例如,对于二次函数y=x^2,若要将其关于y轴翻折,则可得到新的函数y=(-x)^2。
这样,二次函数的图像将关于y 轴对称。
三、性质分析通过平移变换和翻折变换,我们可以改变二次函数图像的位置和形状,从而得到新的二次函数。
二次函数的变换与对称轴

二次函数的变换与对称轴二次函数是高中数学中的一个重要内容,它在各个学科领域都有广泛的应用。
在学习二次函数时,我们会遇到一个重要概念——二次函数的变换与对称轴。
本文将围绕这一主题展开讨论。
一、二次函数的一般形式二次函数的一般形式为:$y = ax^2 + bx + c$,其中a、b、c为常数,a不等于0。
其中,a决定了二次函数的开口方向:当a大于0时,开口向上;当a小于0时,开口向下。
二、平移变换平移变换是指通过改变二次函数的横坐标和纵坐标的值,使得曲线发生平移。
平移变换有两种类型:水平平移和垂直平移。
1. 水平平移水平平移是指改变二次函数的横坐标的值,使得曲线在平面内左右移动。
若原二次函数为$y = ax^2 + bx + c$,则水平平移后的函数为$y= a(x-h)^2 + b(x-h) + c$,其中h为平移距离。
当h大于0时,曲线向右平移;当h小于0时,曲线向左平移。
2. 垂直平移垂直平移是指改变二次函数的纵坐标的值,使得曲线在平面内上下移动。
若原二次函数为$y = ax^2 + bx + c$,则垂直平移后的函数为$y= a(x-h)^2 + b(x-h) + k$,其中k为平移距离。
当k大于0时,曲线向上平移;当k小于0时,曲线向下平移。
三、对称轴对称轴是指二次函数的图像关于某一直线对称。
对称轴是二次函数的一个重要特征,可以通过一些变换得到。
1. 水平对称轴水平对称轴是指二次函数的图像关于y轴对称。
对于一般形式的二次函数$y = ax^2 + bx + c$,它的对称轴方程为$x = -\frac{b}{2a}$。
2. 垂直对称轴垂直对称轴是指二次函数的图像关于某一条直线对称,该直线垂直于y轴。
对于一般形式的二次函数$y = ax^2 + bx + c$,它的对称轴方程为$x = \frac{-b}{2a}$。
四、应用举例二次函数的变换与对称轴在实际问题中有广泛的应用。
以下举例说明:例1:某个物体的高度与时间的关系可以用二次函数表示。
二次函数图像变换

二次函数图像变换
二次函数图像变换有3种:平移、对称、旋转。
一、专用解法
1、平移:左加右减自变量,上加下减常数项
2、对称、旋转:取原抛物线上一点(x,y),然后根据对称或旋转规律找到对应点,
将对应点坐标代入原抛物线解析式,然后化解得到的解析式即所求。
例1:原抛物线上y=ax^2+bx+c有一点(x,y),其关于x轴对称的点坐标为(x,-y),将(x,-y)代入到原解析式得到-y=ax^2+bx+c,即y=-ax^2-bx-c
例2:原抛物线上y=x^2+2x绕点(1,0)旋转180°,求旋转后的解析式解:设点(x,y)是原抛物线y=x^2+2x上一点,(x,y)绕点(1,0)旋转180°,通过中点坐标公式得出对应点为(2-x,-y),将(2-x,-y)代入y=x^2+2x得到
-y=(2-x)^2+2(2-x),即y=-x^2+6x-8
注意:以上方法也适用于一次函数
二、通用解法
①将解析式化顶点式y=a(x-h)^2+k,得到顶点(h,k)
②将顶点(h,k)按照要求进行平移、对称、旋转,得到新的顶点(h’,k’)
③平移a不变;X轴对称a变号,Y轴对称a不变;旋转a变号,特别的原点对称就是绕(0,0)旋转180
注意:这里的旋转肯定是180°,因为如果不是180°得到的就不是二次函数了
④知道了a和顶点,设顶点式就可以得到新抛物线的解析式
注意:无论平移、对称、旋转都可以用,如果是一次函数可以将顶点(h,k)替换为直线与y轴交点,a替换为k,整体思路是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。
所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。
利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。
下面由具体的例子进行说明。
一、平移。
例1、把抛物线y=x2-4x+6向左平移3个单位,再向下平移4个单位后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3个单位,再向下平移4个单位后得到三个新点(-3,2),(-2,-1),(-1,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c中,求出各项系数即可。
例2、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。
法(二)先利用配方法把二次函数化成2()=-+的形式,确定其顶点(2,-3),然y a x h k后把顶点(2,-3)向上平移4个单位,再向右平移3个单位后得到新抛物线的顶点为(5,1),因为是抛物线的平移,因此平移前后a的值应该相等,这样我们就得到新的抛物线的解析式中a=2,且顶点为(5,1),就可以求出其解析式了。
【平移规律:在原有函数的基础上“左加右减、上加下减”】.法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为“左右平移即把解析式中自变量x改为x加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。
”例3、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。
平移后的图象的解析式为:y=2(x-3)2-8(x-3)+5+4.然后化简即可。
针对练习1、求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位。
2、抛物线2y x=怎样平移得到的?22(1)3y x=-+是由抛物线23、若抛物线2y x=-向左平移2个单位,再向下平移4个单位,求所得到的解析式。
二、二次函数图象的轴对称变换二次函数图象的对称一般有关于x对称和关于y对称等情况,可以用一般式或顶点式表达1.关于x轴对称例4、把抛物线y=x2-4x+6关于x轴对称后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求关于x轴对称后得到三个新点(0,-6),(1,-3),(2,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c 中,求出各项系数即可。
例5、已知抛物线y=2x2-8x+5,求其关于x轴对称后的解析式。
法(二)先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(2,-3),然后把顶点(2,-3)关于x 轴对称后得到新抛物线的顶点为(2,3),因为是抛物线关于x 轴对称,因此关于x 轴对称后a 的值应该互为相反数,这样我们就得到新的抛物线的解析式中a=-2,且顶点为(2,3),就可以求出其解析式了。
法(三)例6、已知抛物线y=2x 2-8x+5,求其关于x 轴对称后的解析式。
