七年级数学下册《平方根》试题与答案

合集下载

最新人教版初中七年级下册数学《平方根》同步练习题

最新人教版初中七年级下册数学《平方根》同步练习题

《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.±2 B.2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:28.028.128.228.328.428.528.628.728.8784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个 B.1个 C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49 D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。

初一下册数学平方根练习题(含答案)

初一下册数学平方根练习题(含答案)

平方根练习题姓名:_______________班级:_______________考号:_______________ 一、填空题1、已知m的平方根是2a-9和5a-12,则m的值是________.2、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .3、实数a在数轴上的位置如图所示,化简:。

4、已知:,则x+y的算术平方根为_____________.二、选择题5、已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.56、若,,且,则的值为( )A.-1或11 B.-1或-11 C . 1 D.117、点P,则点P所在象限为( ).A.第一象限B. 第二象限C. 第三象限 D第四象限.8、的平方根是A.9 B . C. D.39、一个正方形的面积是15,估计它的边长大小在()A.2与3之间 B.3与4之间 C.4与5之间D.5与6之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.四、计算题13、已知与的小数部分分别是a、b,求ab的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、92、1/23、14、5二、选择题5、D6、 D7、D8、C9、B三、简答题10、…2分…..4分……6分结果 .8分11、解:由图可知: ,,∴. 2分∴原式= 5分= 6分=. 7分12、∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四、计算题13、解:因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式=+2+4﹣4=;。

七年级数学下册第六章实数6.1平方根练习卷含解析新版新人教版

七年级数学下册第六章实数6.1平方根练习卷含解析新版新人教版

6.1 平方根一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2 2.|﹣9|的平方根等于()A.±3 B.3 C.±D.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5 4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81 5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.6.(﹣2)2的平方根是.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3 10.化简的结果是()A.﹣4 B.4 C.±4 D.2 11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3 12.的算术平方根是()A.±13 B.13 C.﹣13 D.13.若=1,则﹣(2x﹣3)=.14.若5x﹣19的算术平方根是4,求3x+9的平方根.15.的算术平方根是()A.B.﹣C.D.±16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣17.的算术平方根是()A.2 B.4 C.±2 D.±418.请你观察,思考下列计算过程:,由此猜想=.19.已知=1.8,若=180,则a=.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是.人教新版七年级下学期《6.1 平方根》2020年同步练习卷参考答案与试题解析一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2【分析】原式利用算术平方根,平方根定义计算即可得到结果.【解答】解:=4,4的平方根是±2,故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.|﹣9|的平方根等于()A.±3 B.3 C.±D.【分析】根据平方根的定义解答即可.【解答】解:|﹣9|的平方根等于±3,故选:A.【点评】此题考查平方根的问题,关键是根据一个正数的平方根有两个.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a ﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为 4 .【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.6.(﹣2)2的平方根是±2 .【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.【点评】此题主要考查了平方根的定义,得出m的值是解题关键.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.【分析】根据题意可求出2x﹣y及3x+y的值,从而可得出x﹣y的值,继而可求出x﹣y的平方根.【解答】解:由题意得:2x﹣y=9,3x+y=16,解得:x=5,y=1,∴x﹣y=4,∴x﹣y的平方根为±=±2.【点评】本题主要考查了平方根的知识,难度不大,解题的关键是求x、y的值.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3【分析】先将原数化简,然后根据平方根的性质即可求出答案.【解答】解:∵=3,∴3的平方根是±,故选:B.【点评】本题考查平方根的概念,解题的关键是将原数进行化简,属于基础题型.10.化简的结果是()A.﹣4 B.4 C.±4 D.2【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3【分析】直接化简数据,再利用算术平方根的定义得出答案.【解答】解:(﹣3)2=9,则9算术平方根是:3.故选:B.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题关键.12.的算术平方根是()A.±13 B.13 C.﹣13 D.【分析】本身是一个算术平方根的运算,表示13,求的算术平方根即为求13的算术平方根.【解答】解:∵=13∴的算术平方根即为13的算术平方根结果为故选:D.【点评】本题考查的是算术平方根的运算,关键是要看清本题中涉及两次算术平方根的运算.13.若=1,则﹣(2x﹣3)= 3 .【分析】直接利用算术平方根的定义得出x的值,进而得出答案.【解答】解:∵=1,∴x+1=1,解得:x=0,则﹣(2x﹣3)=3.故答案为:3.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.14.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.15.的算术平方根是()A.B.﹣C.D.±【分析】直接利用算术平方根的定义得出答案.【解答】解:=的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣【分析】观察所给数字可知:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是=;第四个数字是﹣=﹣;继而即可总结规律,求出第2015个数.【解答】解:观察可以发现:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是==;第四个数字是﹣=﹣;…;可得第2015个数即是﹣,故选:D.【点评】本题主要考查了数字变化,算式平方根的性质,数列规律问题,找出一般规律是解题的关键.17.的算术平方根是()A.2 B.4 C.±2 D.±4【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.18.请你观察,思考下列计算过程:,由此猜想=111 111 111 .【分析】观察给出的计算过程,可以看出被开方数中间每增加两位数结果就增加一个1,因为12345678987654321比121多出7个两位数,所以可得结果是111 111 111.【解答】解:∵,∴=111 111 111.故答案为:111 111 111.【点评】本题考查了信息获取能力,先利用已知的计算,认真观察是解决此类问题的关键.19.已知=1.8,若=180,则a=32400 .【分析】根据被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位求解可得.【解答】解:∵=1.8,∴=180,则a=32400,故答案为:32400.【点评】本题主要考查算术平方根,解题的关键是掌握被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为(17,2).【分析】根据规律发现,被开方数是从2开始的偶数列,最后一个数的被开方数是204,所以最大的有理数是被开方数是196的数,然后求出196在这列数的序号,又6个数一组,求出是第几组第几个数,即可确定它的位置.【解答】解:∵2=,∴这列数中最大的数是=14,设196是这列数中的第n个数,则2n=196,解得n=98,观察发现,每6个数一行,即6个数一循环,∴98÷6=16…2,∴是第17组的第2个数.最大的有理数n的位置记为(17,2).故答案为:(17,2).【点评】本题利用算术平方根考查了数字的规律变化问题,求出最大的有理数的序号,并6个数作为一个循环组是解题的关键.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是 2 .【分析】根据算术平方根恒大于等于0,即可确定出最小值.【解答】解:∵≥0,∴+2≥2,即的最小值是2.故答案为:2.【点评】此题考查了非负数的性质.熟练掌握算术平方根的非负数性质是解本题的关键.。

