(核定版)浙教版七年级下册数学第三章 整式的乘除含答案
浙教版七年级下册数学第三章 整式的乘除含答案

浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A.(x-y)2=x 2-y 2B.x 6÷x 2=x 4C.x 2y+xy 2=x 3y 3D.x 2·y 2=(xy)42、下列运算正确的是()A. 4m﹣m=3B.C.D.﹣(m+2n)=﹣m+2n3、若则m的值为()A.2B.3C.4D.54、下列运算正确的是()A.2 a3﹣a2=aB.(a3)2=a5C. a3• a2=a5D.(a﹣1)2=a2﹣15、计算﹣12a6÷(3a2)的结果是()A.﹣4a 3B.﹣4a 8C.﹣4a 4D.﹣ a 46、下列计算正确的是()A. B. C. D.7、下列运算正确的是()A. B. C. D.8、下列计算正确的是()A.b 2•b 2=2b 2B.(x﹣3)2=x 2﹣9C.(a 5)2=a 7D.(﹣2a)2=4a 29、在下列各数:,,,,,中,负有理数的个数是()A. 个B. 个C. 个D.10、如果,,,那么a,b,c的大小关系是()A. B. C. D.11、下列运算中正确的是()A. B. C. D.12、如图在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分面积,可以验证下面一个等式是()A.(a+b) 2=a 2+2ab+b 2B.(a-b) 2=a 2-2ab+b 2C.a 2-b 2=(a+b)(a-b)D.a 2+b 2=[(a+b)²+(a-b)²]13、3-1等于( )A. B. C. D.14、下列多项式乘法中不能用平方差公式计算的是()A.(a 3+b 3)(a 3﹣b 3)B.(a 2+b 2)(b 2﹣a 2)C.(2x 2y+1)(2x 2y﹣1) D.(x 2﹣2y)(2x+y 2)15、下列计算正确的是()A.(a 2)3=a 5B.(﹣2a)2=﹣4a 2C.m 3•m 2=m 6D.a 6÷a 2=a 4二、填空题(共10题,共计30分)16、已知,则代数式的值为________.17、若a+b=5,ab=3,则3a2+3b2=________.18、当a________时,(a2﹣2)﹣2有意义.19、计算:①399×401=________;②0.252006×42007=________ .20、计算:________.21、若=1,则实数x应满足的条件是________.22、计算:(a﹣b)•(b﹣a)2=________(结果用幂的形式表示).23、计算: x6÷x4= ________.24、计算:(﹣1)0﹣()﹣1=________.25、已知,则的值为________.三、解答题(共5题,共计25分)26、计算:.27、如图所示,有一个狡猾的地主,把一块边长为a米的正方形土地租给马老汉栽种.过了一年,他对马老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”马老汉一听,觉得好像没吃亏,就答应了.同学们,你们觉得马老汉有没有吃亏?请说明理由.28、一个直角三角形的两条直角边长分别为2a+1和3a﹣1,该三角形面积为S,试用含a的代数式表示S(结果要化成最简形式),并求当a=2时,S的值.29、已知x m=2,x n=3,求:①x m﹣n;②x m+m;③x2m+n;④x3m﹣2n的值.30、已知,求代数式的值.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、C6、D7、A8、D9、C10、C11、B12、C13、D14、D15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
浙教版七年级下数学第三章整式的乘除解答题精选及答案

浙教版初中数学七年级下册第三章整式的乘除解答题精选题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分解答题(共35小题)1.计算:(1)(x﹣1)2+x(3﹣x)(2)(x2y﹣1)2•(x﹣1y2)3÷(﹣x﹣1y)42.计算:(1)﹣(﹣2)+(π﹣3.14)0+(2)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣1.3.若m p=,m2q=7,m r=﹣,求m3p+4q﹣2r的值4.先化简,再求值:(1)[x2+y2﹣(x+y)2+2x(x﹣y)]÷4x,其中x﹣2y=2(2)(mn+2)(mn﹣2)﹣(mn﹣1)2,其中m=2,n=.5.如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于,图②中的小正方形的边长等于;(2)图②中的大正方形的面积等于,图②中的小正方形的面积等于;图①中每个小长方形的面积是;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗?.6.我们规定:a﹣p=(a≠0),即a的负P次幂等于a的p次幂的倒数.例:4﹣2=(1)计算:5﹣2=;(﹣2)﹣2=;(2)如果2﹣p=,那么p=;如果a﹣2=,那么a=;(3)如果a﹣p=,且a、p为整数,求满足条件的a、p的取值.7.(1)如图1,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它长为;宽为;面积为.(2)由(1)可以得到一个公式:.(3)利用你得到的公式计算:20182﹣2019×2017.8.【规定】=a﹣b+c﹣d.【理解】例如:=3﹣2+1﹣(﹣3)=5.【应用】先化简,再求值:,其中x=﹣2,y=﹣.9.阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.10.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.11.