2016-2017学年度上学期高三阶段检测高三数学文科(含答案)

合集下载

2016-2017学年北京市高三(上)入学数学试卷(文科)(解析版)

2016-2017学年北京市高三(上)入学数学试卷(文科)(解析版)
2
(Ⅰ)根据频率分布表中的数据,写出 a,b,c 的值; (Ⅱ)从该市调查的 1000 户居民中随机抽取一户居民,求该户居民用电量不超过 300 千 瓦时的概率; (Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该市每户居民该月的平
第 3 页(共 11 页)
均电费. 18. (14 分)如图,在四棱锥 P﹣ABCD 中,底面 ABCD 是矩形,PA=AD,PA⊥AB,N 是 棱 AD 的中点. (Ⅰ)求证:平面 PAB⊥平面 PAD; (Ⅱ)求证:PN⊥平面 ABCD; (Ⅲ)在棱 BC 上是否存在动点 E,使得 BN∥平面 DEP?并说明理由.
第 2 页(共 11 页)
(同国标码)mm 中国鞋码习惯叫法 (同欧码) 从上述表格中可以推算出 30 号的童鞋对应的脚的长度为 脚长为 282mm,则他该穿 号的鞋. ;若一个篮球运动员的 34 35 36 37 38 39 40 41 42 43
三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明、证明过程或演算步骤. 15. (13 分)已知数列{an}是等比数列,满足 a1=3,a4=24,数列{bn}是等差数列,满足 b2=4,b4=a3. (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)设 cn=an﹣bn,求数列{cn}的前 n 项和. 16. (13 分)已知函数 f(x)=sin2x﹣2sin x (Ⅰ)求函数 f(x)的最小正周期. (Ⅱ)求函数 f(x)的最大值及 f(x)取最大值时 x 的集合. 17. (13 分)某市为鼓励居民节约用电,将实行阶梯电价,该市每户居民每月用电量划分为 三档,电价实行分档递增. 第一档电量:用电量不超过 200 千瓦时,电价标准为 0.5 元/千瓦时; 第二档电量:用电量超过 200 但不超过 400 千瓦时,超出第一档电量的部分,电价标准 比第一档电价提高 0.1 元/千瓦时; 第三档电量:用电量超过 400 千瓦时,超出第二档电量的部分,电价标准比第一档电价 提高 0.3 元/千瓦时.随机调查了该市 1000 户居民,获得了他们某月的用电量数据,整理 得到如表的频率分布表: 用电量 (千 [0,100] 瓦时) 频数 频率 200 0.2 (100, (200,300] 200] 400 a 200 0.2 (300, 400] b 0.1 (400, 500] 100 c 1000 1 合计

2016-2017高三数学二(文)

2016-2017高三数学二(文)

1
所以由余弦定理可得:cosA=2 =
b 2 +c 2 −4

∴Tn=1+2+22 +…+2������ −1 -n•2������ =
2
1
1
1
1
1−
1 2 ������ 1 1− 2
-n•2������ =2- 2������ .
������ 3 ������ 2
1
������ +2
解得:c2+b2-4=bc,所以,b2+c2=4+bc,由于 b2+c2≥2bc, 所以 4+bc≥2bc 解得 bc≤4,b=c=2 取等号,
(2)①证明:设 A(x1,y1) ,B(x2,y2) ,C(-x1,-y1) ,不妨设 x1>0,x2>0. 设 kAC=k>0,∵kAC•kBD=������ 1 ⋅ ������ 2 =4,∴kBD=4k .
21、 (本小题满分 14 分)
3
1
三、解答题:解答应写在答题纸相应位置,并写出相应文字说明、证明过程或演算步 骤.本大题共 6 个小题,共 75 分。
. 16、(本小题满分 12 分) 记函数 f ( x) lg( x x 2) 的定义域为集合 A,函数 g ( x) 3 | x | 的定义域为集合 B.
已知椭圆������ 2 +������ 2 =1(a>b>0)的离心率为 2 ,且过点( 3,2) . (1)求椭圆的标准方程; (2)四边形 ABCD 的顶点在椭圆上,且对角线 AC,BD 过原点 O,设 A(x1,y1) , B(x2,y2) ,满足 4y1y2=x1x2. ①试证 kAB+kBC 的值为定值,并求出此定值; ②试求四边形 ABCD 面积的最大值.

2016-2017学年江西省高三(上)联考数学试卷(文科)Word版(解析版)

2016-2017学年江西省高三(上)联考数学试卷(文科)Word版(解析版)

