高中数学中抽象函数的解法及练习

高中数学中抽象函数的解法及练习
高中数学中抽象函数的解法及练习

抽象函数问题有关解法

由于函数概念比较抽象,学生对解有关函数记号

()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地

掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下:

一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出

()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的

灵活性及变形能力。

例1:已知

(

)211x

f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u

-=+=--∴

2()1x

f x x

-=

- 2.凑配法:在已知

(())()f g x h x =的条件下,把()h x 拼凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还

能进一步复习代换法。

例2:已知

33

11()f x x x x

+=+,求

()f x

解:∵

22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11

||||1||

x x x x +=+≥

23()(3)3f x x x x x =-=-,(|x |≥1)

3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .

解:设

()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+

=22

222()24ax bx a c x x +++=++比较系数得2()4

1321

,1,2222

a c a a

b

c b +=??=?===??=?

∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x

解:∵

()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,

()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0

()lg(1),0

x x f x x x +≥?=?--

例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1

()1

g x x =

-, 求()f x ,()g x . 解:∵

()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,

不妨用-x 代换()f x +()g x =

1

1x - ………①中的x , ∴

1()()1f x g x x -+-=--即()f x -1

()1

g x x =-+……②

显见①+②即可消去()g x ,求出函数21()1f x x =

-再代入①求出2()1

x

g x x =-

二、利用函数性质,解()f x 的有关问题

1.判断函数的奇偶性: 例7 已知

()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。

证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①

在①中令

y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。

2.确定参数的取值范围 例8:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。

解:由

2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-

又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-

-<--?

3.解不定式的有关题目 例9:如果

()f x =2ax bx c ++对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小

解:对任意t 有

(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f

(3)∵在[2,+∞)上,

()f x 为增函数

f

(3)<

f

(4),∴

f

(2)<

f

(1)<

f

(4)

五类抽象函数解法

1、线性函数型抽象函数

线性函数型抽象函数,是由线性函数抽象而得的函数。

例1、已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。

分析:由题设可知,函数f (x )是

的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。

解:设,∵当

,∴,

∵,

,即

,∴f (x )为增函数。

在条件中,令y =-x ,则,再令x =y =0,则f (0)=2 f (0),∴ f (0)=0,故f (-x )=f (x ),f (x )

为奇函数,

∴ f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴ f (x )的值域为[-4,2]。

例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式

的解。

分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。解:设,∵当,∴,则

即,∴f(x)为单调增函数。

∵,又∵f(3)=5,∴f(1)=3。

∴,∴,即,解得不等式的解为-1 < a < 3。

2、指数函数型抽象函数

例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,

成立。求:

(1)f(0);(2)对任意值x,判断f(x)值的正负。

分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)=1且f(x)>0。

解:(1)令y=0代入,则,∴

。若f(x)=0,则对任意,有,这与题设矛盾,∴f(x)≠0,∴f(0)=1。

(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对任意x,f (x)>0恒成立。

例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。

分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:

(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论正确。

(2)假设时有,则x=k+1时,,∴x=k+1时,结论正确。

综上所述,x为一切自然数时。

3、对数函数型抽象函数

对数函数型抽象函数,即由对数函数抽象而得到的函数。

例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:

(1)f(1);

(2)若f(x)+f(x-8)≤2,求x的取值范围。

分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2。

解:(1)∵,∴f(1)=0。

(2),从而有f(x)+f(x-8)≤f(9),

即,∵f(x)是(0,+∞)上的增函数,故

,解之得:8<x≤9。

例6、设函数y=f(x)的反函数是y=g(x)。如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。

分析: 由题设条件可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜想g(a+b)=g(a)·g(b)正确。

解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g(m)=a,g(n)=b,从而

,∴g(m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g(a +b)=g(a)·g(b)。

4、三角函数型抽象函数

三角函数型抽象函数即由三角函数抽象而得到的函数。

例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:

①当是定义域中的数时,有;

②f(a)=-1(a>0,a是定义域中的一个数);

③当0<x<2a时,f(x)<0。

试问:(1)f(x)的奇偶性如何?说明理由。

(2)在(0,4a)上,f(x)的单调性如何?说明理由。

分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。

解:(1)∵f(x)的定义域关于原点对称,且是定义域中的数时有

,∴在定义域中。∵

∴f(x)是奇函数。

(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,

∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数。

又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,

,于是f(x)>0,即在(2a,4a)上f(x)>0。设2a<x1<x2<4a,则0<x2-

x1<2a,从而知f(x1),f(x2)均大于零。f(x2-x1)<0,∵,∴,即

f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。综上所述,f(x)在(0,4a)上是增函数。

5、幂函数型抽象函数

幂函数型抽象函数,即由幂函数抽象而得到的函数。

例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。(1)判断f(x)的奇偶性;

