三角函数图象的平移和伸缩

合集下载

三角函数的基本变换

三角函数的基本变换

三角函数的基本变换三角函数是数学中的重要内容,在数学、物理、工程等领域都有广泛的应用。

而三角函数的基本变换是理解和应用三角函数的基础。

本文将介绍三角函数的基本变换,包括正弦函数、余弦函数和正切函数的平移、伸缩和反射三种变换。

一、正弦函数的基本变换正弦函数的标准公式为:y = A*sin(Bx + C) + D,其中A、B、C、D 为常数,且A不等于0。

对于正弦函数的基本变换,可以通过调整A、B、C、D的值来实现平移、伸缩和反射。

1. 平移平移是指将函数图像沿x轴或y轴方向移动。

当C为正数时,正弦曲线向左平移;当C为负数时,正弦曲线向右平移。

平移的距离由C的绝对值决定,绝对值越大,平移的距离越远。

2. 伸缩伸缩是指将函数图像在x轴或y轴方向进行拉伸或压缩。

当A的绝对值变大时,正弦曲线在y轴方向上的振幅增大,即拉伸;当A的绝对值变小时,正弦曲线的振幅减小,即压缩。

当B的绝对值变大时,正弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,正弦曲线的周期变长,即压缩。

3. 反射反射是指将函数图像关于x轴或y轴进行翻转。

当A为负数时,正弦曲线关于x轴进行翻转;当B为负数时,正弦曲线关于y轴进行翻转。

二、余弦函数的基本变换余弦函数的标准公式为:y = A*cos(Bx + C) + D,其中A、B、C、D为常数,且A不等于0。

余弦函数的基本变换与正弦函数类似,分为平移、伸缩和反射三种变换。

1. 平移余弦函数的平移与正弦函数相同,通过调整C的值来实现。

当C为正数时,余弦曲线向左平移;当C为负数时,余弦曲线向右平移。

2. 伸缩余弦函数的伸缩与正弦函数类似,通过调整A和B的值来实现。

当A的绝对值变大时,余弦曲线在y轴方向上的振幅增大,即拉伸;当A 的绝对值变小时,余弦曲线的振幅减小,即压缩。

当B的绝对值变大时,余弦曲线在x轴方向上的周期变短,即拉伸;当B的绝对值变小时,余弦曲线的周期变长,即压缩。

3. 反射余弦函数的反射与正弦函数类似,通过调整A的值来实现。

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。

本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。

一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。

在三角函数中,平移变换会改变函数的水平位置。

具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。

1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。

与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。

与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。

在三角函数中,伸缩变换会改变函数图像的形状和振幅。

具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。

1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。

纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。

横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。

2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。

三角函数的伸缩平移变换

三角函数的伸缩平移变换

三角函数的伸缩平移变换三角函数指的是根据角的大小和正弦、余弦和正切函数求出关于角的关系的数学函数,是数学计算中经常使用的一组精确的指令。

广义上来说,三角函数实际上是把数学中的反复指令简化成一个公式,以方便日常的计算。

通过伸缩平移变换,我们可以改变三角函数的形状,以实现特殊的计算需求。

一般来说,要改变三角函数的形状,首先要应用向量和矩阵的知识。

通过应用矩阵和向量可以实现平移、旋转等改变三角函数形状的变换,以实现特殊的计算需求。

伸缩变换是改变物理位置或大小的特殊数学变换,可以实现改变三角函数的形状。

通过应用一个坐标变换矩阵对点的坐标进行缩放或伸缩变换可以实现将两个图形缩放成完全一样的形状。

这种方法可以实现伸缩变换,以实现特殊计算需求。

平移变换是改变物体位置的特殊数学变换,可以实现改变三角函数的形状。

通过应用向量和矩阵的知识,同时直接移动每个点的位置可以实现将两个图形平移到完全一样的位置。

这种方法可以实现向左、向右或者水平垂直平移,以实现特殊计算需求。

综上所述,三角函数的伸缩平移变换通过应用矩阵和向量可以随意改变三角函数的形状,以实现特殊的计算需求。

其中伸缩变换可以实现将两个图像缩放成完全一致的形状,而平移变换可以使两个图形完全重合。