2016-2017学年江西省高三(上)联考试卷(文科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i2.(5分)设U=R,A={x|2x>1},B={x|log2x>0},则A∩∁U B=()A.{x|x<0} B.{x|x>1} C.{x|0<x≤1} D.{x|0≤x<1}3.(5分)计算sin47°cos17°+cos47°cos107°的结果等于()A.B.C.D.4.(5分)已知向量,,若,则m=()A.﹣1 B.0 C.1 D.25.(5分)已知抛物线y=ax2(a>0)的焦点到准线距离为1,则a=()A.4 B.2 C.D.6.(5分)下列命题是假命题的是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α,β∈R,使cos(α+β)=cosα+cosβC.向量,,则在方向上的投影为﹣2D.“|x|≤1”是“x<1”的既不充分又不必要条件7.(5分)已知双曲线(a>0,b>0)的离心率是,则该双曲线两渐近线夹角是()A.B.C.D.8.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+b2﹣c2)tanC=ab,则角C的值为()A.或B.或C.D.9.(5分)设变量x、y满足约束条件,则z=32x﹣y的最大值为()A.B.C.3 D.910.(5分)下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c11.(5分)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如图所示,侧视图是一个矩形,则侧视图的面积是()A.8 B.C.4 D.12.(5分)对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某三角形的三边长,则称f(x)为“可构造三角形函数”,已知是“可构造三角形函数”,则实数t的取值范围是()A.[﹣1,0] B.(﹣∞,0] C.[﹣2,﹣1] D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设函数,若f(x)为奇函数,则的值为.14.(5分)已知点A(﹣1,0),过点A可作圆x2+y2+mx+1=0的两条切线,则m的取值范围是.15.(5分)已知,则= .16.(5分)已知函数f(x)=|x2﹣2ax+b|(x∈R),给出下列命题:①∃a∈R,使f(x)为偶函数;②若f(0)=f(2),则f(x)的图象关于x=1对称;③若a2﹣b≤0,则f(x)在区间[a,+∞)上是增函数;④若a2﹣b﹣2>0,则函数h(x)=f(x)﹣2有2个零点.其中正确命题的序号为.三、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}的前n项和S n=k(2n﹣1),且a3=8.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.18.(12分)如图,AB是⊙O的直径,点C是弧上一点,VC垂直⊙O所在平面,D,E分别为VA,VC的中点.(1)求证:DE⊥平面VBC;(2)若VC=CA=6,⊙O的半径为5,求点E到平面BCD的距离.19.(12分)2015年下学期某市教育局对某校高三文科数学进行教学调研,从该校文科生中随机抽取40名学生的数学成绩进行统计,将他们的成绩分成六段[80,90),[90,100),[100,110),[120,130),[130,140)后得到如图所示的频率分布直方图.(1)求这40个学生数学成绩的众数和中位数的估计值;(2)若从数学成绩[80,100)内的学生中任意抽取2人,求成绩在[80,90)中至少有一人的概率.20.(12分)在平角坐标系xOy中,椭圆的离心率,且过点,椭圆C的长轴的两端点为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA、PB分别交于M,N 两点.(1)求椭圆C的方程;(2)在x轴上是否存在定点经过以MN为直径的圆,若存在,求定点坐标;若不存在,说明理由.21.(12分)已知函数f(x)=x2﹣(﹣1)k2alnx(k∈N,a∈R且a>0).(1)求f(x)的极值;(2)若k=2016,关于x的方程f(x)=2ax有唯一解,求a的值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.(10分)如图,⊙O是△ABC的外接圆,AD平分∠BAC交BC于D,交△ABC的外接圆于E.(1)求证:;(2)若AB=3,AC=2,BD=1,求AD的长.选修4-4:坐标系与参数方程23.已知曲线C1的极坐标方程为ρ=2cosθ,曲线C2的参数方程为为参数).(1)判断C1与C2的位置关系;(2)设M为C1上的动点,N为C2上的动点,求|MN|的最小值.选修4-5:不等式选讲24.已知a,b∈R,f(x)=|x﹣2|﹣|x﹣1|.(1)若f(x)>0,求实数x的取值范围;(2)对∀b∈R,若|a+b|+|a﹣b|≥f(x)恒成立,求a的取值范围.2016-2017学年江西省高三(上)联考试卷(文科数学)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•湖南模拟)复数i(3﹣i)的共轭复数是()A.1+3i B.1﹣3i C.﹣1+3i D.﹣1﹣3i【分析】直接由复数代数形式的乘法运算化简,则答案可求.【解答】解:∵i(3﹣i)=3i﹣i2=1+3i,∴复数i(3﹣i)的共轭复数是1﹣3i.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.(5分)(2016•湖南模拟)设U=R,A={x|2x>1},B={x|log2x>0},则A∩∁U B=()A.{x|x<0} B.{x|x>1} C.{x|0<x≤1} D.{x|0≤x<1}【分析】利用对数函数的性质,求出集合B中不等式的解集,确定出集合B,利用指数函数的性质确定出集合B,由全集U=R,求出B的补集,找出A与B补集的公共部分,即可确定出所求的集合【解答】解:易知A={x|x>0},B={x|x>1},则A∩C U B={x|0<x≤1},故选C.【点评】此题属于以其他不等式的解法为平台,考查了交、并、补集的混合运算,是高考中常考的基本题型.3.(5分)(2016•湖南模拟)计算sin47°cos17°+cos47°cos107°的结果等于()A.B.C.D.【分析】有条阿金利用诱导公式、两角和差的正弦公式,求得要求式子的值.【解答】解:∵,故选:D.【点评】本题主要考查诱导公式、两角和差的正弦公式的应用,属于基础题.4.(5分)(2016•湖南模拟)已知向量,,若,则m=()A.﹣1 B.0 C.1 D.2【分析】根据向量的坐标运算和向量的数量积的运算即可求出.【解答】解:由已知得,又,∴,∴m=1,故选:C.【点评】本题考查了向量的坐标运算和向量的数量积的运算,属于基础题.5.(5分)(2016•湖南模拟)已知抛物线y=ax2(a>0)的焦点到准线距离为1,则a=()A.4 B.2 C.D.【分析】抛物线y=ax2(a>0)化为,可得.再利用抛物线y=ax2(a>0)的焦点到准线的距离为1,即可得出结论.【解答】解:抛物线方程化为,∴,∴焦点到准线距离为,∴,故选D.【点评】本题考查了抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.6.(5分)(2015秋•长沙校级月考)下列命题是假命题的是()A.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数B.∃α,β∈R,使cos(α+β)=cosα+cosβC.向量,,则在方向上的投影为﹣2D.“|x|≤1”是“x<1”的既不充分又不必要条件【分析】逐项分析,即可得解.A,当φ=,时,f(x)=cos2x是偶函数,故A为假.BCD三选项以判断都正确.【解答】解:A、当φ=,时,f(x)=cos2x是偶函数,故A为假;B、取,此时,故B正确;C、根据向量数量积的几何意义知,向量上的投影为,故C正确;D、当|x|≤1时,可得﹣1≤x≤1,此时不能推出x<1,故|x|≤1不是x<1的充分条件;当x<1时,取x=﹣2,此时|x|=2>1,所以x<1不能推出|x|≤1,故|x|≤1也不是x<1的必要条件.故|x|≤1是x<1的既不充分也不必要条件.故选A.【点评】本题考查了命题真假的判断,向量数量积的几何意义及充分必要条件的判断.正确掌握基本知识和基本方法是解题的关键.7.(5分)(2016•湖南模拟)已知双曲线(a>0,b>0)的离心率是,则该双曲线两渐近线夹角是()A.B.C.D.【分析】由离心率可得 c= a,故可求得=,故一条渐近线的倾斜角等于30°,从而求得两渐近线夹角.【解答】解:∵,∴c= a,故在一、三象限内的渐近线的斜率为==,故此渐近线的倾斜角等于30°,故该双曲线两渐近线夹角是2×30°=60°,即,故选C.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出在一、三象限内的渐近线的倾斜角等于30°,是解题的关键和难点.8.(5分)(2016•湖南模拟)在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+b2﹣c2)tanC=ab,则角C的值为()A.或B.或C.D.【分析】已知等式整理后,利用余弦定理,以及同角三角函数间基本关系化简,求出sinC的值,即可确定出C的度数.【解答】解:在△ABC中,由已知等式整理得:=,即cosC=,∵cosC≠0,∴sinC=,∵C为△ABC内角,∴C=或,故选:A.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.9.(5分)(2016•湖南模拟)设变量x、y满足约束条件,则z=32x﹣y的最大值为()A.B.C.3 D.9【分析】首先由约束条件画出可行域,令2x﹣y=t,利用t的几何意义求出最值,然后求z 的最值.【解答】解:约束条件对应的平面区域如图:令2x﹣y=t,变形得y=2x﹣t,根据t的几何意义,由约束条件知t过A时在y轴的截距最大,使t最小,由得到交点A(,)所以t最小为;过C时直线y=2x﹣t在y轴截距最小,t 最大,由解得C(1,0),所以t的最大值为2×1﹣0=2,所以,故;故选D.【点评】本题考查了简单线性规划问题;利用数形结合的方法,借助于目标函数的几何意义求最值.10.(5分)(2008•海南)下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.【解答】解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存最大值的变量X=C故选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.(5分)(2016•湖南模拟)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如图所示,侧视图是一个矩形,则侧视图的面积是()A.8 B.C.4 D.【分析】设出对面边长,表示出几何体的体积,求出边长,然后求解侧视图的面积.【解答】解:设底面边长为x,则,∴x=4.∴侧视图是长为4,宽为的矩形,,故选:B.【点评】本题考查三视图的应用,几何体的就与吧,就的求法,考查计算能力.12.(5分)(2016•黄冈模拟)对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某三角形的三边长,则称f(x)为“可构造三角形函数”,已知是“可构造三角形函数”,则实数t的取值范围是()A.[﹣1,0] B.(﹣∞,0] C.[﹣2,﹣1] D.【分析】化简f(x),讨论t的取值,判断f(a)、f(b)、f(c)能否构成一个三角形的三边长,从而求出t的取值范围.【解答】解:==1﹣,①当t+1=0即t=﹣1时,f(x)=1,此时f(a),f(b),f(c)都为1,能构成一个正三角形的三边长,满足题意;②当t+1>0即t>﹣1时,f(x)在R上单调递增,﹣t<f(x)<1,∴﹣t<f(a),f(b),f(c)<1,由f(a)+f(b)>f(c)得﹣2t≥1,解得﹣1<t≤﹣;③当t+1<0即t<﹣1时,f(x)在R上单调递减,又1<f(x)<﹣t,由f(a)+f(b)>f(c)得2≥﹣t,即t≥﹣2,所以﹣2≤t<﹣1;综上,t的取值范围是.故选:D.【点评】本题考查了函数的定义与应用问题,也考查了三角形三边关系的应用问题,是综合性题目.