七年级下册第6章-平方根习题题精选(含答案)

七年级下册第6章-平方根习题题精选(含答案)

6.1平方根习题题精选学校______班别______姓名______考号______一.选择题(共30小题)1.(2014•东营)的平方根是()A.±3 B.3C.±9 D.9 2.(2014•鞍山)4的平方根是()A.2B.±2 C.D.±3.(2014•陕西)4的算术平方根是()A.﹣2 B.2C.﹣D.4.(2014•百色)化简得()A.100 B.10 C.D.±10 5.(2014•张家界)若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1C.32014D.﹣32014 6.(2014•泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B.2C.4D.﹣4 7.(2014•福州)若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0C.1D.2 8.(2014•新泰市一模)的平方根是()A.±2 B.±1.414 C.D.﹣2 9.(2014•德州一模)|﹣4|的平方根是()A.2B.±2 C.﹣2 D.不存在10.(2014•资阳一模)下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身11.(2014•上城区二模)的算术平方根是()A.2B.±2 C.D.±12.(2014•吉安模拟)的平方根是()A.9B.±9 C.3D.±3 13.(2014•邻水县模拟)16的算术平方根的平方根是()A.4B.±4 C.2D.±2 14.(2013•南充)0.49的算术平方根的相反数是()A.0.7 B.﹣0.7 C.±0.7 D.0 15.(2013•黄石模拟)算术平方根等于2的数是()A.4B.±4 C.D.±x=3 16.(2012•滨湖区模拟)(﹣5)2的平方根是()A.±5 B.±C.5D.﹣5 17.若2m﹣4与3m﹣1是同一个数两个不同的平方根,则m的值()A.﹣3 B.1C.﹣3或1 D.﹣1 18.下列说法正确的是()A.﹣1是﹣1的平方根B.1是1的算术平方根C.(﹣1)2的平方根是1 D.4是2的平方根19.下列说法正确的是()A.9的平方根是±3 B.1的立方根是±1C.=±1 D.一个数的算术平方根一定是正数20.一个数如果有两个平方根,那么这两个平方根之和是()A.大于0 B.等于0 C.小于0 D.大于或等于0 21.下列说法正确的()(1)9的平方根是±3 (2)平方根等于它本身的数是0和1(3)﹣2是4的平方根(4)的算术平方根是4.A.1B.2C.3D.422.81的平方根是±9的数学表达式是()A.B.C.D.23.已知3m﹣1和m﹣7是数p的平方根,则p的值为()A.100 B.25 C.10或5 D.100或25 24.如果一个数的平方根是这个数本身,那么这个数是()A.0B.1C.±1 D.﹣125.下列说法中正确的是()A.﹣3是﹣32的负平方根B.3是的正平方根C.(﹣3)2的平方根是﹣3 D.3是(﹣3)2的正平方根26.若一个数的平方根是±8,则这个数是()A.16 B.±16 C.64 D.±6427.一个正数的平方根是2m+3和m+1,则这个数为()A.﹣B.C.D.1或28.下列说法正确的是()A.表示25的平方根B.1的立方根是±1C.负数没平方根D.有平方根,而没有平方根29.下列说法正确的是()A.﹣a是a2的平方根B.a的平方根是C.一个实数总有两个平方根D.a2的平方根是a30.下列说法正确的是()A.2是的正的平方根B.﹣2是﹣22的负的平方根C.2是(﹣2)2的正的平方根D.(﹣2)2的平方根是﹣2一.填空题(共8小题)1.(2014•本溪)一个数的算术平方根是2,则这个数是_________.2.(2014•营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为_________.3.(2014•江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=_________.4.(2014•普陀区二模)的平方根是_________.5.(2014•道里区一模)的算术平方根是_________.6.(2013•高港区二模)的平方根是_________.7.(2013•高淳县二模)如果a、b分别是9的两个平方根,则ab的值为_________.8.(2013•潮安县模拟)如果与(2x﹣4)2互为相反数,那么2x﹣y=_________.二.解答题(共12小题)9.解方程:(1)x2﹣=0;(2)(x﹣1)2=36. 10.解方程:0.25(3x+1)2﹣15=0.11.解方程:196x2﹣1=0. 12.解方程:(1)=0;(2)(x﹣1)2=36.13.解方程:(2x+1)2﹣6=0.14.观察下列表格,并完成下列问题原式结果 0.05477 0.1732 a 1.732 5.477 17.32 54.77 b(1)求a和b的值;(2)用一句话概括你发现的规律.15.根据下表回答下列问题:x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0x2256.00 259.21 262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289.00(1)268.96的平方根是多少?(2)≈_________.(3)在哪两个数之间?为什么?(4)表中与最接近的是哪个数?16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值.17.