(2)判断f(x)在[0,+∞)上的单调性,并给出证明;

(3)若,求a的取值范围。

分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在[0,+∞)上是增函数。

解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴

f(-x)=f(x),f(x)为偶函数。

(2)设,∴,,

∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数。

(3)∵f(27)=9,又,

∴,∴,∵,∴,

∵,∴,又,故。

抽象函数常见题型解法综述

抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下:

一、定义域问题

例1. 已知函数的定义域是[1,2],求f(x)的定义域。

解:的定义域是[1,2],是指,所以中的满足

从而函数f(x)的定义域是[1,4]

评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。

例2. 已知函数的定义域是,求函数的定义域。

解:的定义域是,意思是凡被f作用的对象都在中,由此可得

所以函数的定义域是

评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解

此类问题的关键。这类问题实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。

二、求值问题

例3. 已知定义域为的函数f(x),同时满足下列条件:①;②,求f(3),f(9)的值。解:取,得

因为,所以

又取

评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。

三、值域问题

例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。

解:令,得,即有或。

若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。

由于对任意均成立,因此,对任意,有

下面来证明,对任意

设存在,使得,则

这与上面已证的矛盾,因此,对任意

所以

评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。

四、解析式问题

例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。

解:在中以代换其中x,得:

再在(1)中以代换x,得

化简得:

评析:如果把x和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键。通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。

五、单调性问题

例6. 设f(x)定义于实数集上,当时,,且对于任意实数x、y,有,求证:在R上为增函数。

证明:在中取,得

若,令,则,与矛盾

所以,即有

当时,;当时,

所以

又当时,

所以对任意,恒有

设,则

所以

所以在R上为增函数。

评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联。

六、奇偶性问题

例7. 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性。

解:取得:,所以

又取得:,所以

再取则,即

因为为非零函数,所以为偶函数。

七、对称性问题

例8. 已知函数满足,求的值。

解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对

称。根据原函数与其反函数的关系,知函数的图象关于点(2002,0)对称。

所以

将上式中的x用代换,得

评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a、b均为常数,函数对一切实数x都满

足,则函数的图象关于点(a,b)成中心对称图形。

八、网络综合问题

例9. 定义在R上的函数f(x)满足:对任意实数m,n,总有,且当x>0时,0

(1)判断f(x)的单调性;

(2)设,

,若,试确定a的取值范围。

解:(1)在中,令

,得,因为,所以。

在中,令

因为当时,

所以当时

所以

又当x=0时,,所以,综上可知,对于任意,均有。

设,则

所以

所以

在R 上为减函数。

(2)由于函数y=f(x)在R 上为减函数,所以 即有

,根据函数的单调性,有

由,所以直线与圆面无公共点。因此有,解得。

评析:(1)要讨论函数的单调性必然涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论。这是解题的关键性步骤,完成这些要在抽象函数式中进行。由特殊到一般的解题思想,联想类比思维都有助于问题的思考和解决。

抽象函数专题练习

抽象函数专题复习

1. 已知函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ),

试判断f (x )的奇偶性。

2 已知定义在[—2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1—m )

?

???∈21,0,21x x 都有f ()21

x x +=f ()()21x f x ?, 已知

f (1)=2,求f (

);4

1

(),21f 5. 已知f (x )是定义在R 上的函数,且满足:f (x+2)[1-f (x )]=1+

f (x ),f (1)=1997,求f (2001)的值。

6. 设f (x )是定义R 在上的函数,对任意x ,y ∈R ,有 f (x+y )+f (x —y )=2f (x )f (y )且f (0)≠0.

(1)求证f (0)=1;

(2)求证:y =f (x )为偶函数.

7. 已知定义在R 上的偶函数y =f(x)的一个递增区间为(2,6),试判断(4,8)是y =f(2—x)的递增区间还是递减区间?

8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b≠0,都有

b

a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小;

(2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。

9.已知函数()f x 是定义在(—∞,3]上的减函数,已知22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的

取值范围。

10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数;

(2)若(3),(24)f a a f -=试用表示.

11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足: ()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值;

(2)判断()f x 的奇偶性,并证明你的结论;

(3)若(2)2f =,*(2)

()n n f u n N n

-=∈,求数列{n u }的前n 项和n s .