阅读下列计算过程:99×99+199=992+2×99+1=(99+1)2=1002=104(1)计算:999×999+1999====;9999×9999+19999====(2)猜想9999999999×9999999999+19999999999等于多少?写出计算过程.12.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.13.如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值;(3)已知(5+2x)2+(2x+3)2=60,求(5+2x)(2x+3)的值.14.先化简,再求值:,其中a=1,b =﹣2.15.小红家有一块L形的菜地,要把L形的菜地按如图所示分成两块面积相等的梯形,种上不同的蔬菜.这两个梯形的上底都是am,下底都是bm,高都是(b﹣a)m.(1)求小红家这块L形菜地的面积.(用含a、b的代数式表示)(2)当a=10,b=30时,求小红家这块L形菜地的面积.16.用4个相同的小长方形与1个小正方形密铺而成的大正方形图案如图所示,已知大正方形的面积为36,小正方形的面积为4,用x、y(x>y)分别表示小长方形的两边长.(1)求x2+y2的值;(2)求xy的值.17.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1方式放置(两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示.当a=5,b=4,AD ﹣AB=2时,若图1中阴影部分的面积为1,求AB的长.18.如图,某小区规划在一个长30米、宽20米的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.设通道的宽为x米,种植花草的面积为S平方米.(1)用含x的代数式表示S(要求有计算过程,结果化简);(2)当x=2时,求S的值.19.长方形和正方形按如图的样式摆放,求图中阴影部分的面积.20.甲、乙两长方形的边长如图所示(m为正整数),其面积分别为S1、S2.(1)用“<”或“>”号填空:S1S2;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m的代数式表示);②若该正方形的面积为S3,试探究:S3与S1的差(即S3﹣S1)是否为常数?若为常数,求出这个常数;如果不是,请说明理由;(3)若满足条件0<n<|S1﹣S2|的整数n有且只有10个,求m的值.21.阅读下面材料,解答问题:将4个数a、b、c、d排列成2行2列,两边各加一条竖线,记为叫做二阶行列式.意义是=ad﹣bc.例如:=5×8﹣6×7=﹣2.(1)请你计算的值;(2)若=9,求x的值.22.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个小长方形.拿掉边长为n的小正方形纸板后,再将剩下的三块拼成一个新长方形.(1)用含m和n的代数式表示拼成的新长方形的周长;(2)根据两个图形的面积关系,得到一个数学公式,请你写出这个数学公式.23.如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.24.已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.25.阅读材料:若“三角形”表示运算a﹣b+c,表示运算ad﹣bc,求:当x=﹣1,y=2时,×的值.26.符号已知称为二阶行列式,他的运算法则=ad﹣bc,例如=2×4﹣3×(﹣5)=23,请根据二阶行列式的法则化简,并求出当x=﹣2时的值.27.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.28.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式,①如图1,根据图中阴影部分的面积可表示为,还可表示为,可以得到的恒等式是②类似地,用两种不同的方法计算同一各几何体的体积,也可以得到一个恒等式,如图2是边长为a+b的正方体,被如图所示的分割线分成8块.用不同方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式是.29.(1)如图1,正方形ABCD和CEFG的边长分别为a、b,用含a、b的代数式表示△AEG的面积.S△AEG=.(2)如图2,边长为a的正方形ABCD、边长为b的正方形CEFG和边长为c的正方形MNHF的位置如图所示,点G在线段AN上,则S△AEN=.(请直接写出结果,不需要过程)30.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)31.如图,正方形ABCD中,点G是边CD上一点(不与端点C,D重合),以CG为边在正方形ABCD外作正方形CEFG,且B、C、E三点在同一直线上,设正方形ABCD和正方形CEFG的边长分别为a和b(a>b).(1)分别用含a,b的代数式表示图1和图2中阴影部分的面积S1、S2;(2)如果a+b=5,ab=3,求S1的值;(3)当S1<S2时,求a﹣2b值的正负.32.特殊两位数乘法的速算﹣﹣如果两个两位数的十位数字相同,个位数字相加为10,那么能立即说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积.如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=.33.观察以下等式:(x+1)(x2﹣x+1)=x3+1,(x+3)(x2﹣3x+9)=x3+27,(x+6)(x2﹣6x+36)=x3+216,……(1)按以上等式的规律,填空:(a+b)()=a3+b3;(2)运用上述规律猜想:(a﹣b)(a2+ab+b2)=;并利用多项式的乘法法则,通过计算说明此等式成立;(3)利用(1)(2)中的结论化简:(x+y)(x2﹣xy+y2)﹣(x﹣y)(x2+xy+y2).34.