一、左右平移四个字“左加右减”,这是大家熟知的,但要注意变化的位置是“x”而不是“φ”.把y=Asin(ωx+φ)+b的图象向左平移m(m>0)个单位,得到的是函数y=Asin[ω(x+m)+φ]+b的图象;把y=Asin(ωx+φ)+b的图象向右平移m (m>0)个单位,得到的是函数y=Asin[ω(x-m)+φ]+b的图象.所以函数y=sinx的图象向左平移φ个单位得到的是函数y=sin(x+φ)的图象,函数y=sin2x的图象向左平移φ个单位,得到的是函数y=sin[2(x+φ)],即y=sin(2x+φ)的图象.二、上下平移四个字“上加下减”,注意变化的位置是“b”.把y=Asin(ωx+φ)+b的图象向上平移n(n>0)个单位,得到的是函数y=Asin(ωx+φ)+(b+n)的图象;把y=Asin(ωx+φ)+b的图象向下平移n(n>0)个单位,得到的是函数y=Asin (ωx+φ)+(b-n)的图象.三、横坐标伸缩两个字“反比”,注意变化的位置是“ω”.把y=Asin(ωx+φ)+b图象的横坐标变为原来的p倍,得到的是函数y=Asin(ωx+φ)+b的图象.四、纵坐标伸缩两个字“正比”,注意变化的位置是“A”.把y=Asin(ωx+φ)+b图象的纵坐标变为原来的q倍,得到的是函数y=qAsin(ωx+φ)+b的图象.。

(完整版)三角函数图像平移变换

(完整版)三角函数图像平移变换

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。

1。

为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。

三角函数的变换与性质

三角函数的变换与性质

三角函数的变换与性质三角函数是数学中常见的一类函数,它们在数学和物理等领域有着重要的应用。

本文将介绍三角函数的变换与性质,以帮助读者更好地理解和应用这些函数。

一、正弦函数的变换与性质正弦函数可以表示为f(x) = sin(x),其图像是一个周期性的波形。

正弦函数的变换包括平移、伸缩和翻转等操作。

1. 平移:当正弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。

例如,f(x) = sin(x + π/2)的图像将向左平移π/2个单位。

2. 伸缩:当正弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。

若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。

3. 翻转:当正弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。

即f(x) = sin(-x)的图像将关于y轴对称。

正弦函数的性质有:1. 周期性:正弦函数的图像以x轴为对称轴,其周期为2π。

即sin(x + 2π) = sin(x)。

2. 奇偶性:正弦函数是一个奇函数,即f(-x) = - f(x)。

这意味着正弦函数的图像关于原点对称。

二、余弦函数的变换与性质余弦函数可以表示为f(x) = cos(x),它与正弦函数是相互关联的。

余弦函数的变换与正弦函数类似,也包括平移、伸缩和翻转等操作。

1. 平移:当余弦函数的自变量加上一个常数c时,函数图像将向左平移c个单位。

例如,f(x) = cos(x + π/2)的图像将向左平移π/2个单位。

2. 伸缩:当余弦函数的自变量乘以一个常数a时,函数图像将在x轴方向上缩放。

若a>1,则图像纵向压缩;若0<a<1,则图像纵向拉伸。

3. 翻转:当余弦函数的自变量乘以-1时,函数图像将在y轴方向上翻转。

即f(x) = cos(-x)的图像将关于y轴对称。

余弦函数的性质有:1. 周期性:余弦函数的图像以x轴为对称轴,其周期为2π。

即cos(x + 2π) = cos(x)。

三角函数图象的平移伸缩变换问题

三角函数图象的平移伸缩变换问题
三角函数图象的平移伸缩变换问题
【典例】(2015·青岛模拟)把函数y=sin(3x- )的图象向左平移 4 3
个单位长度,再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标
不变),则所得函数的解析式为(
A.y=sin(6x+ )
12 C.y=sin( 3 x+ ) 12 2
)
4
B.y=sin(6x+ 3 )
D.y=sin( 3 x 3 )
2 4
【解题过程】
【错解分析】分析上面解题过程,你知道错在哪里吗? 提示:解题过程中没能正确理解左右平移的实质,平移后误得函数解 析式为y=sin(3x+ );另外对横向的伸缩变换理解不到位,误得函
12
数解析式为y=sin(6x+
). 12
【规避策略】正确理解函数图象的平移变换和伸缩变换 (1)图象的左右平移是针对单个x而言的. (2)图象的伸缩变换,在变换中纵坐标不变,横坐标伸长,周期变大, x的系数缩小,反之,横坐标缩短,周期变小,x的系数扩大,即横坐 标变为原来的ω 倍,则x的系数相应变为原来的
1 .
【自我矫正】选D.把函数y=sin(3x- )的图象向左平移 个单位长
度,可得y=sin[3(x+ )- ]的图象, 4 即函数解析式为y=sin(3x+ 3 ), 4 3 4 3
再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标不变),
ቤተ መጻሕፍቲ ባይዱ
可得y=sin( 3 x 3 )的图象.
即所得函数的解析式为y=sin( 3 x 3 ).
2 4 2 4