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)(2016•湖南模拟)设函数,若f(x)为奇函数,则的值为 2 .【分析】由题意可得g(﹣)=f(﹣)=﹣f()=﹣,再利用对数的运算性质,求得结果.【解答】解:g(﹣)=f(﹣)=﹣f()=﹣=log24=2,故答案为:2.【点评】本题主要考查函数的奇偶性的应用,对数的运算性质,属于基础题.14.(5分)(2015秋•长沙校级月考)已知点A(﹣1,0),过点A可作圆x2+y2+mx+1=0的两条切线,则m 的取值范围是(﹣∞,﹣2).【分析】点A可作圆x2+y2+mx+1=0的两条切线,即为A在圆外,把已知圆的方程化为标准方程后,找出圆心坐标和半径r,列出关于m的不等式,同时考虑﹣1大于0,两不等式求出公共解集即可得到m的取值范围.【解答】解:点A(﹣1,0)在圆外,∴1﹣m+1>0,∴m<2,又∵表示圆,∴,∴m<﹣2,故答案为:(﹣∞,﹣2).【点评】此题考查学生掌握点与圆的位置的判别方法,灵活运用两点间的距离公式化简求值,是一道综合题.15.(5分)(2016•湖南模拟)已知,则= .【分析】由已知式子和二倍角公式可得sinα,进而可得cosα,再由切化弦和二倍角公式代值计算可得.【解答】解:∵5sin2α=6cosα,∴10sinαcosα=6cosα,∵α∈(0,),∴cosα≠0,∴,∴由同角三角函数基本关系可得cosα=,∴,故答案为:.【点评】本题考查二倍角的正弦和正切公式,涉及同角三角函数基本关系,属中档题.16.(5分)(2016•揭阳校级模拟)已知函数f(x)=|x2﹣2ax+b|(x∈R),给出下列命题:①∃a∈R,使f(x)为偶函数;②若f(0)=f(2),则f(x)的图象关于x=1对称;③若a2﹣b≤0,则f(x)在区间[a,+∞)上是增函数;④若a2﹣b﹣2>0,则函数h(x)=f(x)﹣2有2个零点.其中正确命题的序号为①③.【分析】①当a=0时,f(x)=|x2+b|显然是偶函数,故①正确;②由f(0)=f(2),则|b|=|4﹣4a+b|,取a=0,b=﹣2,此式成立,此时函数化为f(x)=|x2﹣2|,其图象不关于x=1对称,故②错误;③f(x)=|(x﹣a)2+b﹣a2|=(x﹣a)2+b﹣a2在区间[a,+∞)上是增函数,故③正确;④画出图象可知,h(x)=|(x﹣a)2+b﹣a2|﹣2有4个零点,故④错误.【解答】解:①当a=0时,f(x)=|x2+b|显然是偶函数,故①正确;②取a=0,b=﹣2,函数f(x)=|x2﹣2ax+b|化为f(x)=|x2﹣2|,满足f(0)=f(2),但f(x)的图象不关于x=1对称,故②错误;③若a2﹣b≤0,则f(x)=|(x﹣a)2+b﹣a2|=(x﹣a)2+b﹣a2在区间[a,+∞)上是增函数,故③正确;④h(x)=|(x﹣a)2+b﹣a2|﹣2有4个零点,故④错误.∴正确命题为①③.故答案为:①③.【点评】本题考查了命题的真假判断与应用,考查了二次函数的性质,是中档题.三、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2016•湖南模拟)已知数列{a n}的前n项和S n=k(2n﹣1),且a3=8.(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.【分析】(1)利用数列的前n项和与通项的关系,求出通项公式,验证首项是否满足所求的通项公式.(2)写出通项公式利用错位相减法求解前n项和即可.【解答】解:(1)当n≥2时,,,∴.当n=1时,,综上所述,…(6分)(2)由(1)知,,则①②①﹣②得:,,,…(12分)【点评】本题考查数列的递推关系式的应用,数列求和错位相减法的应用,考查转化思想以及计算能力.18.(12分)(2016•湖南模拟)如图,AB是⊙O的直径,点C是弧上一点,VC垂直⊙O所在平面,D,E分别为VA,VC的中点.(1)求证:DE⊥平面VBC;(2)若VC=CA=6,⊙O的半径为5,求点E到平面BCD的距离.【分析】(1)利用圆的性质可证明:AC⊥CB.利用线面垂直的性质定理可得:VC⊥AC,于是AC⊥平面VCB.利用三角形中位线定理可得DE∥AC,即可证明DE⊥平面VCB.(2)设点E到平面BCD的距离为d,利用V E﹣BCD=V B﹣CDE解出即可得出.【解答】(1)证明:∵AB是⊙O的直径,C是弧AB上一点,∴AC⊥CB.又∵VC垂直⊙O所在平面,∴VC⊥AC,∴AC⊥平面VCB.又∵D,E分别为VA,VC的中点,∴DE∥AC,∴DE⊥平面VCB.(2)解:设点E到平面BCD的距离为d,由V E﹣BCD=V B﹣CDE得,∴,即点E到平面BCD的距离为.【点评】本题考查了空间位置关系、距离的计算、线面垂直、线线平行的判定、三角形中位线定理、等体积法,考查了推理能力与计算能力,属于中档题.19.(12分)(2016•湖南模拟)2015年下学期某市教育局对某校高三文科数学进行教学调研,从该校文科生中随机抽取40名学生的数学成绩进行统计,将他们的成绩分成六段[80,90),[90,100),[100,110),[120,130),[130,140)后得到如图所示的频率分布直方图.(1)求这40个学生数学成绩的众数和中位数的估计值;(2)若从数学成绩[80,100)内的学生中任意抽取2人,求成绩在[80,90)中至少有一人的概率.【分析】(1)众数的估计值为最高矩形对应的成绩区间的中点,由此能求出众数的估计值,设中位数的估计值为x,由频率分布直方图得10×0.005+0.010×10+0.020×10+(x﹣110)×0.030=0.5,由此能求出中位数的估计值.(2)从图中知,成绩在[80,90)的人数为2人,成绩在[90,100)的人数为4人,由此利用列举法能求出从数学成绩[80,100)内的学生中任意抽取2人,成绩在[80,90)中至少有一人的概率.【解答】解:(1)众数的估计值为最高矩形对应的成绩区间的中点,即众数的估计值为115.…(3分)设中位数的估计值为x,则10×0.005+0.010×10+0.020×10+(x﹣110)×0.030=0.5,解得x=115.∴中位数的估计值为115…(6分)(2)从图中知,成绩在[80,90)的人数为m1=0.005×10×40=2(人),成绩在[90,100)的人数为m2=0.010×10×40=4(人),设成绩在[80,90)的学生记为a,b,成绩在[90,100)的学生记为c,d,e,f.则从成绩在[80,100)内的学生中任取2人组成的基本事件有:(a,b)(a,c)(a,d)(a,e)(a,f)(b,c)(b,d)(b,e)(b,f)(c,d)(c,e)(c,f)(d,e)(d,f)(e,f)共15种.其中成绩在[80,90)的学生至少有一人的基本事件有:(a,b)(a,c)(a,d)(a,e)(a,f)(b,c)(b,d)(b,e)(b,f)共9种.所以成绩在[80,90)的学生至少有一人的概率为…(12分)【点评】本题考查众数、中位数、概率的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质、列举法的合理运用.20.(12分)(2016•湖南模拟)在平角坐标系xOy中,椭圆的离心率,且过点,椭圆C的长轴的两端点为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA、PB分别交于M,N两点.(1)求椭圆C的方程;(2)在x轴上是否存在定点经过以MN为直径的圆,若存在,求定点坐标;若不存在,说明理由.【分析】(1)利用椭圆经过的点,求出b,利用椭圆的离心率求解,a,b,得到椭圆方程.(2)设PA、PB的斜率分别为k1,k2,P(x0,y0),求出斜率的表达式,利用斜率乘积推出定值.得到MN 的中点G(4,3k1+k2).写出以MN为直径的圆的方程,通过令y=0,求解存在定点(1,0),(7,0)经过以MN为直径的圆.【解答】解:(1),∴椭圆C的方程为…(5分)(2)设PA、PB的斜率分别为k1,k2,P(x0,y0),取,,…(7分)由l PA:y=k1(x+2)知M(4,6k1),由l PB:y=k2(x﹣2)知N(4,2k2),∴MN的中点G(4,3k1+k2).∴以MN为直径的圆的方程为,令y=0,∴,∴x2﹣8x+16+12k1k2=0,∴,即x2﹣8x+7=0,解得x=7或x=1.∴存在定点(1,0),(7,0)经过以MN为直径的圆.【点评】本题考查椭圆的方程的求法,直线与椭圆的位置关系的综合应用,圆的方程的应用,考查转化思想以及计算能力.21.(12分)(2016•湖南模拟)已知函数f(x)=x2﹣(﹣1)k2alnx(k∈N,a∈R且a>0).(1)求f(x)的极值;(2)若k=2016,关于x的方程f(x)=2ax有唯一解,求a的值.【分析】(1)求出函数的导数,通过k为偶数与奇数,求解函数的极值即可.(2)k=2016,化简关于x的方程f(x)=2ax,构造函数g(x)=x2﹣2alnx﹣2ax,求出函数的导数,求出极值点,判断函数的单调性,利用函数的零点个数,求解即可.【解答】解:(1)函数f(x)=x2﹣(﹣1)k2alnx(k∈N,a∈R且a>0).可得,当k为奇数时,,∴f(x)在(0,+∞)上单调递增,f(x)无极值.当k为偶数时,,∴f(x)在上单调递减,上单调递增,∴f(x)有极小值,…(5分)(2)∵k=2016,则f(x)=x2﹣2alnx,令g(x)=x2﹣2alnx﹣2ax,令g′(x)=0,∴x2﹣ax﹣a=0,∵a>0,x>0,∴.当x∈(0,x0)时,g′(x)<0,∴g(x)在(0,x0)上单调递减.当x∈(x0,+∞)时,g′(x)>0,∴g(x)在(x0,+∞)上单调递增…(9分)又g(x)=0有唯一解,∴,即…(10分)②﹣①得:2alnx0+ax0﹣a=0⇒2lnx0+x0﹣1=0⇒x0=1.∴12﹣a﹣a=0.∴…(12分)【点评】本题考查函数的导数的应用,函数的极值以及构造法的应用,考查分析问题解决问题的能力.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.(10分)(2016•湖南模拟)如图,⊙O是△ABC的外接圆,AD平分∠BAC交BC于D,交△ABC的外接圆于E.(1)求证:;(2)若AB=3,AC=2,BD=1,求AD的长.【分析】(1)过D作DM∥AB交AC于M,连接BE,利用平行线的性质,结合三角形的角平分线性质,即可得证;(2)先求出DC,再利用三角形相似得出AD•(AD+DE)=AB•AC,即可求AD的长.【解答】(1)证明:如图,过D作DM∥AB交AC于M,连接BE.∴又∵AD平分∠BAC,∴∠BAD=∠CAD,又DM∥AB,∴∠BAD=∠ADM,∴∠CAD=∠ADM.∴AM=MD.∴,由①②知…(5分)(2)解:∵AD•DE=BD•DC,又,∵△ADC∽△ABE.∴,∴AD•AE=AB•AC,∴AD•(AD+DE)=AB•AC,∴,∴…(10分)【点评】本题考查平行线的性质,三角形的角平分线性质,考查三角形相似性质的运用,属于中档题.选修4-4:坐标系与参数方程23.(2016•湖南模拟)已知曲线C1的极坐标方程为ρ=2cosθ,曲线C2的参数方程为为参数).(1)判断C1与C2的位置关系;(2)设M为C1上的动点,N为C2上的动点,求|MN|的最小值.【分析】(1)由,利用互化公式可得直角坐标方程.由曲线C2的参数方程为为参数),消去参数化为直角坐标方程.利用点到直线的距离公式可得:圆心C1(1,0)到3x+4y+8=0的距离d,即可判断出位置关系.(2)利用d﹣r即可得出.【解答】解:(1)由,可得直角坐标方程:x2+y2﹣2x=0,配方为(x﹣1)2+y2=1.由曲线C2的参数方程为为参数),消去参数化为:3x=﹣4y﹣8,∴C2的普通方程为3x+4y+8=0.圆心C1(1,0)到3x+4y+8=0的距离,∴C1与C2相离.(2).【点评】本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.(2016•湖南模拟)已知a,b∈R,f(x)=|x﹣2|﹣|x﹣1|.(1)若f(x)>0,求实数x的取值范围;(2)对∀b∈R,若|a+b|+|a﹣b|≥f(x)恒成立,求a的取值范围.【分析】(1)利用绝对值不等式的解法,化简为二次不等式求解即可.(2)求出不等式的左侧的最小值与右侧的最大值,转化为绝对值不等式求解即可.【解答】解:(1)由f(x)>0得|x﹣2|>|x﹣1|,两边平方得x2﹣4x+4>x2﹣2x+1,解得,即实数x的取值范围是…(5分)(2)|a+b|+|a﹣b|≥|a+b+a﹣b|=2|a|,∵f(x)=|x﹣2|﹣|x﹣1|=,f(x)max=1,∴.所以a的取值范围为…(10分)【点评】本题考查绝对值不等式的解法,函数恒成立条件的应用,分段函数的应用,考查转化思想以及计算能力.。