根据关于x 轴对称的点的特征:横坐标相等,纵坐标互为相反数。
不论是哪种形式的解析式,我们只要把原解析式中的y 改写为-y,然后再整理即可。
即其关于x 轴对称后的解析式为:-y=2x 2-8x+5,整理为y=-2x 2+8x-5【2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;】练习求与抛物线关于x 轴对称的抛物线的解析式.2. 关于y 轴对称例7、把抛物线y=x 2-4x+6关于y 轴对称后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求关于y 轴对称后得到三个新点(0,6),(-1, 3),(-2, 2),把这三个新点代入到新的函数关系式的一般形式y=ax 2+bx+c 中,求出各项系数即可。
例8、已知抛物线y=2x 2-8x+5,求其关于y 轴对称后的解析式。
法(二)先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(2,-3),然后把顶点(2,-3)关于y 轴对称后得到新抛物线的顶点为(-2,-3),因为是抛物线关于y 轴对称,因此关于y 轴对称后a 的值应该相等,这样我们就得到新的抛物线的解析式中a=2,且顶点为(-2,-3),就可以求出其解析式了。
法(三)2245y x x =-+例9、已知抛物线y=2x 2-8x+5,求其关于y 轴对称后的解析式。
根据关于y 轴对称的点的特征:横坐标互为相反数,纵坐标相等。
不论是哪种形式的解析式,我们只要把原解析式中的x 改写为-x,然后再整理即可。
即其关于y 轴对称后的解析式为:y=2(-x)2-8(-x)+5,整理为y=2x 2+8x+5[2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+]请你推测对于顶点式情况如何?练习1、求与抛物线 关于y 轴对称的抛物线的解析式;2、求把二次函数y =2x 2-4x +1的图象关于下列直线x =-1对称后所得到图象对应函数解析式。
三、关于原点对称例10、把抛物线y=x 2-4x+6关于原点对称后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求关于原点对称后得到三个新点(0,-6),(-1,-3),(-2,-2),把这三个新点代入到新的函数关系式的一般形式y=ax 2+bx+c 中,求出各项系数即可。
例11、已知抛物线y=2x 2-8x+5,求其关于原点对称后的解析式。
法(二)先利用配方法把二次函数化成2()y a x h k =-+的形式,确定其顶点(2,-3),然后把顶点(2,-3)关于原点对称后得到新抛物线的顶点为(-2,3),因为是抛物线关于原点对称,因此关于原点对称后a 的值应该互为相反数,这样我们就得到新的抛物线的解析式中a=-2,且顶点为(-2,3),就可以求出其解析式了。
法(三)例12、已知抛物线y=2x 2-8x+5,求其关于原点对称后的解析式。
根据关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数。
不论是哪种形式的解析式,我们只要把原解析式中的x 改写为-x ,把原解析式中的y 改()2211y x =-+写为-y,然后再整理即可。
即其关于x 轴对称后的解析式为:-y=2(-x)2-8(-x)+5,整理为y=-2x 2-8x-5[2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;]练习求抛物线223y x x =+-绕着原点旋转1800的到抛物线解析式。
又关于顶点对称方法小结:显然无论作何种(平移、对称、旋转)变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线经过变换后抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其变换后的抛物线的顶点坐标及开口方向,然后再写出其变换后的抛物线的表达式.二次函数图象的变换练习1、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤是:( )A. 右移两个单位,下移一个单位B. 右移两个单位,上移一个单位C. 左移两个单位,下移一个单位D. 左移两个单位,上移一个单位 2、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( )A. 右移三个单位,下移四个单位B. 右移三个单位,上移四个单位C. 左移三个单位,下移四个单位D. 左移四个单位,上移四个单位3、二次函数2241y xx =-++的图象如何移动就得到22y x =-的图象( ) A. 向左移动1个单位,向上移动3个单位. B. 向右移动1个单位,向上移动3个单位. C. 向左移动1个单位,向下移动3个单位. D. 向右移动1个单位,向下移动3个单位.4、将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )A . 1B .2C .3D .45、把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x =-+,则a b c ++=________________.6把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .()213y x =---B .()213y x =-+-C .()213y x =--+D .()213y x =-++7、将抛物线22y x =向下平移1个单位,得到的抛物线是( )A 、()221y x =+B .()221y x =-C .221y x =+D .221y x =-8、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( )A. 232y x =-B. 23y x =C. 23(2)y x =+D. 232y x =+9、一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.10、如图,ABCD 中,4AB =,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c =++经过x 轴上的点A ,B .⑴ 求点A ,B ,C 的坐标.⑵ 若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.11、已知二次函数221y x x =--,求:⑴关于x 轴对称的二次函数解析式;⑵关于y 轴对称的二次函数解析式;⑶关于原点对称的二次函数解析式. 13、函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到.14、在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++【知识反馈】1.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得的抛物线是 。