计算:(1)=_________,=_________;(2)=_________;(3)=_________,=_________.仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值.19.若,求(x+2)2的平方根.20.己知+(x﹣2)2=0,求x﹣y的平方根.6.1平方根习题题精选(参考答案与试题解析)一.选择题(共30小题)1.(2014•东营)的平方根是()A.±3 B.3C.±9 D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∵,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.2.(2014•鞍山)4的平方根是()A.2B.±2 C.D.±考点:平方根.专题:计算题.分析:利用平方根的定义计算即可.解答:解:∵(±2)2=4,∴4的平方根是±2,故选B点评:此题考查了平方根,熟练掌握平方根的定义是解本题的关键.3.(2014•陕西)4的算术平方根是()A.﹣2 B.2C.﹣D.考点:算术平方根.专题:计算题.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选:B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.4.(2014•百色)化简得()A.100 B.10 C.D.±10考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.5.(2014•张家界)若+(y+2)2=0,则(x+y)2014等于()A.﹣1 B.1C.32014D.﹣32014考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵+(y+2)2=0,∴,解得,∴(x+y)2014=(1﹣2)2014=1,故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.(2014•泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()A.﹣2 B.2C.4D.﹣4考点:非负数的性质:算术平方根;非负数的性质:绝对值.专题:分类讨论.分析:根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解答:解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.(2014•福州)若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0C.1D.2考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.解答:解:∵(m﹣1)2+=0,∴m﹣1=0,n+2=0;∴m=1,n=﹣2,∴m+n=1+(﹣2)=﹣1故选:A.点评:题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2014•新泰市一模)的平方根是()A.±2 B.±1.414 C.D.﹣2考点:平方根;算术平方根.专题:探究型.分析:先把化为2的形式,再根据平方根的定义进行解答即可.解答:解:∵=2,2的平方根是±,∴的平方根是±.故选C.点评:本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.9.(2014•德州一模)|﹣4|的平方根是()A.2B.±2 C.﹣2 D.不存在考点:平方根.分析:先根据绝对值的性质求出|﹣4|的值,再根据平方根的定义得出答案即可.解答:解:∵|﹣4|=4,(±2)2=4,∴|﹣4|的平方根是±2.故选B.点评:本题考查的是绝对值和平方根的定义,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.10.(2014•资阳一模)下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身考点:平方根.专题:常规题型.分析:本题根据平方根的定义即可解答.用排除法作答.解答:解:A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如﹣1的立方根为﹣1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选:D.点评:本题考查了平方根和立方根的定义,考查了考生对正负数的立方根理解.11.(2014•上城区二模)的算术平方根是()A.2B.±2 C.D.±考点:算术平方根.专题:计算题.分析:先求得的值,再继续求所求数的算术平方根即可.解答:解:∵=2,而2的算术平方根是,∴的算术平方根是,故选C.点评:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.12.(2014•吉安模拟)的平方根是()A.9B.±9 C.3D.±3考点:算术平方根;平方根.分析:求出=9,求出9的平方根即可.解答:解:∵=9,∴的平方根是±3,故选D.点评:本题考查了对算术平方根,平方根的定义的应用,主要考查学生的计算能力.13.(2014•邻水县模拟)16的算术平方根的平方根是()A.4B.±4 C.2D.±2考点:算术平方根;平方根.分析:先求出16的算术平方根,再根据平方根定义求出即可.解答:解:∵16的算术平方根是4,∴16的算术平方根的平方根是±2,故选D.点评:本题考查了对平方根和算术平方根的应用,主要考查学生的计算能力.14.(2013•南充)0.49的算术平方根的相反数是()A.0.7 B.﹣0.7 C.