有若干块长方形和正方形硬纸片如图①所示,用若干块这样的硬纸片可以拼成个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个数学等式,例如图②可以得到(a+b)2=a2+2ab+b2.小明拼成了如图③的图形,请解答下列问题:(1)根据图中面积关系,写出图③所表示的数学等式;(2)若小明拼成的图③中的大长方形面积为310cm2,其中每块小长方形硬纸片的面积为22cm2,试求该大长方形的周长.35.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1,可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;(3)小明同学用2张边长为a的正方形、3张边长为b的正方形、5张边长为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,求9x+10y+6.参考答案与试题解析一.解答题(共40小题)1.解:(1)原式=x2﹣2x+1+3x﹣x2=x+1;(2)原式=x4y﹣2•x﹣3y6÷x﹣4y4=xy4÷x﹣4y4=x5.2.解:(1)原式=2+1+3+(﹣3)=3;(2)原式=4x4+12xy+9y2﹣(4x2﹣y2)=4x4+12xy+9y2﹣4x2+y2=12xy+10y2,当x=,y=﹣1时,原式=12××(﹣1)+10×(﹣1)2=﹣6+10=4.3.解:∵m p=,m2q=7,m r=﹣,∴m3p+4q﹣2r=(m p)3×(m2q)2÷(m r)2=×49÷=×49×=.4.解:(1)原式=(x2+y2﹣x2﹣2xy﹣y2+2x2﹣2xy)÷4x =(2x2﹣4xy)÷4x=x﹣y,当x﹣2y=2时,原式=(x﹣2y)=1;(2)原式=m2n2﹣4﹣m2n2+2mn﹣1=2mn﹣5,当m=2,n=时,原式=2×2×﹣5=2﹣5=﹣3.5.解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;故答案为:m+n,m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m﹣n)2,mn;(3)由图②可得,(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系为:(m+n)2﹣(m ﹣n)2=4mn.故答案为:(m+n)2﹣(m﹣n)2=4mn.6.解:(1)5﹣2=;(﹣2)﹣2=;(2)如果2﹣p=,那么p=3;如果a﹣2=,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为:(1);;(2)3;±4.7.解:(1)图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:(a+b)(a﹣b),故答案为:a2﹣b2,a+b,a﹣b,(a+b)(a﹣b);(2)由(1)可得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)20182﹣2019×2017=20182﹣(2018+1)(2018﹣1)=20182﹣20182+1=1.8.解:=(3xy+2x2)﹣(2xy+y2)+(﹣x2+2)﹣(2﹣xy)=3xy+2x2﹣2xy﹣y2﹣x2+2﹣2+xy=2xy+x2﹣y2,当x=﹣2,y=﹣时,原式=2×(﹣2)×(﹣)+(﹣2)2﹣(﹣)2=2+4﹣=5.9.解:(1)∵a﹣b=﹣3,ab=﹣2,∴(a+b)(a2﹣b2)=(a+b)2(a﹣b)=[(a﹣b)2+4ab](a﹣b)=[(﹣3)2+4×(﹣2)]×(﹣3)=﹣3.(2)(a﹣b)2+c2=[(a﹣b)﹣c]2+2(a﹣b)c=(﹣10)2+2×(﹣12)=76.10.解:∵甲正确得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10 对应的系数相等,2b﹣3a=11,ab=10,乙错误的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.11.解:(1)根据99×99+199=992+2×99+1=(99+1)2=1002=104所示规律,得999×999+1999=9992+2×999+1=(999+1)2=10002=106;9999×9999+19999=99992+2×9999+1=(9999+1)2=100002=108.(2)根据(1)中规律,9999999999×9999999999+19999999999=(9999999999+1)2=100000000002=1020.12.解:(1)图2大正方形的面积=(a+b)2;图2大正方形的面积=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,即a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,∵(x﹣2016)2+(x﹣2018)2=34,∴(a+1)2+(a﹣1)2=34,∴a2+2a+1+a2﹣2a+1=34,∴2a2+2=34,∴2a2=32,∴a2=16,即(x﹣2017)2=16.13.解:(1)根据图中条件得,该图形的总面积=a2+2ab+b2,该图形的总面积=(a+b)2;(2)由(1)可得:(a+b)2=a2+2ab+b2,∵a2+b2=57,ab=12,∴(a+b)2=57+24=81,∵a+b>0,∴a+b=9;(3)设5+2x=a,2x+3=b,则a2+b2=60,a﹣b=(5+2x)﹣(2x+3)=2,∵a2+b2﹣2ab=(a﹣b)2,∴60﹣2ab=4,∴ab=28,∴(5+2x)(2x+3)=28.14.