12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求

(2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.

13.已知函数()f x 的定义域为R,对任意实数,m n 都有1()()()2f m n f m f n +=++

,且1

()02

f =,当12x >时,

()f x >0.

(1)求(1)f ;

(2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈;

14.已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=?,且当0x >时,0()1f x <<. (1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明: ()f x 在R 上单调递减;

(3)设A =22{(,)()()(1)}x y f x f y f ?>,B ={(,)(2)1,x y f ax y a R -+=∈},若A B =Φ,试确定a 的取值范围 15. 已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,

求f (x )在区间[-2,1]上的值域。 16. 已知函数f (x )对任意,满足条件f (x )+f (y )=2 + f (x +y ),且当x >0时,f (x )>2,f (3)=5,求不等式

的解。

17、设函数的定义域为全体R ,当x <0时,,且对任意的实数x ,y ∈R ,有

成立,数列满足,且(n ∈N *

(Ⅰ)求证:是R 上的减函数;

(Ⅱ)求数列的通项公式;

(Ⅲ)若不等式对一切n ∈N *

均成立,求k 的

最大值.

18、设函数

满足,且对任意

,都有

.

(Ⅰ)求的解析式; (Ⅱ)若数列

满足:

),且

, 求数列

的通项;

(Ⅲ)求证:

19、若数列

满足其中为常数,则称数列为等方差数列.已知等方差数列满足

.

(Ⅰ)求数列的通项公式;

(Ⅱ)求数列的前项和

答案:

1. 解:令1

x = —1,2

x =x ,得f (—x )= f (—1)+ f (x ) ……①为了求f (—1)的值,令1

x =1,2

x =—1,则f (—1)=

f (1)+f (—1),即f (1)=0,再令1x =2

x =—1得f (1)=f (—1)+f (—1)=2f (—1) ∴f (—1)=0代入①式得

f (—x )=f (x ),可得f (x )是一个偶函数。

2. 分析:根据函数的定义域,—m ,m ∈[—2,2],但是1— m 和m 分别在[—2,0]和[0,2]的哪个区间内呢?如果就

此讨论,将十分复杂,如果注意到偶函数,则f (x )有性质f (—x )= f (x )=f ( |x | ),就可避免一场大规模讨论。

解:∵f (x )是偶函数, f (1—m )

??

??≤≤≤-≤>-2

02101m m m

m ,

?????≤≤-≤-≤->+-222122122m m m m m 化简得—1≤m <21。 3. 解:因为f(x+3) =—f(x),所以f(x+6)=f((x+3)+3) =—f(x+3)=f(x),故6是函数f(x)的一个周期。又f(x)是奇函

数,且在x =0处有定义,所以f(x)=0从而f(1998)=f(6×

333)=f(0)=0。 4. 解:由f ()21x x +=f ()()21x f x ?,??????∈21,0,21x x 知 f (x )=f ()2()2x f x ?≥0,x []1,0∈ 2)]

2

1([)21()21()2121()1(f f f f f =?=+= , f (1)=2,

.

2)2

1(21=∴f 同理可得41

2)41(=f 5.解:从自变量值2001和1进行比较及根据已知条件来看,易联想到函数f (x )是周期函数。由条件得f (x )≠1,

f (x+2)=,

)

(1)(1x f x f -+f (x+4)=)(1)

(1)(11)(1)

(11x f x f x f x f x f -

=-+-

-++

. 所以f (x+8)=

)()

4(1

x f x f =+-. 所以f (x )是以8为周期的周期函数, 从而f (2001)=f (1)=1997

说明:这类问题出现应紧扣已知条件,需用数值或变量来迭代变换,经过有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。

6.证明:(1)问题为求函数值,只需令x =y =0即可得。

(2)问题中令x =0即得f (y )+f (— y )=2f (0)f (y ), 且f (0)=1.所以f (y )+f (—y )=2f (y ),因此y =f (x )为偶函数.