±0.7 D.0考点:算术平方根;相反数.分析:先算出0.49的算术平方根,然后求其相反数即可.解答:解:0.49的算术平方根为=0.7,则0.49的算术平方根的相反数为:﹣0.7.故选B.点评:本题考查了算术平方根及相反数的知识,属于基础题,掌握各知识点概念是解题的关键.15.(2013•黄石模拟)算术平方根等于2的数是()A.4B.±4 C.D.±x=3考点:算术平方根.分析:根据a(a≥0)的算术平方根就是平方是a的非负数,据此即可判断.解答:解:算术平方根等于2的数是22=4.故选:A.点评:本题考查了算术平方根的定义,正确理解定义是关键.16.(2012•滨湖区模拟)(﹣5)2的平方根是()A.±5 B.±C.5D.﹣5考点:平方根.专题:计算题.分析:先求出(﹣5)2的值,再根据平方根的定义得出±,求出即可.解答:解:∵(﹣5)2=25,∴±=±5,故选A.点评:本题考查了对平方根的定义的应用,注意:a(a≥0)的平方根是,一个正数有两个平方根,它们互为相反数.17.若2m﹣4与3m﹣1是同一个数两个不同的平方根,则m的值()A.﹣3 B.1C.﹣3或1 D.﹣1考点:平方根.分析:根据2m﹣4与3m﹣1是同一个数两个不同的平方根,则2m﹣4与3m﹣1互为相反数,即可列方程求得m的值.解答:解:根据题意得:(2m﹣4)+(3m﹣1)=0,解得:m=1.故选B.点评:本题考查了平方根的定义,正确理解两个平方根的关系是关键.18.下列说法正确的是()A.﹣1是﹣1的平方根B.1是1的算术平方根C.(﹣1)2的平方根是1 D.4是2的平方根考点:平方根;算术平方根.分析:根据平方根的定义,分别得出各选项的答案即可.解答:解:∵A.负数没有平方根,∴﹣1是﹣1的平方根错误,故此选项错误;B.∵1是1的算术平方根,故此选项正确;C.∵(﹣1)2=1,∴1的平方根是±1,故此选项错误;D.∵2是4的平方根,故此选项错误.故选:B.点评:此题主要考查了平方根的定义和性质,注意平方根的定义与立方根进行区分,这是易错点.19.下列说法正确的是()A.9的平方根是±3 B.1的立方根是±1C.=±1 D.一个数的算术平方根一定是正数考点:平方根;立方根.分析:根据平方根、立方根以及算术平方根的定义分别进行判断即可.解答:解:A、9的平方根为±3,所以A选项正确;B、1的立方根为1,所以B选项错误;C、=1,所以C选项错误;D、0的算术平方根为0,所以D选项错误.故选A.点评:本题考查了平方根的定义:如果一个数的平方等于a,那么这个数就叫a的平方根,记作(a≥0).也考查了算术平方根以及立方根的定义.20.一个数如果有两个平方根,那么这两个平方根之和是()A.大于0 B.等于0 C.小于0 D.大于或等于0考点:平方根.分析:根据一个正数的平方根有两个,这两个数互为相反数得出即可.解答:解:∵一个正数的平方根有两个,这两个数互为相反数,∴一个数如果有两个平方根,那么这两个平方根之和是0,故选B.点评:本题考查了平方根和相反数的应用,注意:互为相反数的两个数相加等于0.21.下列说法正确的()(1)9的平方根是±3 (2)平方根等于它本身的数是0和1(3)﹣2是4的平方根(4)的算术平方根是4.A.1B.2C.3D.4考点:平方根;算术平方根.专题:常规题型.分析:根据平方根的定义,算术平方根的定义对各小题分析判断后进行解答即可.解答:解:(1)9的平方根是±3,正确;(2)平方根等于它本身的数是0,故本小题错误;(3)﹣2是4的平方根,正确;(4)∵=4,4的算术平方根是2,故本小题错误.所以正确的有(1)(3)正确.故选B.点评:本题主要考查了平方根与算术平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.81的平方根是±9的数学表达式是()A.B.C.D.考点:平方根.分析:根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案.解答:解:∵“81的平方根是±9”,根据平方根的定义,即可得出±=±9.故选:D.点评:此题主要考查了平方根的定义,根据平方根的定义直接得出答案是解决问题的关键.23.已知3m﹣1和m﹣7是数p的平方根,则p的值为()A.100 B.25 C.10或5 D.100或25考点:平方根.专题:计算题.分析:根据一个数的平方根互为相反数或相等,从而可得出m的值,进而可得出p的值.解答:解:∵3m﹣1和m﹣7是数p的平方根,则3m﹣1=m﹣7或3m﹣1+m﹣7=0,∵当3m﹣1=m﹣7时,解得m=﹣3,∴3m﹣1=﹣10,∴p=100,当3m﹣1+m﹣7=0时,解得m=2,∴3m﹣1=5,∴p=25.故选D.点评:本题考查了平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.24.如果一个数的平方根是这个数本身,那么这个数是()A.0B.1C.±1 D.﹣1考点:平方根.分析:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.解答:解:0的平方根是0.故选这个数为0.故选A.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.下列说法中正确的是()A.﹣3是﹣32的负平方根B.3是的正平方根C.(﹣3)2的平方根是﹣3 D.3是(﹣3)2的正平方根考点:平方根.分析:根据平方根的定义即可解答.解答:解:A、﹣32=﹣9,负数没有平方根,故本选项错误;B、是的正平方根,故本选项错误;C、(﹣3)2的平方根是±3,故本选项错误;D、3是(﹣3)2的正平方根,故本选项正确;故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.26.若一个数的平方根是±8,则这个数是()A.16 B.