平面类问题有限元分析
Ansys机械工程应用精华60例第8例 平面问题的求解实例—厚壁圆筒问题

8.3.4
创建实体模型
拾 取 菜 单 Main Menu → Preprocessor → Modeling → Create → Areas → Circle → By Dimensions。弹出如图 8-8 所示的对话框,在“RAD1” 、 “RAD2” 、 “THETA2”文本框中分 别输入 0.1、0.05 和 90,单击“OK”按钮。 77
第8例
平面问题的求解实例——厚壁圆筒问题
“Item, Comp”两个列表中分别选“Stress” 、 “Y-direction SY” ,单击“OK”按钮。 注意:该路径上各节点 X、Y 方向上的应力即径向应力r 和切向应力t。
图 8-15
映射数据对话框
8.3.12
作路径图
拾取菜单 Main Menu→General Postproc→Path Operations→Plot Path Item→On Graph。弹 出如图 8-16 所示的对话框,在列表中选“SR” 、 “ST” ,单击“OK”按钮。
8.3.6
施加约束
拾取菜单 Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Lines。弹出拾取窗口,拾取面的水平直线边,单击“OK”按钮,弹出如图 8-11 所示的对话 框,在列表中选择“ UY ” ,单击“ Apply”按钮,再次弹出拾取窗口,拾取面的垂直直线 边,单击“OK”按钮,在图 8-11 所示对话框的列表中选择“UX” ,单击“OK”按钮。
76
第8例
平面问题的求解实例——厚壁圆筒问题
图 8-3 单元类型对话框
图 8-4
单元类型库对话框
图 8-5
弹性力学平面问题的有限元法实例

分析与决策
(1)何种类型?
平面问题中的结构问题,且为静力问题;
平面问题中具有对称性,为减少[K],简化模型取
1/4;
简化后加约束,(1)在ox面上,位移u是对称的,
位移v是反对称的;在oy面上,位移u是反对称的, 位移v是对称的; (2)在ox面上,载荷对称,在oy 面上,载荷对称;
(1)何种类型?
4.5剖分面(续)
以垂线剖分面。依次单击preprocessor-modelingoperate-booleans-divide-area by line,弹出对话框, 选择对话框中的box单选,用窗口选择两个面元素, 后单击apply,在窗口中选L6-ok,完成面元素剖分。 单击plotctrls菜单中的numbering命令,关闭line numbers –ok; 单击plot菜单中的area命令,用面元素显示模型, 剖分的模型如图所示,由2个面变为4个面,面元素 的编号同时发生变化。
Preprocessor-material
props-material models-弹出define material model behavior 对话框-列表框material models available中, 依次单击structural-linear-elastic-isotropic, 添加弹性模量2.1e+11,泊松比0.3-ok;
操作过程
一、建立新文件
二、类型的选择 Structural-ok;
二、前处理
1、添加单元类型 选择:Quad 4node 42(单元库编号); 具有厚度:选择 option-plane str w/thk(平面应力有厚度);
2、设置实常数(Real constants)
有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
弹性力学与有限元分析-第四章 平面问题有限元分析及程序设计

第四章 平面问题有限元分析及程序设计
§4.1 平面问题单元离散 §4.2 平面问题单元位移模式 §4.3 平面问题单元分析 §4.4 平面问题整体分析 §4.5 平面问题有限元程序设计
有限元网格划分的基本原则
• 网格数目 • 网格疏密 • 单元阶次 • 网格质量 • 网格分界面和分界点 • 位移协调性 • 网格布局 • 结点和单元编号 • 网格自动剖分
f
y
面力
f
f y
xy
xy
基本量和方程的矩阵表示
位移
d
u
v
物理方程 简写为
x y
xy
E
1 2
1
0
1
0
0 0
x y
1
xy
2
D
§4.2 单元位移模式
几何方程:
ux
v y
xvuyT
只要知道了单元的位移函数,就可由几何方程求出应变,再由物理 方程就可求出应力。
(1)位移模式必须能够反映单元的刚体位移; (2)位移模式必须能够反映单元的常应变;
必要条件
(3)位移模式尽可能反映位移的连续性;
u12x3y12x5 23y5 23y v4 5x6y46y5 23x5 23x
u0 1
v0 4
5 3
2
刚体平动
刚体转动
充分条件
u
v
u0 v0
y x
作业: P141 6-1
u12x3y N iuiNjujN m um
其中, N i 、N j 、N m 是系数,是 x、 y 的线性函数;
可以求得:
N i a i b ix ciy2A (i, j, m )
有限元分析第四章

19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0
证
N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )
4.5.14.5平面问题有限元分析步骤及计算实例