解:=[a2+ab+b2﹣a2+ab﹣b2](4a2﹣b2)(b2+4a2)=ab(16a4﹣b4)=a5b﹣ab5,当a=1,b=﹣2时,原式=.15.解:(1)小红家这块L形菜地的面积是2×(a+b)(b﹣a)=(b2﹣a2)m2;(2)当a=10,b=30时,原式=302﹣102=800(m2),所以小红家这块L形菜地的面积为800m2.16.解:(1)∵大正方形的面积为36,小正方形的面积为4,∴(x+y)2=36,(x﹣y)2=4,即x2+2xy+y2=36,x2﹣2xy+y2=4,两式相加,可得2(x2+y2)=40,∴x2+y2=20;(2)∵x2+2xy+y2=36,x2﹣2xy+y2=4,两式相减,可得4xy=32,∴xy=8.17.解:5﹣4=1,设AB的长为x,则AD=x+2,依题意有(x+2)(x﹣4)﹣5×1=1,解得x1=1+,x2=1﹣.故AB的长为1+.18.解:(1)S=(30﹣2x)(20﹣x)=600﹣30x﹣40x+2x2=2x2﹣70x+600;(2)当x=2时,S=2×22﹣70×2+600=468(平方米).19.解:图中阴影部分的面积为2a•3a+a2﹣•2a•(3a+a)=6a2+a2﹣a•4a=7a2﹣4a2=3a2.20.解:(1)图①中长方形的面积S1=(m+7)(m+1)=m2+8m+7,图②中长方形的面积S2=(m+4)(m+2)=m2+6m+8,比较:∵S1﹣S2=2m﹣1,m为正整数,m最小为1∴2m﹣1≥1>0,∴S1>S2;故答案为:>;(2)①2(m+7+m+1)÷4=m+4;②S3﹣S1=(m+4)2﹣(m2+8m+7)=9定值;(3)由(1)得,|S1﹣S2|=|2m﹣1|,且m为正整数,2m﹣1>0,∴S1﹣S2=2m﹣1,∵0<n<|S1﹣S2|,∴0<n<2m﹣1,由题意得10<2m﹣1≤11,解得:<m≤6,∵m为正整数,∴2m﹣1=11,∴m=6.21.解:(1)=5×﹣=;(2)∵=9,∴(x+1)(2x+1)﹣3x=9,∴3x2﹣8=0,解得:x1=,x2=.22.解:(1)新长方形的周长=2[(m+n)+(m﹣n)]=4m.(2)由题意:m2﹣n2=(m+n)(m﹣n).23.解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.24.解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.25.解:由题意知×=(xy2+2xy2)×(﹣+)=3xy2×(﹣)=3×(﹣1)×22×(﹣)=﹣12×(﹣)=1.26.解:=x(x﹣2)﹣(x+3)(x﹣1)=x2﹣2x﹣x2﹣3x+x+3=﹣4x+3,当x=﹣2时,原式=8+3=11.27.解:(1)图2大正方形的面积=(a+b)2图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设2018﹣a=x,a﹣2017=y,则x+y=1,∵(2018﹣a)2+(a﹣2017)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy==﹣2,即(2018﹣a)(a﹣2017)=﹣2.28.解:①∵阴影部分的面积=大正方形的面积﹣中间小正方形的面积即:(a+b)2﹣(a﹣b)2,又∵阴影部分的面积由4个长为a,宽为b的小正方形构成即:4ab,∴(a+b)2﹣(a﹣b)2=4ab;故答案为:(a+b)2﹣(a﹣b)2;4ab;(a+b)2﹣(a﹣b)2=4ab;②∵八个小正方体和长方体的体积之和是:a3+a2b+a2b+ab2+a2b+ab2+ab2+b3,∴(a+b)3=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3,∴(a+b)3=a3+3a2b+3ab2+b3;故答案为:(a+b)3=a3+3a2b+3ab2+b3.29.解:(1)如图1,连接AC,由题可得,∠ACB=∠GEC=45°,∴AC∥GE,∴S△AEG=S△CEG=S正方形CEFG=b2;故答案为:b2(2)如图2,连接AC,GE,FN,由(1)可得,S△AEG=S△CEG=S正方形CEFG=b2;由题可得,∠HFN=∠FGE=45°,∴GE∥FN,∴S△NEG=S△FEG=S正方形CEFG=b2;∴S△AEN=S△AEG+S△NEG=b2+b2=b2;故答案为:b2.30.解:(1)由图可得,阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可得,矩形的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2;故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(2m+n﹣p)(2m﹣n+p)=(2m)2﹣(n﹣p)2=4m2﹣(n2﹣2np+p2)=4m2﹣n2+2np﹣p2.31.解:(1)S1=a2+b2﹣﹣b(a+b)=a2+b2﹣ab,(2分)S2=a(a+b)﹣b2﹣a2﹣(a﹣b)(a+b)=ab﹣b2.(5分)(2)∵a+b=5,ab=3,∴S1=a2+b2﹣ab=(a+b)2﹣ab=﹣=8.(8分)(3)∵S1<S2,即a2+b2﹣ab<ab﹣b2.∴a2+b2﹣ab<0,∴a2+2b2﹣3ab<0,∴(a﹣2b)(a﹣b)<0,∵a>b,∴a﹣2b<0.(14分)32.解:(1)83和87满足题中的条件,即十位数都是8,8>3,且个位数字分别是3和7,之和为10,那么它们的乘积是一个4位数,前两位数字是8和9的乘积,后两位数字就是3和7的乘积,因而,答案为:7221;(2)这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,因而有:(10x+y)(10x+z)=100x2+10xz+10xy+yz=100x2+10x(y+z)+yz=100x2+100x+yz=100x(x+1)+yz得证;(3)1×9=991×99=909991×999=99009…99991×99999=9999000009.