±16 C.64 D.±64考点:平方根.分析:根据平方根的定义,求解即可.解答:解:这个数=(±8)2=64.故选C.点评:本题考查了平方根的知识,属于基础题,掌握平方根的定义是关键.27.一个正数的平方根是2m+3和m+1,则这个数为()A.﹣B.C.D.1或考点:平方根.分析:根据互为相反数的两个数的和为0,可得m的值,根据平方,可得答案.解答:解:(2m+3)+(m+1)=0,m=﹣,m+1=﹣,(m+1)=,故选:C.点评:本题考查了平方根,先求出m的值,再求出平方根,最后求出这个数.28.下列说法正确的是()A.表示25的平方根B.1的立方根是±1C.负数没平方根D.有平方根,而没有平方根考点:平方根;算术平方根;立方根.分析:根据平方根以及立方根的定义,结合选项进行判断.解答:解:A、表示25的算术平方根,故本选项错误;B、1的立方根是﹢1,故本选项错误;C、负数没平方根,该说法正确,故本选项正确;D、=9,有平方根,也有平方根,故本选项错误.故选C.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.下列说法正确的是()A.﹣a是a2的平方根B.a的平方根是C.一个实数总有两个平方根D.a2的平方根是a考点:平方根.分析:根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根可得到答案.解答:解:A、﹣a是a2的平方根,故此选项正确;B、a的平方根是±,故此选项错误;C、一个实数总有两个平方根,说法错误,负数没有平方根,故此选项错误;D、a2的平方根是±a,故此选项错误;故选:A.点评:此题主要考查了平方根,关键是掌握平方根的性质.30.下列说法正确的是()A.2是的正的平方根B.﹣2是﹣22的负的平方根C.2是(﹣2)2的正的平方根D.(﹣2)2的平方根是﹣2考点:平方根;算术平方根.分析:本题是一道运用平方根的性质解答的选择题,利用逐一推敲的方法和排除法解答本题.解答:解:A、应该是是2的正的平方根,故本选项错误;B、﹣22是负数,没有平方根,故本选项错误;D、一个正数有两个平方根,并且互为相反数,故本选项错误.排除法选C.故选C.点评:本题是一道涉及平方根和算术平方根的选择题,考查了平方根的性质和算术平方根的意义.一.填空题(共8小题)1.(2014•本溪)一个数的算术平方根是2,则这个数是4.考点:算术平方根.专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.(2014•营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为﹣3或1.考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得答案.解答:解:2x﹣4与1﹣3x是同一个数的平方根,∴(2x﹣4)+(1﹣3x)=0,或2x﹣4=1﹣3x解得x=﹣3或x=1故答案为:﹣3或1.点评:本题考查了平方根,一个正数的平方根的和为0.3.(2014•江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=﹣1.考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为0,可得一元一次方程,根据解方程,可得x的值.解答:解:已知一个正数的两个不同的平方根是3x﹣2和4﹣x,(3x﹣2)+(4﹣x)=0,解得x=﹣1,故答案为:﹣1.点评:本题考查了平方根,平方根的和为0是解题关键.4.(2014•普陀区二模)的平方根是±.考点:算术平方根;平方根.分析:先根据算术平方根的定义求=6,再根据平方根的概念求6的平方根即可.解答:解:∵=6,∴的平方根是±.故答案填±.点评:本题考查了平方根的概念.注意:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(2014•道里区一模)的算术平方根是.考点:算术平方根.专题:常规题型.分析:根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.解答:解:∵52=25,∴=5,∴的算术平方根是.故答案为:.点评:本题考查了算术平方根的定义,先把化简是解题的关键.6.(2013•高港区二模)的平方根是.考点:算术平方根;平方根.分析:首先算术平方根的定义化简,然后根据平方根的定义即可求得结果.解答:解:∵=2,2的平方根是,∴的平方根是.故答案为:.点评:此题主要考查了平方根算术平方根定义,解题时注意:本题求的是2的平方根,不是4的平方根.7.(2013•高淳县二模)如果a、b分别是9的两个平方根,则ab的值为﹣9.考点:平方根.专题:计算题.分析:根据平方根的定义得到9的平方根为±3,然后计算这两个数的积.解答:解:∵9的平方根为±3,∴ab=﹣3×3=﹣9.故答案为﹣9.点评:本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a≥0).8.(2013•潮安县模拟)如果与(2x﹣4)2互为相反数,那么2x﹣y=1.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据互为相反数的两个数的和等于0列出等式,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:∵与(2x﹣4)2互为相反数,∴+(2x﹣4)2=0,∴y﹣3=0,2x﹣4=0,解得x=2,y=3,∴2x﹣y=2×2﹣3=4﹣3=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二.解答题(共12小题)9.解方程:(1)x2﹣=0;(2)(x﹣1)2=36.