【最新经典文档】2016-2017年广东省汕头市高三(上)期末数学试卷和答案(文科)

【最新经典文档】2016-2017年广东省汕头市高三(上)期末数学试卷和答案(文科)

2016-2017学年广东省汕头市高三(上)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B=()A.{1,2}B.{2,3}C.{3,4}D.{4,5}2.(5分)设(x,y∈R,i为虚数单位),则模|x﹣yi|=()A.1 B.C.D.3.(5分)若实数x,y满足,则使得z=y﹣2x取得最大值的最优解为()A.(3,0) B.(3,3) C.(4,3) D.(6,3)4.(5分)设S n是数列{a n}的前n项和,且,则a n=()A.B.C.D.5.(5分)去A城市旅游有三条不同路线,甲、乙两位同学各自选择其中一条线路去A城市旅游,若每位同学选择每一条线路的可能性相同,则这两位同学选择同一条路线的概率为()A.B.C.D.6.(5分)执行如图的程序框图,则输出的n是()A.5 B.4 C.3 D.27.(5分)已知f(x)在R上是偶函数,且满足f(x+3)=f(x),当时,f(x)=2x2,则f(5)=()A.8 B.2 C.﹣2 D.508.(5分)已知函数,下列结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)图象关于点对称C.函数f(x)在区间上是减函数D.函数f(x)的图象关于直线对称9.(5分)某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表气温(°C)2016124用电量14284462(度)由表中数据得回归直线方程y=x+中=﹣3,预测当气温为2℃时,用电量的度数是()A.70 B.68 C.64 D.6210.(5分)下列判断错误的是()A.命题“?x>1,x2﹣1>0”的否定是“?x>1,x2﹣1≤0”B.“x=2”是“x2﹣x﹣2=0”的充分不必要条件C.若“p∧q”为假命题,则p,q均为假命题D.命题“若a?b=0,则a=0或b=0”的否命题为“若a?b≠0,则a≠0且b≠0”11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于()A.5πB.20πC.8πD.16π12.(5分)已知函数与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则m=.14.(5分)一个几何体的三视图如图所示,正视图和侧视图是两个全等的三角形,俯视图是个圆,则该几何体的体积等于.15.(5分)已知θ为第二象限角,且,则sinθ+cosθ=.16.(5分)已知函数f(x)=,若m>0,n>0,且m+n=f[f (ln2)],则的最小值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知{a n}是等差数列,满足a1=1,a4=﹣5,数列{b n}满足b1=1,b4=21,且{a n+b n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和S n.18.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,.(1)求B;(2)若,△ABC的面积为,求△ABC的周长.19.(12分)已知如图正四面体SABC的侧面积为,O为底面正三角形ABC 的中心.(1)求证:SA⊥BC;(2)求点O到侧面SABC的距离.20.(12分)某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕成本为50元,每个蛋糕的售价为100元,如果当天卖不完,剩余的蛋糕作垃圾处理.现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若该蛋糕店某一天制作生日蛋糕17个,设当天的需求量为n(n∈N),则当天的利润y(单位:元)是多少?(2)若蛋糕店一天制作17个生日蛋糕.①求当天的利润y(单位:元)关于当天需求量n的函数解析式;②求当天的利润不低于600圆的概率.(3)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?21.(12分)设函数.(1)求函数f(x)的单调区间;(2)讨论函数f(x)的零点个数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立+4=0,直线l的方程为x 极坐标系,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4ρsinθ﹣y﹣1=0.(1)写出曲线C的参数方程;(2)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|2x+m|,m∈R.(1)当m=﹣4时,解不等式f(x)<0;(2)当x∈(1,+∞)时,f(x)<0恒成立,求m的取值范围.2016-2017学年广东省汕头市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B=()A.{1,2}B.{2,3}C.{3,4}D.{4,5}【解答】解:集合A={1,2,3,4,5},B={x|x2﹣3x<0}={x|0<x<3},则A∩B={1,2}.故选:A.2.(5分)设(x,y∈R,i为虚数单位),则模|x﹣yi|=()A.1 B.C.D.【解答】解:∵,∴x=y=,则|x﹣yi|=||=.故选:D.3.(5分)若实数x,y满足,则使得z=y﹣2x取得最大值的最优解为()A.(3,0) B.(3,3) C.(4,3) D.(6,3)【解答】解:由z=y﹣2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最值,由,解得,即A(4,3),即z=y﹣2x取得最大值的最优解为(4,3).故选:C.4.(5分)设S n是数列{a n}的前n项和,且,则a n=()A.B.C.D.【解答】解:由,取n=1,得,即.当n≥2时,a n=S n﹣S n﹣1=,即(n≥2).∴数列{a n}是以为首项,以为公比的等比数列,则.故选:D.5.(5分)去A城市旅游有三条不同路线,甲、乙两位同学各自选择其中一条线路去A城市旅游,若每位同学选择每一条线路的可能性相同,则这两位同学选择同一条路线的概率为()A.B.C.D.【解答】解:∵去A城市旅游有三条不同路线,甲、乙两位同学各自选择其中一条线路去A城市旅游,每位同学选择每一条线路的可能性相同,∴这两位同学选择同一条路线的概率为p==.故选:A.6.(5分)执行如图的程序框图,则输出的n是()A.5 B.4 C.3 D.2【解答】解:模拟程序的运行,可得:a=1,A=1,S=0,n=1,S=2;不满足条件S≥10,执行循环体,a=,A=2,n=2,S=,不满足条件S≥10,执行循环体,a=,A=4,n=3,S=,不满足条件S≥10,执行循环体,a=,A=8,n=4,S=,满足条件S≥10,退出循环,输出n的值为4.故选:B.7.(5分)已知f(x)在R上是偶函数,且满足f(x+3)=f(x),当时,f(x)=2x2,则f(5)=()A.8 B.2 C.﹣2 D.50【解答】解:f(x)在R上是偶函数,且满足f(x+3)=f(x),当时,f(x)=2x2,则f(5)=f(2)=f(﹣1)=f(1)=2.故选:B.8.(5分)已知函数,下列结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)图象关于点对称C.函数f(x)在区间上是减函数D.函数f(x)的图象关于直线对称【解答】解:函数,f(x)的最小正周期为T==π,故A正确;当x=时,y=cos(2×﹣)=0,∴f(x)的图象关于点对称,B正确;x∈[0,]时,2x﹣∈[﹣,],f(x)=cos(2x﹣)不是减函数,C错误;当x=时,y=cos(2×﹣)=为最大值,∴f(x)的图象关于x=对称,D正确.故选:C.9.(5分)某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表气温(°C)2016124用电量14284462(度)由表中数据得回归直线方程y=x+中=﹣3,预测当气温为2℃时,用电量的度数是()A.70 B.68 C.64 D.62【解答】解:由表格数据得=×(20+16+12+4)=13,=×(14+28+44+62)=37;又回归直线方程y=x+中=﹣3,且过样本中心点(,),所以37=﹣3×13+,解得=76,所以y=﹣3x+76;当x=2时,y=﹣3×2+76=7,即预测当气温为2℃时,用电量的度数是70(度).故选:A.10.(5分)下列判断错误的是()A.命题“?x>1,x2﹣1>0”的否定是“?x>1,x2﹣1≤0”是“x2﹣x﹣2=0”的充分不必要条件B.“x=2”C.若“p∧q”为假命题,则p,q均为假命题D.