故答案是:9999000009.33.解:(1)(a+b)(a2﹣ab+b2)=a3+b3,故答案为:a2﹣ab+b2;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;故答案为:a3﹣b3;(3)(x+y)(x2﹣xy+y2)﹣(x﹣y)(x2+xy+y2)=x3+y3﹣(x3﹣y3)=x3+y3﹣x3+y3=2y3.34.解:(1)大长方形的面积=(2a+b)(a+2b),大长方形的面积=2a2+5ab+2b2,∴(2a+b)(a+2b)=2a2+5ab+2b2,故答案为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)由题可得,2a2+5ab+2b2=310,ab=22,∴2a2+2b2=310﹣5×22=200,即a2+b2=100,∴(a+b)2=a2+b2+2ab=144,∴a+b=12,(负值已舍去)∴大长方形的周长=2(2a+b+a+2b)=6(a+b)=72(cm).35.解:(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2bc+2ca,所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=92﹣26×2=81﹣52=29.(3)长方形的面积=2a2+5ab+3b2=(2a+3b)(a+b).所以长方形的边长为2a+3b和a+b,所以较长的一边长为2a+3b.(4)∵长方形的面积=xa2+yb2+zab=(25a+7b)(2a+5b)=50a2+14ab+125ab+35b2=50a2+139ab+35b2,∴x=50,y=35,z=139.∴9x+10y+6=450+350+6=806.。
(黄金题型)浙教版七年级下册数学第三章 整式的乘除含答案

浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、计算:的值为()A. B. C. D.2、下列计算正确的是( )A.a 3+a 2=a 5B.(3a-b) 2=9a 2-b 2C.a 6b÷a 2=a 3D.(-ab 3) 2=a 2b 63、如图,将完全相同的四个长方形纸片拼成一个大的正方形,用两种不同的方法表示这个大正方形的面积,则可以得出一个等式为()A.(a+b)2=a 2+2ab+b 2B.(a﹣b)2=a 2﹣2ab+b 2C.a 2﹣b 2=(a+b)(a﹣b)D.(a+b)2=(a﹣b)2+4ab4、若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m 2+2mB.4m 2+1C.2m 2+mD.2m 2+ m5、下列计算正确的是()A.a+a=2aB.b 3•b 3=2b 3C.a 3÷a=a 3D.(a 5)2=a 76、下列运算正确的是()A.a+a=a 2B.a 2•a=a 2C.a 3÷a 2=a (a≠0)D.(a 2)3=a 57、若a的值使得x2+4x+a=(x+2)2-1成立,则a的值为()A.5B.4C.3D.28、计算﹣3x2(4x﹣3)等于()A.﹣12x 3+9x 2B.﹣12x 3﹣9x 2C.﹣12x 2+9x 2D.﹣12x 2﹣9x 29、已知,则的值是()A.11B.15C.56D.6010、若,求的值是( )A.4B.-4C.2D.±211、运算结果为2mn﹣m2﹣n2的是()A.( m﹣ n)2B.﹣( m﹣ n)2C.﹣( m+ n)2D.( m+ n)212、如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A. 3a2﹣4aB. a2C. 6a3﹣8a2D. 6a2﹣8a13、若,,则的值为()A. B. C.28 D.14、下列计算错误的是()A.(0.0001)0=1B.(0.1) 2=0.01C.(10-2×5) 0=1D. 10 -4=0.000115、下列运算正确的是()A.a 2a 3=a 6B.2a+3a=5a 2C.(a+b)2=a 2+b 2D.(﹣ab 2)3=﹣a 3b 6二、填空题(共10题,共计30分)16、计算(﹣2xy3z2)4=________;(﹣2)0+()﹣2=________.17、(2m+3)(________ )=4m2﹣9.18、计算=________。
浙教版七(下)数学第3章《整式的乘除》 3.3 多项式的乘法 第2课时校本作业(含答案)

3.3 多项式的乘法(第2课时)课堂笔记较复杂多项式相乘,仍然遵循“先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加”的法则.注意:(1)多项式相乘要注意多项式每一项的符号;(2)多项式相乘的结果要最简. 分层训练A 组 基础训练1. 计算(x +y )(x 2-xy +y 2)的结果是( )A. x 3-y 3B. x 3+y 3C. x 3+2xy +y 3D. x 3-2xy +y 32. 若长方形的长为(4a 2-2a +1),宽为(2a +1),则这个长方形的面积为( )A. 8a 2-4a 2+2a -1B. 8a 3+4a 2-2a -1C. 8a 3-1D. 8a 3+13. 计算(2x 2-4)(2x -1-23x )的结果是( ) A. -x 2+2 B. x 3+4 C. x 3-4x +4D. x 3-2x 2-2x +4 4. 化简:(x 2+3)(2x -5)= .5. 四个连续自然数,中间的两个数的积比前后两个数的积大 .6. 如果三角形的一边长为2a +4,这条边上的高为2a 2+a +1,则三角形的面积为 .7. 已知(x +2)(x 2+ax +b )展开后不含x 的二次项和一次项,则a = ,b = .8. 