考点:平方根.分析:(1)求出x2的值,再根据平方根的定义解答;(2)把(x﹣1)看作一个整体,然后利用平方根的定义解答即可.解答:解:(1)x2=,x=±;(2)x﹣1=6或x﹣1=﹣6,解得x=6或x=﹣5.点评:本题考查了利用平方根的定义求未知数的值,熟记概念是解题的关键.10.解方程:0.25(3x+1)2﹣15=0.考点:平方根.分析:运用平方根解方程即可.解答:解:0.25(3x+1)2﹣15=0.移项得:0.25(3x+1)2=15.两边同时除以0.25得:(3x+1)2=60开平方得:2x+1=±2,移项得:2x=﹣1±2,系数化为1得x1=﹣+,x2=﹣﹣.点评:本题主要考查了利用平方根解方程,解题的关键是明确一个正数有两个平方根.11.解方程:196x2﹣1=0.考点:平方根.分析:移项,根据平方根的定义两边开方,求出两个方程的解即可.解答:解:移项得:196x2=1,开方得:14x=±1,即方程的解是:x1=,x2=﹣.点评:本题考查了平方根的应用,解此题的关键是能根据定义得出两个一元一次方程.12.解方程:(1)=0;(2)(x﹣1)2=36.考点:平方根.分析:运用开平方的定义解方程即可.解答:解:(1)=0;两边同时乘16得x2﹣46=0,移项得,x2=46,开平方得,x1=,x2=﹣.(2)(x﹣1)2=36.开平方得x﹣1=±6,移项得x=1±6,解得x1=7,x2=﹣5.点评:本题主要考查了运用平方根解方程的知识,解题的关键是熟记开平方的定义.13.解方程:(2x+1)2﹣6=0.考点:平方根.分析:运用平方根解方程即可.解答:解:(2x+1)2﹣6=0.移项得:(2x+1)2=6.开平方得:2x+1=±,移项得:2x=﹣1±,系数化为1得x1=,x2=.点评:本题主要考查了利用平方根解方程,解题的关键是明确一个正数有两个平方根.14.观察下列表格,并完成下列问题原式结果 0.05477 0.1732 a 1.732 5.477 17.32 54.77 b (1)求a和b的值;(2)用一句话概括你发现的规律.考点:算术平方根.专题:规律型.分析:根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.解答:解:(1)=0.05477,a==0.5477,=17.32b==173.2;(2)被开方数扩大100倍,算术平方根扩大10倍.点评:本题考查了算术平方根,注意被开方数扩大100倍,算术平方根扩大10倍.15.根据下表回答下列问题:x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0x2256.00 259.21 262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289.00(1)268.96的平方根是多少?(2)≈17.(3)在哪两个数之间?为什么?(4)表中与最接近的是哪个数?考点:算术平方根;平方根;估算无理数的大小.专题:规律型.分析:根据观察表格,可得相应的答案.解答:解:(1)16.4;(2)=16.9≈17;(3)在16.4与16.5之间,∵=16.4,=16.5,∴在16.4与16.5之间;(4)∵260最接近259.21,∴最接近,∴最接近16.1.点评:本题考查了算术平方根,观察表格发现律是解题关键.16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值.考点:算术平方根.分析:根据算术平方根的平方运算是被开方数,可得二元一次方程组,根据解二元一次方程组,可得答案.解答:解:2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,∴解得.点评:本题考查了算术平方根,先平方求被开方数,再解二元一次方程组.17.计算:(1)=3,=1;(2)=0;(3)=3,=0.6.仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)考点:算术平方根.专题:规律型.分析:原式各项利用平方根定义计算,归纳总结得到一个数的平方的算术平方根与这个数之间的关系即可.解答:解:(1)原式=|3|=3;原式=|1|=1;(2)原式=|0|=0;(3)原式=|﹣3|=3;原式=|﹣0.6|=0.6,观察上面几道题的计算结果,一个数的平方的算术平方根与这个数之间的关系为=|a|.故答案为:(1)3;1;(2)0;(3)3;0.6.点评:此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值.考点:算术平方根.分析:根据算术平方根平方运算,可得二元一次方程组,根据解方程组,可得答案.解答:解:已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,,解得,a﹣b==﹣.点评:本题考查了算术平方根,利用了乘方运算,开方运算.19.若,求(x+2)2的平方根.考点:算术平方根;平方根.专题:计算题.分析:已知等式两边平方求出x的值,代入原式计算求出平方根即可.解答:解:已知等式两边平方得:x+2=4,即x=2,则(x+2)2=16,16的平方根为±4.点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.20.己知+(x﹣2)2=0,求x﹣y的平方根.考点:非负数的性质:算术平方根;非负数的性质:偶次方;平方根.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵+(x﹣2)2=0,∴,解得,∴x﹣y=﹣2+7=5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。