K
88
K 12 11 K21 1
K 12 31
K41 2
K22 1 K32 1
K 12 33
K43 2
K
44
2
由于[Krs]=[Ksr]T,又单元1和单元2的节点号按1、2、
3对应3、4、1,则可得:
K11 1
K33 2
3E 16
3 0
0 1
K21 1 K43 2
K12 1
3E 8
3 1 0
0 0 1
3 1 1
1 3 1
0 0 1
013
q/E 0
q/E 0
3E 8
8q
0 /(3E) 0
0 q1
0
0
单元应力可看作是单元形心处的应力值。
7)引入约束条件,修改刚度方程并求解
根据约束条件:u1 =v1=0;v2=0;u4=0和等效节点力列
阵:F 0 0 0 0 0 q / 2 0 q / 2T
五. 边界条件的处理及整体刚度矩阵的修正 整体刚度矩阵的奇异性可以通过引入边界约束条件来排除弹性体的
刚体位移,以达到求解的目的。
(两种)方法 “化1置0法”
“乘大数法”
⑴修改后的总刚为非奇异,对应的总体平衡方程可求解; ⑵如果已知位移不等于0,采用第二种方法,固定约束用 第一种方法。 ※求解可以采用解方程组的任何一种方法。(高斯消去法 常用),可借用一些计算机软件:如Matlab,Excel等。
所以 q / E0 0 1/ 3 0 1/ 3 1 0 1T
习题和思考题
• 4.1三角形常应变单元的特点? • 4.2平面问题有限元法的基本思想和解题步骤。 • 4.3简述形函数的概念和性质。 • 4.4平面问题整体刚度矩阵的推导过程。 • 4.5矩形单元的特点? • 4.6有限元方法解的收敛准则。
平面问题的有限元分析

4.1 三角形常应变单元
(1)单元特性分析 1)用面积坐标建立单元位移场——面积坐标的定义
Ai Apjm Aj Apmi Ak Apij
恒等关系:
A Ai Aj Am Aijm
P点位置可由3个比值来确定:
p(Li , Lj , Lm )
其中面积坐标:
Li Ai / A Lj Aj / A Lm Am / A
4):单元推导。 对单元构造一个适合的近似解,即推导有限单元的列式,其中
包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元 各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或 柔度阵)。
对工程应用而言,重要的是应注意每一种单元的解题性能与约
束。 5)总装集成。 将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似
0
Nm
Ni
I22
单元内任意一点的位移可由节点位移表示为:
N j I22
d
u
v
Nδe
e ui vi u j v j um
Nm I22
T
vm
4.1 三角形常应变单元
(1)单元特性分析
2)单元应变和单元应力
d
u
v
Nδe
代入
ε
x y
u / x v / y
xy
u / y v / x
其中
K rs
BrT DBshA
Eh
4(1 2 ) A
brbs
1
2
crcs
crbs
1
2
brcs
brcs
1
2
crbs
crcs
1
2
brbs
4.1 三角形常应变单元
有限元分析 第二章 平面问题的有限元方法