命题“若a?b=0,则a=0或b=0”的否命题为“若a?b≠0,则a≠0且b≠0”【解答】解:命题“?x>1,x2﹣1>0”的否定是“?x>1,x2﹣1≤0”,故A正确;是“x2﹣x﹣2=0”的充分不必要条件,故B “x2﹣x﹣2=0”?“x=2,或x=﹣1”,故“x=2”正确;若“p∧q”为假命题,则p,q中存在假命题,但不一定均为假命题,故C错误;命题“若a?b=0,则a=0或b=0”的否命题为“若a?b≠0,则a≠0且b≠0”,故D 正确;故选:C.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于()A.5πB.20πC.8πD.16π【解答】解:设棱柱的高为h,则,∴h=4.∵AB=2,AC=1,∠BAC=60°,∴BC=如图,连接上下底面外心,O为PQ的中点,OP⊥平面ABC,则球的半径为OA,由题意,AP=?=1,OP=2,∴OA==,所以球的表面积为:4πR2=20π.故选:B.12.(5分)已知函数与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.B.C.D.【解答】解:由题意可得:函数与g(x)=cosx+log2(x+a)图象上存在关于y轴对称的点,则转化为函数f1(x)=2x﹣(x<0)与g′(x)=log2(x+a)的图象上存在关于y 轴对称的点,f1(x)=2x﹣(x<0)只需将y=2x的图象向下平移,g1(x)=log2(x+a)需要将y=log2x的图象向左或右平移|a|,分析可得,a<,故a的取值范围是(﹣∞,),故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则m=﹣.【解答】解:∵向量,,且,∴,解得m=﹣.故答案为:.14.(5分)一个几何体的三视图如图所示,正视图和侧视图是两个全等的三角形,俯视图是个圆,则该几何体的体积等于9π.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四分之三圆锥,其底面面积S==,高h==4,故几何体的体积V==9π;故答案为:9π15.(5分)已知θ为第二象限角,且,则sinθ+cosθ=.【解答】解:∵,∴=3,∴tanθ=﹣2,∵θ为第二象限角,∴sinθ=,cosθ=﹣,∴sinθ+cosθ=,故答案为:.16.(5分)已知函数f(x)=,若m>0,n>0,且m+n=f[f(ln2)],则的最小值为3+2.【解答】解:函数f(x)=,m+n=f[f(ln2)]=f(e ln2﹣1)=f(2﹣1)=log33=1,则=(m+n)()=3++≥3+2=3+2,当且仅当n=m时,取得最小值3+2.故答案为:3+2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知{a n}是等差数列,满足a1=1,a4=﹣5,数列{b n}满足b1=1,b4=21,且{a n+b n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和S n.【解答】解:(1)设{a n}的公差为d,{a n+b n}的公比为q,∴,∴a n=a1+(n﹣1)d,=1+(n﹣1)×(﹣2)=﹣2n+3.∵a1+b1=2,a4+b4=16,∴,∴q=2,∴,∴.(2)S n=b1+b2+b3+…+b n=(21﹣1)+(22+1)+(23+3)+…+(2n+2n﹣3)=(21+22+23+…+2n)+(﹣1+1+3+…+2n﹣3)==2n+1+n2﹣2n﹣218.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,.(1)求B;(2)若,△ABC的面积为,求△ABC的周长.【解答】解:(1)根据正弦定理得:,∴,∴,∵C∈(0,π),∴sinC>0,∴,即,∵B∈(0,π),∴,(2)∵,∴ac=8,根据余弦定理得:b2=a2+c2﹣2accosB,∴12=a2+c2﹣8,即a2+c2=20,∴,∴△ABC的周长为:.19.(12分)已知如图正四面体SABC的侧面积为,O为底面正三角形ABC 的中心.(1)求证:SA⊥BC;(2)求点O到侧面SABC的距离.【解答】(1)证明:取BC的中点D,连结AD,SD,∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,∵△SBC是等边三角形,D是BC的中点,∴SD⊥BC,∵AD∩SD=D,AD,SD?平面SAD,∴BC⊥平面SAD,∵SA?平面SAD,∴SA⊥BC;(2)解:由(1)可知BC⊥平面SAD,∵BC?平面SBC,∴平面SAD⊥平面SBC,∵平面SAD∩平面SBC=SD,过点O作OE⊥SD,则OE⊥平面SBC,∴OE就是点O到侧面SBC的距离.由题意可知点O在AD上,设正四面体SABC的棱长为a,∴,∵正四面体SABC的侧面积为,∴,得a=8.在等边三角形ABC中,D是BC的中点,∴.同理可得.∵O为底面正三角形ABC的中心,∴,,∴在Rt△SAO中,,由,得:,∴,即点O到侧面SBC的距离为.20.(12分)某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕成本为50元,每个蛋糕的售价为100元,如果当天卖不完,剩余的蛋糕作垃圾处理.现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若该蛋糕店某一天制作生日蛋糕17个,设当天的需求量为n(n∈N),则当天的利润y(单位:元)是多少?(2)若蛋糕店一天制作17个生日蛋糕.①求当天的利润y(单位:元)关于当天需求量n的函数解析式;②求当天的利润不低于600圆的概率.(3)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?【解答】解:(1)当n≥17时,Y=17×(100﹣50)=850,当n≤16时,Y=100n﹣17×50=100n﹣850,∴当天的利润y=.n∈N.(2)①由(1)得当天的利润Y关于当天需求量n的函数解析式为:②设“当天利润不低于600”为事件A,由①知,“当天利润不低于600”等价于“需求量不低于15个”∴所以当天的利润不低于600元的概率为:(3)若一天制作16个蛋糕,则平均利润为:;若一天制作17个蛋糕,则平均利润为:,∵,∴蛋糕店一天应该制作17个生日蛋糕.21.(12分)设函数.(1)求函数f(x)的单调区间;(2)讨论函数f(x)的零点个数.【解答】解:(1)函数f(x)的定义域为(0,+∞)∵==当0<a<1时,令f'(x)<0得a<x<1;令f'(x)>0得0<x<a或x>1,所以函数f(x)的单调增区间为(0,a)和(1,+∞),单调减区间为(a,1);当a=1时,恒成立,所以函数f(x)的单调增区间为(0,+∞),无减区间;当a>1时,令f'(x)<0得1<x<a;令f'(x)>0得0<x<1或x>a,所以函数f(x)的单调增区间为(0,1)和(a,+∞),单调减区间为(1,a).(2)由(1)可知,当0<a<1时,函数f(x)的单调增区间为(0,a)和(1,+∞),单调减区间为(a,1),所以,,注意到f(2a+2)=aln(2a+2)>0,所以函数f(x)有唯一零点,当a=1时,函数f(x)在(0,+∞)上单调递增,又注意到,f(4)=ln4>0所以函数f(x)有唯一零点;当a>1时,函数f(x)的单调递增是(0,1)和(a,+∞)上,单调递减是(1,a)上,所以,,注意到f(2a+2)=aln(2a+2)>0,所以函数f(x)有唯一零点,综上,函数f(x)有唯一零点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立+4=0,直线l的方程为x 极坐标系,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4ρsinθ﹣y﹣1=0.(1)写出曲线C的参数方程;(2)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值.+4=0及【解答】解:(1)由ρ2﹣2ρcosθ﹣4ρsinθ得:x2+y2﹣2x﹣4y+4=0,即(x﹣1)2+(y ﹣2)2=1,所以曲线C的参数方程为:;(2)设点P(1+cosθ,2+sinθ)(θ∈R),则点P到直线l的距离为:==所以当时,点,此时,即,k∈z.所以,所以点P坐标为,点P到直线l的距离最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|2x+m|,m∈R.(1)当m=﹣4时,解不等式f(x)<0;(2)当x∈(1,+∞)时,f(x)<0恒成立,求m的取值范围.【解答】解:(1)当m=﹣4时,f(x)=|x﹣1|﹣|2x﹣4|,x<1时,不等式可化为1﹣x+2x﹣4<0,∴x<3,∴x<1;1≤x≤2时,不等式可化为x﹣1+2x﹣4<0,∴x<,∴1≤x<,x>2时,不等式可化为x﹣1+4﹣2x<0,∴x>3,∴x>3,综上所述,不等式的解集为{x|x<或x>3};(2)x∈(1,+∞)时,f(x)<0,即x﹣1<|2x+m|,∴m>﹣x﹣1或m<1﹣3x,∴m≥﹣2.第21页(共21页)。