数学随堂小练人教版七年级下册:6.1平方根(有答案)

数学随堂小练人教版七年级下册:6.1平方根(有答案)

数学随堂小练人教版七年级下册:6.1平方根一、单选题1.下列说法正确的是( )A.5-是25的平方根B.25的平方根是5-C.5-是2(5)-的算术平方根D.5±是2(5)-的算术平方根2.下列各式正确的是( )2- B.3= 8 7=( )A .4B .2C .±2D .﹣24.设a 是9的平方根,2b =,则a 与b 的关系是( ) A.a b =± B.a b =C.a b =-D.以上结论都不对5.数学课上,李老师出示了下列4道计算题: ①4-;②22-;③;④()82÷-,其中运算结果相同的题目是( )A. ①②B. ①③C.②④D.③④6.()220b +=,则()2017a b +的值为( )A.0B.2016C.-1D.1( )A.2B.-2C.±2D.168.2±是4的( )A.平方根B.相反数C.绝对值D.算术平方根9.制作一个表面积为230cm 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )A.B.C.D.二、填空题10.若一个正数的两个平方根分别是3a -和31a -,则这个正数是 .11.观察下表,按规律填空.12.计算: 112-⎛⎫ ⎪⎝⎭=__________.13.-2的倒数是____,4的算术平方根是_____.三、解答题14.已知21a -的平方根是3±,31a b +-的 算术平方根是4的值.参考答案1.答案:A2.答案:D3.答案:B4.答案:A9a 是的平方根,3a ∴=±.()233b a b ==∴=±。