计算:(1)(2x +1)(2-x 2);(2)(a 2+1)(a 2-5);(3)3a (a 2+4a +4)-a (a -3)(3a +4);(4)3y (y -4)(2y +1)-(2y -3)(4y 2+6y -9).9. 解方程:(2x +3)(x -4)-(x +2)(x -3)=x 2+6.10. 先化简,再求值:(y -2)(y 2-6y -9)-y (y 2-2y -15),其中y =21.11. 试说明无论x 为何值,代数式(x -1)(x 2+x +1)-(x 2+1)(x +1)+x (x +1)的值与x 无关.B 组 自主提高12. 通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是( )A .(a -b )2=a 2-2ab +b 2B . (a +b )2=a 2+2ab +b 2C . 2a (a +b )=2a 2+2abD . (a +b )(a -b )=a 2-b 213.已知(x+ay)(x+by)=x2-4xy+6y2,求代数式3(a+b)-2ab的值.14. 观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…请你根据这一规律计算:(1)(x-1)(x n+x n-1+x n-2+…+x+1);(2)213+212+211+…+22+2+1.C组综合运用15. 已知a1,a2,a3,…,a2018都是正整数,设M=(a1+a2+a3+…+a2017)(a2+a3+a4+…+a2018),N=(a1+a2+a3+…+a2018)(a2+a3+a4+…+a2017),试比较M,N的大小关系.参考答案【分层训练】1—3. BDD4. 2x3-5x2+6x-155. 26. 2a3+5a2+3a+27. -2 48. (1)原式=4x-2x3+2-x2=-2x3-x2+4x+2(2)原式=a4-5a2+a2-5=a4-4a2-5(3)原式=3a3+12a2+12a-a(3a2+4a-9a-12)=3a3+12a2+12a-3a3+5a2+12a=17a2+24a(4)原式=-2y3-21y2+24y-279. 去括号,得2x2-8x+3x-12-x2+3x-2x+6=x2+6. 合并同类项,得x2-4x-6=x2+6. 移项、合并同类项,得-4x=12. 解得x=-3.5110. 原式=-6y2+18y+18=211. (x-1)(x2+x+1)-(x2+1)(x+1)+x(x+1)=x3-1-x3-x2-x-1+x2+x=-2,所以代数式的值与x无关.12. C13. 由已知可得x2+(a+b)xy+aby2=x2-4xy+6y2,比较系数可得a+b=-4,ab=6. ∴3(a+b)-2ab=3×(-4)-2×6=-24.14. (1)(x-1)(x n+x n-1+x n-2+…+x+1)=x n+1-1.(2)由(1)中所得规律可知,213+212+211+…+22+2+1=(2-1)(213+212+211+…+22+2+1)=214-1.15. 设x=a1+a2+a3+…+a2017+a2018,则M=(x-a2018)(x-a1)=x2-(a1+a2018)x+a1·a2018,N=x·(x-a1-a2018)=x2-(a1+a2018)x,∴M>N.。
浙教版七年级数学下册第三章 整式的乘除练习(含答案)

第三章 整式的乘除一、单选题1.若23213333,m m ⨯⨯=则m 的值为( ) A .2B .3C .4D .5 2.计算(﹣2a 3)2的结果是( )A .2a 5B .4a 5C .﹣2a 6D .4a 63.下列运算中,正确的是( )A .326a a a ⋅=B .()326a a =C .22(1)1x x x -=-+D .223323a b ab a b +=4.计算-()2163a ab ⋅-的结果正确的是( ) A .32a b B .32a b - C .22a b - D .22a b5.一个长方形的长是2xcm ,宽比长的一半少4cm ,若将这个长方形的长和宽都增加3cm ,则该长方形的面积增加了( ).A .9cm 2B .(2x 2+x -3)cm 2C .(-7x -3)cm 2D .(9x -3)cm 2 6.若(x-9)(2x-n)=2x 2+mx-18,则m 、n 的值分别是( )A .m=-16,n=-2B .m=16,n=-2C .m=-16,n=2D .m=16,n=27.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .24m 12m 9++B .3m 6+C .23m 6+mD .22m 6m 9++ 8.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣199.已知x + x = 1,xx = −2,则(2 − x )(2 − x )的值为( )A .−2B .0C .2D .410.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9二、填空题11.计算:(-x 2y )2÷213x y =___. 12.若a >0且2x a =,3y a =,则23x y a -的值为_______;32x y a +的值为_______.13.计算()()a b c d ++的结果等于________.14.已知22(2020)(2019)7a a -+-=,则代数式(2020 - a )(a -2019) 的值是_________.三、解答题15.已知:2,2,m n a b ==试用a b 、分别表示2m n +和2222m n +.16.计算:(1)4a 2b(-2ab)3(2)(3+m)(3-m) -m(m -6) -717.先化简,再求值:(x ﹣1)(x 2﹣x )+2(x 2+2)﹣13x (3x 2+6x ﹣1).