说明:这类问题应抓住f (x )与f (—x )的关系,通过已知条件中等式进行变量赋值。

7. 解:由y =f(x)是偶函数且在(2,6)上递增可知,y =f(x)在(-6,-2)上递减。令u =2—x ,则当x ∈(4,8)时,u 是减函数且u ∈(—6,—2),而f(u)在(-6,-2)上递减,故y =f(2—x)在(4,8)上递增。所以(4,8)是y =f(2—x)的单调递增区间。

8. 解:(1).因为a >b ,所以a —b >0,由题意得

b a b f a f --+)()(>0,所以f (a )+f (-b )>0,又f (x )是定义在R 上的奇函数,所以f (-b )=-f (b )

, f (a )-f (b )>0,即f (a )>f (b )

(2).由(1)知f (x )在R 上是单调递增函数,又f )3(x k ?+f )293(--x x <0,得f )3(x k ?<f )239(+-x x ,故x k 3?<239+-x x ,所以k <

1

3

2

3-+x x

令t =]

3,31[3∈x

,所以k <t+12-t ,而t+t

2≥22,即k <2

2

-1

9.解:

22(sin )(1cos )f a x f a x -≤++等价于

2222222222sin 33sin 311cos 32cos 205sin 1cos 1cos sin 14a x a x a a x a x a a x a x a a x x a a ?

??-≤-≤?-≤-???++≤?-≤-?-≤??????-≥++--≥+???--≥

??

122a a a a a ?

?≤≤??≤?≤?

?

?≤≥??

10.(1)证明:令y x =-,得()()()f x x f x f x -=+-?()()(0)f x f x f +-= 令0x y ==,则(0)2(0)f f =()00

f ?=

∴()()0f x f x +-=()()f x f x -=- ∴()f x 是奇函数。 (2)∵(24)(3)(21)2(3)(18)...8(3)f f f f f f =+=+== 又∵(3)(3)f a f a -=?=-?(24)8f a =- 11.(1)解:令0a b ==,则(0)0f = 令1a b ==,则(1)2(1)(1)0f f f =?=

(2)证明:令1a b ==-,则(1)2(1)f f =-,∵(1)0f =,∴(1)0f -= 令,1a x b ==-,则()(1)()()f x xf f x f x -=--=- ∴()f x 是奇函数。 (3)当0ab ≠时,()

()()f a b f b f a ab

b a ?=+,令()()f x g x x

=

,则()()()g a b g a g b ?=+ 故()()n g a ng a =,所以1()()()()n n n n n f a a g a na g a na f a -=?==

1

(2)11

()

22

n n n f u f n --??

==? ?

??

()1

11

(2)2,(1)(2)2202

22

f f f f

f ??==?=+= ???

111(2)242f f ??=-=- ???,故()1

1122n n u n N -????=-?∈* ? ?????

()1112211212

n

n

n s n N ??

??--?? ?????????=

=

-∈* ???

- 12.解:(1)∵对任意x R ∈,函数()f x 满足

22(()))()f f x x x f x x x -+=-+,且(2)2f = ∴

22((2)22)(2)22,(1)1f f f f -+=-+=则

∵(0)f a =,∴22((0)00)(0)00f f f -+=-+=200a -+?f(a)=a

(2) ∵对任意x R ∈,函数()f x 满足

22(()))()f f x x x f x x x -+=-+,有且仅有一个实数0x ,使得00()f x x = ∴对任意x R ∈,有

20

()f x x x x -+=

上式中,令0

x x =,则

20000

()f x x x x -+=

∵00

()f x x =,故

2000x x -=?0001x x ==或 若00x =,则2()0f x x x -+=,则2()f x x x =-,但方程2x x x -=有两个不相同的实根与题设茅盾,故0

0x ≠ 若01x =,则2()1f x x x -+=,则2()1f x x x =-+,此时方程221(1)0x x x x -+=?-=有两个相等的实根,

即有且仅有一个实数0x ,使得00

()f x x =

()

2()1f x x x x R =-+∈

13.(1)解:令

12m n ==

,则1111()2()2222f f +=+1(1)2

f ?=

(2)∵

1(1),2f =111

(1)(1)()()()1

222

f n f f n f n f n +=++=++=+ ∴(1)()1f n f n +-= ∴数列

{}()f n 是以12

为首项,1为公差的等差数列,故

(1)(2)(3)...()f f f f n ++++=(1)22n n n -+=22

n =

(3)任取

1212,,x x R x x ∈<且,则

21211121112111()()[()]()()()()()22

f x f x f x x x f x f x x f x f x f x x -=-+-=-++-=-+

211

()0

2f x x -+> ∴12

()()f x f x <

∴函数()f x 是R 上的单调增函数.

14、. (1)证明:令0,1m n ==,则(01)(0)(1)f f f +=?