2016-2017年高三二模数学(文)试题及答案

2016-2017年高三二模数学(文)试题及答案
又 ,所以 ,所以椭圆的方程为 …………………………4分
(2)设直线 的方程为 ,
,消去 得,
,…………………………6分
即 即 …………………………8分
即 …………………………10分
,解得 ,所以 …
22.解:(1)
令 得:
得: (3分)
在 上单调递增
得: 的解析式为
且单调递增区间为 ,单调递减区间为 (6分)
(2) 得
①当 时, 在 上单调递增
时, 与 矛盾
②当 时,
③当 时,
得:当 时,
令 ;则 当 时,
当 时, 的最大值为 (12分)
2、已知条件p:关于 的不等式 有解;条件q:指数函数 为减函数,则p成立是q成立的( ).
A.充分不必要条件 B.必要不充分条件
C.充 要条件D.既不充分也不必要条件
3、在△ 中, 为 边的中点,若 , ,则 ()
A. B. C. D.
4、已知等差数列 的公差为 ,若 成等比数列,则 ( )
A. B. C. D.
2016—2017学年度上学期高中学段高三联合 考 试
高三年级数学科试卷(文)
答题时间:120分钟满分:150分
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项
是符合题目要求的。
1、设集合A={x| },B={y|y=x2},则A∩B=( )
A.[﹣2,2]B.[0,2]C.[2,+∞)D.{(﹣2,4),(2,4)}
(1)若函数在 处的切线过(0,1)点,求k的值;
(2)当k∈( ,1]时,试问,函数f(x)在[0,k]是否存在极大值或极小值,说明理由.
21、(本小题12分)已知椭圆 ( )的离心率为 ,且短轴长为2.

山西省太原市2017届高三上学期期末考试数学文试题 Word版含答案

山西省太原市2017届高三上学期期末考试数学文试题 Word版含答案

太原市2016—2017学年第一学期高三年级期末考试数学试卷(文科) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,1,|12A B x x ==-≤≤,则A B = A. {}0,1 B. {}1,0,1- C. []1,1- D.{}12.设复数21iz i=+,则其共轭复数为 A. 1i -- B. 1i - C. 1i -+ D.1i +3.给出下列命题:①若数列{}n a 为等差数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等差数列; ②若数列{}n a 为等比数列,n S 为其前n 项和,则232,,n n n n n S S S S S --是等比数列; ③若数列{}{},n n a b 均为等差数列,则数列{}n n a b +为等差数列; ④若数列{}{},n n a b 均为等比数列,则数列{}n n a b ⋅为等比数列 A. 1 B. 2 C. 3 D.44.设,m n 为两条不同的直线,α为平面,则下列结论正确的是 A.,//m n m n αα⊥⇒⊥ B. ,//m n m n αα⊥⊥⇒ C. //,////m n m n αα⇒ D. //,m n m n αα⊥⇒⊥5.已知sin αα=,则tan 2α=6.执行如图所示的程序框图,输入1,5x n =-=,则输出s = A. -2 B. -3 C. 4 D.37.如图是一个棱锥的正视图和侧视图,则该棱锥的俯视图可能是8.将函数()2cos sin f x x x x =+的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x 轴向右平移6π个单位,得到函数()y g x =的图象,则()y g x =的一条对称轴是 A. 6x π=- B. 4x π=- C.3x π= D.2x π=9.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD相交于点F ,则AF =A. 1142AC BD +B. 1124AC BD +C. 1223AC BD +D. 2133AC BD +10.甲、乙两位同学约定周日早上8:00—8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为 A.23 B. 13 C. 29 D. 7911.如图,正方体1111ABCD A BC D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是 A. 56π B. 34π C. 23π D. 35π12.已知(),01,0x x e ax x f x ax x e⎧+>⎪=⎨-<⎪⎩,若函数()f x 有四个零点,则实数a 的取值范围是A. 1,e ⎛⎫-∞- ⎪⎝⎭B. (),e -∞-C. (),e +∞D. 1,e ⎛⎫+∞ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.数据0.7,1,0.8,0.9,1.1的方差是 .14.已知向量()()1,1,1,2a b =-=,则b a - 与2a b + 的夹角为 .15.已知平面区域()33,,32233x y D x y z x y x y x y ⎧⎫⎪⎪+≥⎪⎪==-⎨⎬-≤⎪⎪⎪⎪+≤⎩⎭,若命题()00",,"x y D z m ∃∈>为假命题,则实数m 的最小值为 .16.已知数列{}n a 的前n 项和()221n n n S a n N *=-+∈,则其通项公式n a = .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)已知数列{}n a 是首项为1的单调递增的等比数列,且满足3455,,3a a a 成等差数列. (1)求{}n a 的通项公式;(2)若()31log n n b a n N *-=∈,求数列{}n n a b ⋅的前n 项和n S .18.(本题满分12分)如图,已知AD 是ABC ∆内角BAC ∠的角平分线. (1)用正弦定理证明:AB DBAC DC=; (2)若120,2,1BAC AB AC ∠===,求AD 的长.19.(本题满分12分)甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D 处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.(1)将硬币连续投掷三次,求筹码停在C 处的概率;(2)将硬币连续投掷三次,现约定:若筹码停在A 或B 或C 或D 处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.20.(本题满分12分)如图,在六面体1111ABCD A BC D -中,平面//ABCD 平面1111A B C D ,1//DD 平面11A B BA ,1//DD 平面11B C CB .(1)证明:11//DD BB ;(2)已知六面体1111ABCD A BC D -的棱长均为2,且1BB ⊥平面ABCD ,60,,BAD M N ∠= 分别为棱1111,A B B C 的中点,求四面体D MNB -的体积.21.(本题满分12分)已知函数()()ln xxf x ax x a R e =-∈在1x =处的切线的斜率 1.k =- (1)求a 的值; (2)证明:()2.f x e<(3)若正实数,m n 满足1mn =,证明 :()112m n m n e e+<+.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2016-2017年北京市海淀区高三(上)期中数学试卷及参考答案(文科)

2016-2017年北京市海淀区高三(上)期中数学试卷及参考答案(文科)预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制2016-2017学年北京市海淀区高三(上)期中数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>2}B.{x|2<x<3}C.{x|x>3}D.{x|1<x<3} 2.(5分)已知向量=(﹣1,x),=(﹣2,4).若∥,则x的值为()A.﹣2 B.C.D.23.(5分)已知命题p:?x>0,x+≥2命题q:若a>b,则ac >bc.下列命题为真命题的是()A.q B.¬p C.p∨q D.p∧q4.(5分)若角θ的终边过点P(3,﹣4),则tan(θ+π)=()A.B.C.D.5.(5分)已知函数y=x a,y=log b x的图象如图所示,则()A.b>1>a B.b>a>1 C.a>1>b D.a>b>16.(5分)设,是两个向量,则“|+|>|﹣|”是“?>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)给定条件:①?x0∈R,f(﹣x0)=﹣f(x0);②?x∈R,f(1﹣x)=f(1+x)的函数个数是下列三个函数:y=x3,y=|x﹣1|,y=cosπx中,同时满足条件①②的函数个数是()A.0 B.1 C.2 D.38.(5分)已知定义在R上的函数f(x)=,若方程f(x)=有两个不相等的实数根,则a的取值范围是()A.﹣≤a< B.C.0≤a<1 D.二、填空题共6小题,每小题5分,共30分.9.(5分)计算lg2﹣lg+3lg5=.10.(5分)已知sinα=,则cos2α=.11.(5分)已知函数y=f(x)的导函数有且仅有两个零点,其图象如图所示,则函数y=f(x)在x=处取得极值.12.(5分)在正方形ABCD中,E是线段CD的中点,若=λ+μ,则λ﹣μ=.13.(5分)在△ABC中,cosA=,7a=3b,则B=.14.(5分)去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin(x+φ)(a,b为常数,0<φ<).其中三个月份的月平均气温如表所示:。