A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【问题描述】如图I所示的长方形板,板厚b=0.04m,孔半径r=0.2m。
材料弹性模量E=210GPa,泊松比μ=0.3,约束条件为长方形底边AB约束全部自由度,CD边施加垂直向下的均布载荷g=100000N/m。
图I 平板结构示意图
【要求】在ANSYS Workbench软件平台上,建立该零件的几何模型,进行网格划分、施加边界条件以及静力有限元分析,最终得到长方形版位移云图以及应力云图。
1.分析系统选择
(1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。
在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,m,s,℃,A,N,V)命令。
(2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“静力结构分析”【Static Structural】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。
相关界面如图1所示。
图1 Workbench中设置静力分析系统
2.输入材料属性
操作步骤如图2所示。
(1)在右侧窗口的分析系统A中双击工程材料【Engineering Data】单元格,进入工程数据窗口。
(2)在已有工程材料下方的单元格“点此添加新材料”【Click here to add a new material】中输入新材料名称rectangle。
(3)在左侧工具箱下方双击“各项同性线弹性”选项:【Linear Elastic】>【Isotropic Elasticity】。
(4)在弹出的材料属性窗口中输入弹性模量以及泊松比的数值:【Young’s Modulus】=2e+11Pa,【Poisson’s Ratio】=0.3。
(5)点击“项目”【Project】选项卡返回项目流程界面。
图2 输入材料数据
3.创建几何模型
(1)双击分析系统A中的“几何”【Geometry】单元格。
(2)在菜单栏中依次选择Units>Meter,确认以“米”作为建模单位。
之后,单击树形目录中的【XYPlane】,再单击工具栏中的“创建草图”选项即选项以创建草图,此时【XYPlane】分支下出现了名为“Sketch1”的草绘平面。
如图3所示。
图3 创建草绘平面
(3)右键单击Sketch 1,在弹出的选项卡中选择“正视于”【Look at】选项,即,切换视图以方便之后的建模。
(4)单击树形图下端的【Sketching】选项卡,打开草图绘制窗口。
之后按照给定的模型在草绘平面上绘图:选取“矩形”【Rectangle】工具,即,图形区点击鼠标左键,拖放鼠标画出矩形。
如图4所示。
图4 图形区绘制草图
(5)单击草图工具箱中的【Dimensions】菜单栏,之后在图形区的矩形的边上拖放鼠标显示水平尺寸H1以及垂直尺寸V2。
之后在左下方的【Details View】中分别设置这些边的尺寸。
如图5所示。
图5 尺寸参数设置
(6)回到草图工具箱的【Draw】菜单栏,利用“直线”【Line】工具以及“圆”【Circle】工具继续完成草图,相关步骤与本节(5)类似,在此不再赘述。
完成图如图6所示。
图6 完成的草图
(7)为将草图创建为面体,首先在菜单栏中找到概念模型【Concept】菜单,依次选择【Concept】>【Surfaces From Sketches】。
之后在树形目录中选择已生成的草图【Sketch 1】,再点击明细窗口中的【Base Objects】中的【Apply】按钮,确认创建线体的草图,对长方形板的厚度的编辑,在明细栏的【Thickness】中输入0.04m。
如图7所示。
图7 面体创建步骤
(8)点击工具栏中的【Generate】按钮,可以看到绘图窗口中的草图变成了一个面,此时展开树形图中的【1Part,1Body】就可以看见刚才选择创建的面体【Surface Body】。
如图8所示。
图8 创建完成的面体
(9)这里特别说明一下,在这里我们进行的是二维计算,生成的面体虽然有厚度但是该厚度并不在模型中体现出来。
(10)至此,建模步骤完成。
3.网格划分
(1)双击Workbench界面中模型【Model】单元格,进入【Mechanical】的静力分析模块。
(2)为了给长方形板分配材料,在树形图中展开【Geometry】,单击其下的【Surface Body】,在明细栏窗口中的【Material】的【Assignment】中选择已经设置好的材料【rectangle】。
如图9所示。
(3)在树形图中选择【Mesh】,此时活动工具栏变为了划分网格相关操作。
右键单击树形图中的【Mesh】,在【Insert】选项中选择【Method】以定义网格生成方式。
(4)在菜单栏中选定【选择体】,即Body按钮。
然后单击选定视图栏中的模型。
此时选定的模型变成绿色。
在明细栏中【Geometry】后面选项中选择【Apply】,此时视图中选定的模型变为蓝色;在【Method】后选择【Quadrilateral Dominant】,将网格生成方式定义为四边形网格为主导的形式。
如图10所示。
图9 为板结构分配材料
图10 设置网格生成方式
(5)右键单击树形图中的【Mesh】,在【Insert】选项中选择【Sizing】以定义网格尺寸大小。
在菜单栏中选定【选择体】,即Body按钮。
然后单击选定视图栏中的模型。
此时选定的模型变成绿色。
在明细栏中【Geometry】后面选项中选择【Apply】,此时视图中选定的模型变为蓝色;在【Element Size】后输入网格尺寸大小,这里输入0.03m。
单击工具栏上的【Update】即,等待网格划分结束。
如图11所示。
(6)生成的网格如图12所示,四边形网格作为主导,局部难以生成四面体网格处以三角形网格代替。
至此,网格划分步骤完成。
图11 设置网格尺寸
图12 生成的四边形网格
4.施加载荷、约束以及求解
(1)单击树形图中的【Static Structural】,进入静力分析环境。
(2)施加边界条件,问题中的长方形板底边限制全部自由度。
依次选择工具栏中的【Supports】>【Fixed Support】,之后选择【Edge】工具,即选项,在右侧图形区中选择长方形的底边,之后在明细栏中的【Geometry】处选择【Apply】确认所选边。
如图13所示。
图13 对底边添加约束
(3)对问题中的长方形板的顶边施加均布载荷。
依次选择工具栏中的【Loads】>【Line Pressure】选项,之后选择【Edge】工具,即选项,在右侧图形区中选择长方形的顶边,之后在明细栏中的【Geometry】处选择【Apply】确认所选边;在明细栏的【Define By】中选择【Components】,由于这里均布载荷的方向与Y轴正方向相反,因此在下方的【Y Component】后输入-100000N/m。
如图14所示。
图14 添加均布载荷
(5)点击工具栏中【Solve】进行求解。
(6)至此,施加载荷及求解步骤完成。
5.查看长方形板变形结果
(1)单击树形图中的【Solution】,进入求解结果环境。
(2)依次选择工具栏中的【Deformation】>【Total】选项,以查看长方形板的整体变形,此时树形图中的【Solution】下出现了【Total Deformation】分支。
(3)右键单击【Total Deformation】,选择【Evaluate All Results】选项得到长方形板的整体变形云图。
如图15所示,可以看出,其最大变形在中间圆孔的上方,其值为1.9779×10-5m。
(4)单击【Solution】回到求解结果环境中,依次选择工具栏中的【Stress】>【Equivalent(von-Mises)】选项,以查看长方形板的整体应力分布,此时树形图中的【Solution】下出现了【Equivalent Stress】分支。
(5)右键单击【Equivalent Stress】,选择【Evaluate All Results】选项得
到长方形板的应力云图.如图16所示,可以看出,其最大应力在圆孔两侧,其值为8.66Mpa。
(4)至此,利用ANSYS Workbench对长方形板进行静力分析完成。
图15 长方形板位移云图
图16 长方形板应力云图。