∵当0x >时,0()1f x <<,故(1)0f >,∴(0)1f =,∵当0x >时,0()1f x << ∴当0x <时,0x ->,则

(0)1

()()()()1

()()

f f x x f x f x f x f x f x -+=-??==>--

(2)证明: 任取

1212,,x x R x x ∈<且,则

2121112111()()[()]()()()()f x f x f x x x f x f x x f x f x -=-+-=-?-211[()1]()f x x f x =--

∵210x x ->,∴0<210()1f x x <-<,故21()1f x x --<0,又∵1()0,f x >

∴211[()1]()0f x x f x -->,故12()()f x f x >

∴函数()f x 是R 上的单调减函数. (3) ∵

{}{}

2222(,)()()(1)(,)()(1)

A x y f x f y f x y f x y f =?>?+>

由(2)知,()f x 是R 上的减函数,∴221x y +< ∵B ={

(,)(2)1,x y f ax y a R

-+=∈}=

(){},20,x y ax y a R -+=∈

又∵A B = ?, ∴方程组

22120x y ax y ?+

-+=?无解,即直线22201ax y x y -+=+<与单位圆的内部无公共点

1

≥?23a ≤?

-a ≤≤a 的取值范围是

a ≤15、 解:设,∵当

,∴,

∵,

,即

,∴f (x )为增函数。

在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=

f(x),f(x)为奇函数,

∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,

∴f(x)的值域为[-4,2]。

16、. 解:设,∵当,∴,则

即,∴f(x)为单调增函数。

∵,又∵f(3)=5,∴f(1)=3。

∴,∴,即,解得不等式的解为-1 < a < 3。

17、设函数的定义域为全体R,当x<0时,,且对任意的实数x,y∈R,有

成立,数列满足,且(n∈N*)

(Ⅰ)求证:是R上的减函数;

(Ⅱ)求数列的通项公式;

(Ⅲ)若不等式对一切n∈N*均成立,求k的

最大值.

解析:(Ⅰ)令,得,

由题意知,所以,故.

当时,,,进而得.

设且,则,

.即,所以是R上的减函数.

(Ⅱ)由得,

所以.

因为是R上的减函数,所以,

即,进而,

所以是以1为首项,2为公差的等差数列.

所以,

所以.………………9分

(Ⅲ)由对一切n∈N*均成立.知对一切n∈N*均成立.

设,

知且

又.

故为关于n的单调增函数,.

所以,k的最大值为………………14分

18、设函数满足,且对任意,都有

.

(Ⅰ)求的解析式;

(Ⅱ)若数列满足:(),且, 求数列的通项;(Ⅲ)求证:

解析:(Ⅰ)因. 若令得

再令得

(Ⅱ)∵,∴,

∴又∴数列是首项为2,公比为3的等比数列,

∴,即

(Ⅲ)∵,∴T=

另一方面:因为,

所以

综上可得命题成立.

19、若数列满足其中为常数,则称数列为等方差数列.已知等方差数列满足

.

(Ⅰ)求数列的通项公式;

(Ⅱ)求数列的前项和;

(Ⅲ)记,则当实数大于4时,不等式能否对于一切的恒成立?请说明理由.

解析:(Ⅰ)由得,

数列的通项公式为;

(Ⅱ)

设①

①-②,得

.

即数列的前项和为;

(Ⅲ)解法1:,不等式恒成立,

即对于一切的恒成立.

设=.当时,由于对称轴=,且=

而函数在是增函数,∴不等式恒成立,

即当时,不等式对于一切的恒成立.

解法2:,不等式恒成立,即对于一切的恒成立.

∵≥1,∴而

∴恒成立.

故当时,不等式对于一切的恒成立.

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

高一数学函数习题(练习题以及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、 _ _ _; ________; 3、若函数(1)f x +(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4 、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _

()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸2 1)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 ) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2 (2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1 ()(0)f x x x x =+ ≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

高中数学函数经典复习题含答案

《函 数》复习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111y x x = +-+ -2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

(完整版)高中数学函数测试题(含答案)(可编辑修改word版)