2016~2017学年度武汉市部分学校新高三起点调研测试数学(文科)试卷及答案

2016~2017学年度武汉市部分学校新高三起点调研测试数学(文科)试卷一.选择题1.设集合A={x||x-2|<3},N 为自然数集,则A ∩N 中元素的个数为A.3B. 4C. 5D.62.i 为虚数单位,则11i+= A.12i - B.12i +- C.12i + D.123.命题“*,n N x R ∀∈∃∈,使得2n x <”的否定形式是A.*,n N x R ∀∈∃∈,使得2n x ≥B.*,n N x R ∀∈∀∈,使得2n x ≥C.*,n N x R ∃∈∃∈,使得2n x ≥D.*,n N x R ∃∈∀∈,使得2n x ≥4.设等比数列{n a }的公比q=2,前n 项和为n S ,则42S S = A.5 B.152 C.73 D.1575.要得到函数sin(4)4y x p =-的图像,只需将函数sin 4y x =的图像 A.向左平移16p 个单位 B.向右平移16p 个单位 C.向左平移4p 个单位 D.向右平移4p 个单位6.函数213()log (9)f x x =-的单调增区间为A.(0,+∞)B.(-∞,0)C.(3,+∞)D.(-∞,-3)7.若向量(1,2)a =-,(1,1)b =--,则42a b +与a b -的夹角等于 A.4p - B.6p C.4p D.34p 8.已知平面α⊥平面β,l αβ=,若直线,a b 满足a //α,b β⊥,则A.a //lB.a //bC.b l ⊥D.a b ⊥9.A.T T a =B.T T a =C.T aD.T=10.如图,网格纸上小正方形的边长为1,粗线画出的是某空间几何体的三视图,若该几何体的体积为20,则该几何体的表面积为A.72B.78C.66D.6211.连续抛掷一枚质地均匀的骰子2次,则出现向上的点数之和小于4的概率为A.118B.112C.19D.1612.已知双曲线Г:22221(0,0)y x a b a b-=>>的上焦点为(0,)(0)F c c >,M 是双曲线下支上的一点,线段FM 与圆2222039c a x y y +-+=相切于点D ,且||3||MF DF =,则双曲线Г的渐近线方程为A.40x y ?B.40x y ?C.20x y ?D.20x y ?二.填空题13.若实数,x y 满足约束条件2,2,2.x y x y ì£ïï£íï+?ïî,则2z x y =+的最大值是 . 14.曲线1x y x =+在点1(1,)2处的切线方程为 . 15.已知抛物线Г:22x y =,过点(0,2)A -和(,0)B t的直线与抛物线没有公共点,则实数t的取值范围是 .16.已知函数()sin cos f x x a x =-图像的一条对称轴为34x π=,记函数()f x 的两个极值点分别为12,x x ,则12||x x +的最小值为 .三.解答题17.已知数列{n a }是公差为 -2的等差数列,且325a a a =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}n a 的前n 项和n S 的最大值.18.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图. 现拟定在各班中分数超过本班平均分的同学为“口语王”.(Ⅰ)记甲班“口语王”人数为m ,乙班“口语王”人数为n ,比较m ,n 的大小;(Ⅱ)求甲班10 名同学口语成绩的方差.19.ABC D 的内角,,A B C 对应的三边分别是,,a b c ,已知222()2cos a b ac B bc -=+. (Ⅰ)求角A ;(Ⅱ)若点D 为边BC 上一点,且2BD DC =,BA AD ^,求角B .20.如图,四棱锥P ABCD -中,90,2,ABCBAD BC AD PAB ???D 与PAD D 都是等边三角形.(Ⅰ)证明:CD ^平面PBD ;(Ⅱ)求四棱锥P ABCD -的体积.21.如图,已知椭圆Г:22143x y +=的左、右焦点分别为12,F F ,过点12,F F 分别作两条平行直线AB 、CD交椭圆Г于A 、B 、C 、D .(Ⅰ)求证:||||AB CD =;(Ⅱ)求四边形ABCD 面积的最大值.22.已知函数3()3||2()f x x x a a R =+-+?.(Ⅰ)当0a =时,讨论()f x 的单调性;(Ⅱ)当1a 时,求()f x 在区间[0,2]上的最小值.。

广西省2017届高三上学期教育质量诊断性联合考试数学(文)试卷Word版含解析

2016年广西秋季学期高三年级教育质量诊断性联合考试数学试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列集合中,是集合的真子集的是()A. B. C. D.【答案】D【解析】由已知可得其真子集可为,故选D,2. 复数的实部与虚部分别为()A. ,B. ,C. ,D. ,【答案】A【解析】实部和虚部分别为,故选A.3. 设为钝角,且,则等于()A. B. C. D.【答案】B【解析】由已知可得,故选B.4. 设,,,则()A. B. C. D.【答案】A【解析】,故选A.5. 设向量若,则的值为()A. B. C. D.【答案】C【解析】由已知可得,故选C.6. 设,满足约束条件则的最大值为()A. B. C. D. 0【答案】A【解析】如图,故选A.【点睛】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤:(1)在直角坐标系中画出对应的平面区域,即可行域;(2)由目标函数变形为;(3)作平行线:将直线平移,使直线与可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出的最大(小)值.7. 将函数的图象向左平移个单位后,得到的图象,则()A. B. 的图象关于对称C. D. 的图象关于对称【答案】B【解析】由已知可得,故选B.8. 执行如图所示的程序框图,若输入的,,则输出的等于()A. 94B. 99C. 45D. 203【答案】A【解析】,故选A.【点睛】本题主要考查程序框和数列的前项和,属于较易题型.高考中对于程序框图的考查主要有:输出结果型、完善框图型、确定循环变量取值型、实际应用型等,最常见的题型是以循环结构为主,求解程序框图问题的关键是能够应用算法思想列出并计算每一次循环结果,注意输出值和循环变量以及判断框中的限制条件的关系.9. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图的右边为一个半圆,则此几何体的体积为()A. B. C. D.【答案】B【解析】由已知可得该几何体是由一个四棱锥和半个圆锥组成的,故其体积为,故选B.【点睛】本题主要考查三视图,属于较易题型.应注意把握三个视图的位置和尺寸:主视图在图纸的左上方,左视图在主视图的右方,俯视图在主视图的下方;主视图与俯视图长应对正(简称长对正) ,主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按上述顺序放置,则应注明三个视图名称.10. 函数的单调递增区间为()A. B. C. D.【答案】D【解析】由已知可得原函数的定义域为,由于是减函数,故原函数的增区间就是函数的减区间,故选D.11. 直线与双曲线的左支、右支分别交于、两点,为右顶点,为坐标原点,若,则该双曲线的离心率为()A. B. C. D.【答案】D【解析】由双曲线的对称性可得,故选D.12. 已知定义在上的奇函数在上递减,若对恒成立,则的取值范围为()A. B. C. D.【答案】C【解析】由已知可得在上是减函数,故原命题等价于,即【点睛】本题关键步骤有:1.利用奇函数的性质可得在上是减函数;2.将原命题等价转化为在上恒成立;3.利用导数工具求得,从而求得正解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若从上任取一个实数作正方形的边长,则该正方形的面积大于4的概率为__________.【答案】【解析】由已知可得所求的概率为 .14. 长、宽、高分别为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为__________.【答案】【解析】该球的半径表面积 .15. 已知曲线由抛物线及其准线组成,则曲线与圆的交点的个数为__________.【答案】4【解析】由上图可得交点个数为4.【答案】21【解析】设的对应边边长分别里,里,里故正确答案为 .【点睛】本题主要考查正余弦定理和三角形的面积公式,涉及函数与方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.解决本题的关键问题是要在充分理解题意的基础上建立解三角问题模型,再利用余弦定理和三角面积公式进行运算求解,还得注意面积单位的换算.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 某体育场一角的看台共有20排,且此看台的座位是这样排列的:第一排有2个座位,从第二排起每一排比前一排多1个座位,记表示第排的座位数.(1)确定此看台共有多少个座位;(2)求数列的前项和.【答案】(1)230(2)详见解析【解析】试题分析:(1)由题可知数列是符合等差数列的定义,再由等差数列的通项公式求得(),再求得其前项和;(2)化简,利用错位相减法求得.试题解析:(1)由题可知数列是首项为2,公差为1的等差数列,∴().∴此看台的座位数为.(2)∵,∴.18. 已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:(1)试问这3年的前7个月中哪个月的月平均利润最高?(2)通过计算判断这3年的前7个月的总利润的发展趋势;(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.相关公式:,.【答案】(1)5月和6月的平均利润最高(2)详见解析(3)940万元.【解析】试题分析:(1)由折线图,通过计算每个月的平均利润可得;(2)分别计算出第1、2、3年前七个月的总利润,由计算结果即可分析趋势;(3)由题意将数据代入公式,列出回归方程求解即可。

【最新经典文档】2016-2017年广东省东莞市高三(上)期末数学试卷和答案(文科)


【解答】 解:函数 f (x) =
为减函数,
若 x>y,则

故命题 p:为真命题;
第 7 页(共 24 页)
m> 1 时, x2+mx+1=0 不一定有两个根, 则命题 q:函数 y=x2+mx+1 有两个零点为假命题. 则:( 1) p∧ q 为假命题; ( 2) p∨ q 为真命题; ( 3) p∧(¬ q)为真命题; ( 4)(¬ p)∨ q 为假命题, 故选: C.