其中x =﹣3. 18.()1先化简,再求值,()()()222a b b a b a b +--+-,其中求1,24a b =-= ()2对于任意一个正整数n ,整式()()()()31134141n n n n +-+-+一定能被哪一个正整数整除?请说明理由.19.(1)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为 .(2)运用你所得到的公式,计算:(a +2b ﹣c )(a ﹣2b ﹣c ).答案1.C 2.D 3.B 4.A 5.D 6.A 7.C 8.C 9.B 10.C 11.3x2y12.4277213.ac ad bc bd+++ 14.-315.2m n ab +=;222222=m n a b ++.16.(1)-32a 5b 4;(2)-2m 2+6m +217.﹣2x 2+43x +4,﹣18. 18.(1)−2ab ;1(2)7n 2;一定能被7整除.19.(1)a 2﹣b 2=(a+b )(a ﹣b );(1)a 2﹣2ac+c 2﹣4b 2。
【完整版】浙教版七年级下册数学第三章 整式的乘除含答案

浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、若,则的值为()A. B.-2 C. D.2、下列各式的计算中,正确的是()A. B. C. D.3、下列各式中,一定成立的是( )A. B. C.D.4、已知:x﹣y=5,(x+y)2=49,则x2+y2的值等于()A.37B.27C.25D.445、下列运算正确的是()A.(a+b)2=a 2+b 2B.2a+3b=5abC.a 6÷a 3=a 2D.a 3•a 2=a 56、如果(x+m)(x-n)中不含x的项,则m、n满足()A.m=nB.m=0C.m=-nD.n=07、若,则等于()A. B. C. D.8、下列计算正确的是()A.(a 4)3=a 7B.a 8÷a 4=a 2C.(ab)3=a 3b 3D.(a+b)2=a 2+b 29、下列计算正确的是()A.a 3+a 2=a 5B.a 3﹣a 2=aC.a 3•a 2=a 6D.a 3÷a 2=a10、下列运算正确的是()A.(a﹣2 b)2=a2﹣4 b2B.(﹣x2y)2÷(2 x2y)=x2y C. ÷ ×()2=﹣m D.11、下列运算正确的是()A.(﹣2 a3)2=4 a6B. a2• a3=a6C.3 a+ a2=3 a3 D.(a﹣b)2=a2﹣b212、下列计算正确的是A.3 a+2 b=5 abB.(-3 a2b) 2=-6 a4b2C. +=4 D.( a-b) 2=a2-b213、( -2)2008( +2)2007的值等于()A.2B.-2C. -2D.2-14、如图,从边长为的大正方形纸片中剪去一个边长为的小正方形,剩余部分沿虚线剪开,拼成一个矩形(不重叠无缝隙),则矩形的面积为()A. B. C. D.15、下列计算中,正确的是()A.(﹣5)﹣2×5 0=B.3a ﹣2=C.(a+b)2=a 2+b 2D.(m+n)(﹣m+n)=﹣m 2+n 2二、填空题(共10题,共计30分)16、将0.0000036用科学记数法表示为________.17、1纳米=0.000000001米,则2.5纳米用科学记数法表示为________18、若a+b=-4,a-b=2,则=________.19、已知,,则的值为________.20、已知xy=2,x+y=3,则x2y+xy2=________.21、关于的多项式展开后不含的一次项,则________.22、已知代数式4x2-mx+1可变为(2x-n)2,则mn=________.23、某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为________.24、计算=________。
(基础题)浙教版七年级下册数学第三章 整式的乘除含答案

浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、若,,那么值等于()A.5200B.1484C.5804D.99042、下列运算一定正确的是( ).A. B. C. D.3、下列运算正确的是( )A.(m-n)2=m 2-n 2B.m -2= (m≠0)C.m 2n 2=(mn)4 D.(m 2)4=m 64、可以改写成()A. B. C. D.5、下列计算正确的是( )A.3a+4b=7abB.C.D.6、(a﹣3b)2﹣(a+3b)(a﹣3b)的值为()A.﹣6abB.﹣3ab+18b 2C.﹣6ab+18b 2D.﹣18b 27、下列计算正确的是()A. a2+ b2=(a+ b)2B. a2+ a4=a6C. a10÷ a5=a2 D. a2• a3=a58、已知,则为()A. B. C. D.9、下列计算正确的是()A. a3+ a3=a6B. a3• a2=a6C. a3÷ a=a2D.(﹣a3)2=﹣a610、下列计算正确的是()A.2a+5b=5abB.a 6÷a 3=a 2C.a 2•a 3=a 6D.11、下列式子错误的是()A. B. C. D.12、一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()A.20B.12C.﹣12D.﹣2013、纳米是非常小的长度单位,1纳米=10﹣9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10 ﹣5米B.25.1×10 ﹣6米C.0.251×10 ﹣4米 D.2.51×10 ﹣4米14、下列运算正确的是()A. B.C. D.15、下列计算正确的是()A.a 2+a 2=2a 4B.a 5·a 2=a 10C.