三角函数的平移伸缩变换

三角函数的平移伸缩变换

三角函数的平移伸缩变换
三角函数可以通过平移、伸缩来进行变换。

平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。

伸缩指的是将函数图像沿着横轴或纵轴方向拉伸或缩小。

以正弦函数为例,设其图像为y=sin(x),则有以下几种变换:
1. 平移
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。

这种变换可以用一个参数来表示,记为h和k。

其中h表示横向平移的距离,k表示纵向平移的距离。

平移后的函数为y=sin(x-h)+k。

2. 垂直伸缩
垂直伸缩指的是将函数图像沿着纵轴方向拉伸或缩小。

这种变换可以用一个参数来表示,记为a。

垂直伸缩后的函数为y=a*sin(x)。

当a>1时,函数图像沿着纵轴方向被拉伸,函数的振幅增大;当0<a<1时,函
数图像沿着纵轴方向被缩小,函数的振幅减小。

3. 水平伸缩
水平伸缩指的是将函数图像沿着横轴方向拉伸或缩小。

这种变换可以用一个参数来表示,记为b。

水平伸缩后的函数为y=sin(b*x)。

当b>1时,函数图像沿着横轴方向被缩短,函数的周期变小;当0<b<1时,函数图像沿着横轴方向被拉长,函数的周期变大。

4. 综合变换
完整的三角函数平移伸缩变换包含了垂直伸缩、水平伸缩、横向平移、纵向平移四种变换。

对于正弦函数而言,其综合变换的表达式为:
y=a*sin(b*(x-h))+k
其中,a表示垂直伸缩的参数,b表示水平伸缩的参数,h和k表示横向和纵向平移的参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图象的平移和伸缩
函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.
既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)
平移个单位长度
得sin()y x ϕ=+的图象()
ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象.
先伸缩后平移
sin y x =的图象(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
x
y sin =)
3sin(π
+=x y )
3
2sin(π
+=x y )
3
2sin(3π
+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为原来的1/2 横坐标不变 纵坐标伸长为原来的3倍
得sin y A x =的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象
(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移
个单位
得sin ()y A x x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象.
例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛
⎫=+ ⎪⎝
⎭的图象;②将所得
图象的横坐标缩小到原来的12,得πsin 24y x ⎛
⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得
π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐
标缩小到原来的
12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛
⎫=+ ⎪⎝
⎭的
图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
)
3
2sin(3π
+=x y x
y sin =x
y 2sin =)
3
2sin(π
+=x y 纵坐标不变 横坐标缩短为原来的1/2 纵坐标不变 横坐标向左平移π/6 个单位
横坐标不变 纵坐标伸长为原来的3倍
说明:无论哪种变换都是针对字母x而言的.由sin2
y x
=的图象向左平移π
8
个单位长度得到的函数图象
的解析式是
π
sin2
8
y x
⎛⎫
=+

⎝⎭
而不是
π
sin2
8
y x
⎛⎫
=+

⎝⎭
,把
π
sin
4
y x
⎛⎫
=+

⎝⎭
的图象的横坐标缩小到原来的
1
2
,得到
的函数图象的解析式是
π
sin2
4
y x
⎛⎫
=+

⎝⎭
而不是
π
sin2
4
y x
⎛⎫
=+

⎝⎭

对于复杂的变换,可引进参数求解.
例2将sin2
y x
=的图象怎样变换得到函数
π
cos2
4
y x
⎛⎫
=-

⎝⎭
的图象.
分析:应先通过诱导公式化为同名三角函数.
解:
ππsin2cos2cos2
22
y x x x
⎛⎫⎛⎫
==-=-
⎪ ⎪
⎝⎭⎝⎭


π
cos2
2
y x
⎛⎫
=-

⎝⎭
中以x a
-代x,有
ππ
cos2()cos22
22
y x a x a
⎡⎤⎛⎫
=--=--

⎢⎥
⎣⎦⎝⎭

根据题意,有
ππ
222
24
x a x
--=-,得
π
8
a=-.
所以将sin2
y x
=的图象向左平移π
8
个单位长度可得到函数
π
cos2
4
y x
⎛⎫
=-

⎝⎭
的图象.。

相关文档
最新文档