? ? ? 高中数学函数测试题 学生: 用时: 分数: 一、选择题和填空题(3x28=84 分) 1、若 a = log 3 π,b = log 7 6,c = log 2 0.8 ,则( ) A. a > b > c 【答案】A B. b > a > c C. c > a > b D. b > c > a 【解析】利用中间值 0 和 1 来比较: a = log 3 π>1,0 < b = log 7 6 < 1,c = log 2 0.8 < 0 2、函数 f (x ) = (x -1)2 +1(x < 1) 的反函数为( ) A . f -1(x ) = 1+ C . f -1(x ) = 1+【答案】B x > 1) x ≥ 1) B . f -1(x ) = 1- D . f -1(x ) = 1-x > 1) x ≥ 1) 【解析】 x < 1 ? y = (x -1)2 +1, ∴(x -1)2 = y -1 ? x -1 = 所以反函数为 f -1(x ) = 1-x > 1) 3、已知函数 f (x ) = x 2 - cos x ,对于?- π π ? 上的任意 x ,x ,有如下条件: , 1 2 ? 2 2 ? ① x > x ; ② x 2 > x 2 ; ③ x > x . 1 2 1 2 1 2 其中能使 f (x 1 ) > f (x 2 ) 恒成立的条件序号是 . 【答案】② 【解析】函数 f (x ) = x 2 - cos x 为偶函数,则 f (x ) > f (x ) ? f (| x |) > f (| x |). 1 2 1 2 在区间?0 π ? 上, 函数 f (x ) = x 2 - cos x 为增函数, , ? 2 ? ∴ f (| x |) > f (| x |) ?| x |>| x |? x 2 > x 2 1 2 1 2 1 2 4、已知函数 f (x ) = ?log 3 x , x > 0 ,则 f ( f (1 )) = ( ) ?2x , x ≤ 0 9 1 1 A.4 B. C.-4 D- 4 4 答案:B ?

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

高中数学有关函数练习题

高中数学《函数》测试题 一、选择题(共50分): 1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A. (2,-2) B. (2,2) C. (-4,2) D. (4,-2) 2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是 A.增函数且最小值为m B.增函数且最大值为m - C.减函数且最小值为m D.减函数且最大值为m - 3. 与函数() lg 210.1 x y -=的图象相同的函数解析式是 A .121()2y x x =-> B .1 21 y x = - } C .11()212y x x = >- D .1 21 y x = - 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是 A .-∞(,-2] B .[-2,2] C .[-2,)+∞ D .[0,)+∞ 5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为 A .2 B .0 C .1 D .不能确定 6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的 图像,则)(x f y =的函数表达式为 A. 2 2 +=x y B. 2 2 +-=x y C. 2 2 --=x y D. )2(log 2+-=x y 7. 当01a b <<<时,下列不等式中正确的是 A.b b a a )1()1(1 ->- B.(1)(1) a b a b +>+ 】 C.2 )1()1(b b a a ->- D.(1)(1)a b a b ->- 8.当[]2,0∈x 时,函数3)1(4)(2 --+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是 A.1[,)2-+∞ B. [)+∞,0 C. [)+∞,1 D.2 [,)3 +∞ 9.已知(31)4,1()log , 1a a x a x f x x x -+?是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3 C.1[,1)7 D.11 [,)73 10.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。洗浴时,已知每分钟放水 34升,在放水的同时按4升/分钟的匀加速度自动注水。当水箱内的水量达到最小值时,放水程序自动停止,现假定每人洗浴用水量为65升,则该热水器一次至多可供 A .3人洗浴 B .4人洗浴 C .5人洗浴 D .6人洗浴 二、填空题(共25分) 11.已知偶函数()f x 在[]0,2内单调递减,若()()0.511,(log ),lg 0.54 a f b f c f =-==,则,,a b c 之间的大小关系为 。 12. 函数log a y x =在[2,)+∞上恒有1y >,则a 的取值范围是 。 【

高中数学函数测试题(含答案)

高中数学函数测试题 学生: 用时: 分数: 一、选择题和填空题(3x28=84分) 1、若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >> 【答案】A 【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 2、函数2 ()(1)1(1)f x x x =-+<的反函数为( ) A .1 ()11)f x x -=+> B .1 ()11)f x x -=-> C .1()11)f x x -=≥ D .1 ()11)f x x -=-≥ 【答案】B 【解析】 221(1)1,(1)11x y x x y x 3、已知函数2 ()cos f x x x =-,对于ππ22 ??-???? ,上的任意12x x ,,有如下条件: ①12x x >; ②22 12x x >; ③12x x >. 其中能使12()()f x f x >恒成立的条件序号是 . 【答案】② 【解析】函数2 ()cos f x x x =-为偶函数,则1212()()(||)(||).f x f x f x f x >?> 在区间π02?? ???? ,上, 函数2 ()cos f x x x =-为增函数, 22121212(||)(||)||||f x f x x x x x ∴>?>?> 4、已知函数3log ,0()2,0 x x x f x x >?=?≤?,则1 (())9f f =( )

相关文档
最新文档