(a 5)2=a 7D.a 6÷a 3=a 3二、填空题(共10题,共计30分)16、计算:(-3)0+3-1=________.17、已知,则式子________.18、已知实数m,n满足,,则________.19、计算:(﹣4a2b4)(ab﹣4)=________.20、两个正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为________ cm21、计算下列各数的值:2﹣1=________;5﹣2=________;(π﹣3)0=________.22、若a m=2,a n=3,则a3m﹣2n的值是________.23、已知a m=2,a n=3,则a2m﹣3n=________.24、若,,则________.25、在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b、c,若a+b-c=4.s表示Rt△ABC的面积,l表示Rt△ABC的周长,则________.三、解答题(共5题,共计25分)26、(用乘法公式计算)27、已知m2﹣m﹣2=0,求代数式m(m﹣1)+(m+1)(m﹣2)的值.28、计算:﹣3(3x+4)29、如图,在边长为(2m+3)的正方形纸片中剪出一个边长为(m+3)的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,求另一边长.30、计算:(-3x2y)2·(-6xy3)÷(-9x4y2).参考答案一、单选题(共15题,共计45分)1、D3、B4、B5、D6、C7、D8、B9、C10、D11、B12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版七年级下册数学第三章整式的
乘除含答案
一、单选题(共15题,共计45分)
1、计算(﹣1)0+|﹣2|的结果是()
A.-3
B.1
C.-1
D.3
2、下列运算正确的是()
A.2a+3b=5ab
B.(﹣a 2)3=a 6
C.(a﹣b)2=a 2﹣b 2
D.2a×3b 2=6ab 2
3、计算(2 )()的结果是()
A.4
B.8
C.16
D.32
4、下列计算正确的是()
A.a 2•a 3=a 5
B.a+a=a 2
C.(a 2)3=a 5
D.a 2(a+1)=a 3+1
5、下面是一位同学做的四道题:
①2a+3b=5ab;②﹣(﹣2a2b3)4=﹣16a8b12;③(a+b)3=a3+b3;④(a﹣2b)2=a2﹣2ab+4b2其中做对的一道题的序号是()
A.①
B.②
C.③
D.④
6、小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确结果变为(),你觉得这一项应是()
A. B. C. D.
7、下列运算正确的是()
A. B. C. D.
8、已知32m=8n,则m、n满足的关系正确的是()
A.4m=n
B.5m=3n
C.3m=5n
D.m=4n
9、若非零实数a、b满足4a2+b2=4ab,则=()
A.2
B.﹣2
C.4
D.﹣4
10、下列运算正确的是()
A. B. C. D.
11、下列运算正确的是()
A. B. C. D.
12、下列运算正确的是()
A. B.
C. D.
13、若,则取值分别是()
A. B. C. D.
14、下列计算正确的是()
A.x 4+x 4=x 16
B.(﹣2a)2=﹣4a 2
C.x 7÷x 5=x 2
D.m 2•m³=m 6
15、已知a +b =25,且ab=12,则a+b的值是()
A.1
B.±1
C.7
D.±7
二、填空题(共10题,共计30分)
16、计算:3a3•a2﹣2a7÷a2=________ .
17、若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为________.
18、计算________.
19、计算:(2+ )(2﹣)=________.
20、计算:=________
21、当,时,多项式(2x+3y)2﹣(2x+y)(2x﹣y)的值是
________.
22、计算的结果是________.
23、计算:=________.
24、若代数式x2-(a-2)x+9是一个完全平方式,则a=________
25、已知(x+1)(x﹣2)=x2+mx+n,则m+n=________
三、解答题(共5题,共计25分)
26、计算:
27、计算:﹣2cos30°+()﹣2﹣|1﹣|.
28、已知二次三项式与的积不含项,也不含项,求系数的值.
29、问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义证明完全平方公式.
证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:
这个图形的面积可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
这就验证了两数和的完全平方公式.
类比解决:
①请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明:13+23=32?
如图2,A表示1个1×1的正方形,即:1×1×1=13
B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
尝试解决:
②请你类比上述推导过程,利用图形的几何意义确定:
13+23+33= ▲.(要求写出结论并构造图形写出推证过程).
问题拓广:
③请用上面的表示几何图形面积的方法探究:
13+23+33+…+n3= ▲.(直接写出结论即可,不必写出解题过程)30、先化简,再求值:,其中.
参考答案
一、单选题(共15题,共计45分)
1、D
3、B
4、A
5、B
6、C
7、C
8、B
9、A
10、D
11、D
12、C
13、B
14、C
15、D
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
24、
25、
三、解答题(共5题,共计25分)
26、
27、
28、
30、。