第 2 页(共 24 页)
A.在区间
上单调递减 B.在区间
上单调递增
C.在区间
上单调递减 D.在区间
上单调递增
9.(5 分)《九章算术 ?均输》中有如下问题: “今有五人分五钱,令上二人所得 与下三人等, 问各得几何. ”其意思为 “已知甲、乙、丙、丁、戊五人分 5 钱,甲、 乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差 数列,问五人各得多少钱? ”( “钱 ”是古代的一种重量单位) .这个问题中,乙所 得为( ) A. 钱 B. 钱 C. 钱 D. 钱
( 2)求数列 {
} 的前 n 项和 Tn.
18.( 12 分)某商场对 A 商品近 30 天的日销售量 y(件)与时间 t (天)的销 售情况进行整理,得到如下数据经统计分析,日销售量 y(件)与时间 t (天) 之间具有线性相关关系.
时间( t )
2
4
6
8
10
日销售量
38
37
32
( y)
( 1)请根据上表提供的数据,用最小二乘法原理求出
第 1 页(共 24 页)
A.m=26, n=12B.m=38,n=12 C. m=12,n=12 D.m=24,n=10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度上学期高三阶段检测高三数学(文)时间:120分钟 分数:150分考察范围:集合与简易逻辑、函数、导数、三角函数、解三角形、数列、极坐标一、选择题.(每小题5分,共60分)1.集合{}3A 3,B 0,1,2,3,42x Z x ⎧⎫=∈-<<=⎨⎬⎩⎭,则集合A∩B 的子集个数为( )A.16B.8C.7D.42.已知a R ∈,则“1a =-”是“21(1)a a i -+-为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要3.△ABC 中,6a b A π==∠=,则∠B=( )A.4π B.344ππ或 C.233ππ或 D.3π4.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x 5.等差数列}{n a 的前n 项和为30,1191=++a a a S n 若,那么13S 值的是( ) A .65 B .70 C .130 D .2606. 某公司有员工500人,其中不到35岁的有125人,35-49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )A .33人,34人,33人B .25人,56人,19人C .30人,40人,30人D .30人,50人,20人7.将函数1sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移2π个单位,再将所有点的横坐标缩短为原来的12(纵坐标不变),则所得图象对应的函数的一个单调递增区间为( )A.13,1212ππ⎡⎤-⎢⎥⎣⎦B.1325,1212ππ⎡⎤⎢⎥⎣⎦C.13,1212ππ⎡⎤⎢⎥⎣⎦D.719,1212ππ⎡⎤⎢⎥⎣⎦8.已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >> 9.向量()()(),2,1,0a m b n n ==->,且a ·b =0,点(),P m n 在圆225x y +=上,则2a b +=( )B.6C.D.10.已知{}n a 是递增等比数列,2432,4a a a =-=,则此数列的公比q =( ) A .-1 B .2 C .-1或2 D .4 11.函数()()()1122log 2log 2f x x x =+--,则不等式()()1f x f x <-的解集为( )A.1,2⎛⎫-∞ ⎪⎝⎭B.1,2⎛⎫+∞ ⎪⎝⎭ C.11,2⎛⎫- ⎪⎝⎭ D.1,22⎛⎫ ⎪⎝⎭12.定义在(0,)+∞上的单调减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( )A .3(2)2(3)f f >B .2(3)(4)f f <C .3(4)4(3)f f <D .2(3)3(4)f f <二、填空题.(每小题5分,共20分)13.已知tan 2α=.则2sin 2sin sin cos cos 21ααααα+--=________.14.设向量a = (m ,1),b =(1,2),且a ∥b ,则m =________.15.设等差数列{}n a 前n 项和为n S ,24,a a 是方程220x x --=的两个根,5S =_____.16.设函数()()321f x x a x ax =+++有两个不同的极值点12,x x ,且对不等式()()120f x f x +≤恒成立,则实数a 的取值范围是________.三、解答题.(共70分)17.(本小题满分10分)已知命题p :2()(42)5f x x m x =+-+在区间(,0)-∞上是减函数,命题q :不等式2210x x m -+->的解集是R ,若命题“p q ∨”为真,命题“p q ∧”为假,求实数m 的取值范围.18.(本小题满分12分)在研究色盲与性别的关系调查中,调查了男性240人,其中有40人患色盲,调查的260名女性中有10人患色盲. (Ⅰ)根据以上数据建立一个2×2列联表;19.(本小题满分12分)C ∆AB 的内角A 、B 、C 所对的边分别为a 、b 、c .向量(),3m a b =与()cos ,sin n =A B 平行. (Ⅰ)求A ;(Ⅱ)若a =2b =,求C ∆AB 的面积.20.(本小题满分12分)等差数列{}n a 中,31=a ,其前n 项和为n S . 等比数列{}n b 的各项均为正数,11=b ,且1222=+S b ,33a b =.(Ⅰ)求数列{}n a 与{}n b 的通项公式;(Ⅱ)求数列⎭⎬⎫⎩⎨⎧n S 1的前n 项和n T .21.(本小题满分12分)已知函数()23ln f x ax x x=--,其中a 为常数.(Ⅰ)当函数()f x 的图像在点22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1时,求()f x 在3,32⎡⎤⎢⎥⎣⎦上的最小值; (Ⅱ)若函数()f x 在区间()0,+∞上既有极大值又有极小值,求a 的取值范围.22.(本小题满分10分)在直角坐标系中,曲线C 的参数方程为⎩⎨⎧==ϕϕsin 15cos 5y x ,(ϕ为参数),直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 23321,(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为)2,3(π.(Ⅰ)求点P 的直角坐标,并求曲线C 的普通方程;(Ⅱ)设直线l 与曲线C 的两个交点为A ,B ,求PB PA +的值.2016-2017学年度上学期高三阶段检测高三数学(文)参考答案一、选择题1-12 BCBAC BCCAB DB二、填空题13.1 14.1/2 15.5/2 16.(-∞,-1]∪[12,2]三、解答题 17.解:若命题p 为真,即2()(42)5f x x m x =+-+在区间(,0)-∞上是减函数,只需对称轴120x m =-≥,即12m ≤·······························································2分 若命题q 为真,即不等式2210x x m -+->的解集是R ,只需44(1)0m =--<,即0m <·······················································4分 因为 “p q ∨”为真,命题“p q ∧”为假·················································6分 所以p 、q 一真一假,所以102a ≤≤················································12分18.解:(Ⅱ)2500(4025010200)22.79210.82850450240260k ⨯-⨯==>⨯⨯⨯·····························10分有99.9%的把握认为“性别与患色盲有关系” ······································12分19.解:(Ⅰ)因为//m n ,所以sin 3cos 0a B b A ,····································2分由正弦定理,得sinAsinB 3sinBcos A 0·········································3分 又sin 0B ≠,从而tan 3A ,·························································4分由于0A π<<,所以3A π=······························································6分(Ⅱ)由余弦定理2222cos a b c bc A得2742c c ,即2230c c ······················································8分 因为0c ,所以3c .···································································10分故C ∆AB 的面积为133bcsinA22.··················································12分20.解:(Ⅰ)设{}n a 公差为d ,{}n b 公比为q ,由已知可得2331232q d q d +++=⎧⎨=+⎩·········2分又0>q ⎩⎨⎧==∴33q d .···········································································4分所以33(1)3n a n n =+-=,13n n b -=.····················································6分 (Ⅱ)由(Ⅰ)得,31=a ,n a n 3=,(33),2n n n S +∴=··························8分 )111(32)33(21+-=+=∴n n n n S n ,·····················································10分 12111+n n T S S S ∴=++211111[(1)()(]32231n n =-+-++-+)212(1)3131nn n =-=++().···12分21解:(Ⅰ)()223'f x a x x=+-·································································2分 由题可得2'13f ⎛⎫= ⎪⎝⎭,解得1a =,故()33ln f x x x x =--.·····························3分∴()()()()2222122332'10x x x x f x x x x x x---+=+-==>···························4分 由()'0f x =可得2x =.于是可得下表:∴()min 213ln 2f x f ==-·····························································6分(Ⅱ)()()2222332'0ax x f x a x x x x-+=+-=>·······································8分 由题意可设方程2320ax x -+=有两个不等的正实根,不妨设这两个根为12,x x 并令()232h x ax x =-+,则12129803020a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,··········································10分解得908a <<,故a 的取值范围为90,8⎛⎫ ⎪⎝⎭. ··········································12分22.解:(Ⅰ))3,0(P ,115522=+y x ; (Ⅱ)6.。

相关文档
最新文档