故选A 。

5.答案:C因为①44-=;②224-=-;③4=±;④()824÷-=-,所以其中运算结果相同的题目是②④.故选C6.答案:C7.答案:A8.答案:A根据平方根的定义可得4的平方根为2±,故答案选A .9.答案:B设无盖正方体纸盒共有5个面,每个面的面积为23056cm ÷=,2.10.答案:4因为一个正数的两个平方根分别是3a -和31a -,()()3310a a ∴-++=,()21,314a a ∴=∴-=11.答案:387.315 3.873,387.3≈≈12.答案:-113.答案:12-;214.答案:根据题意,可得()2221=331=4a a b -±+-,,解得5,2a b ==.所以3===。

人教版七年级数学下册第六章第一节平方根复习试题(含答案) (49)

人教版七年级数学下册第六章第一节平方根复习试题(含答案) (49)

人教版七年级数学下册第六章第一节平方根复习试题(含答案)某地开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2倍,它的面积为400000m2.(1)公园的宽大约是多少?它有1000m吗?(2)如果要求误差小于10m,它的宽大约是多少?(3)该公园中心有一圆形花坛,面积是800m2,它的半径大约是多少米(误差小于1m)?【答案】(1)公园的宽大约有400多m,没有1000m宽(2) 440 m或450 m(3) 15m或16m【解析】分析:(1)设公园的宽为xm,根据长方形的面积公式,可得关于x的方程,解方程可得答案;(2)由误差小于10m,根据四舍五入的方法,可得答案;(3)设它的半径为rm,根据圆的面积公式,可得关于r的方程,解方程可得答案.详解:(1)设公园的宽为x m,则x·2x=400 000,x因为4002=160 000<200 000,5002=250 000>200 000,所以400<x<500.答:公园的宽大约有400多m,没有1 000 m宽.(2)因为4402=193 600,4502=202 500,所以193 600<200 000<202 500.于是可知440<x<450.因为误差可以小于10 m,所以公园的宽可以是440 m或450 m.(3)设花坛的半径为R m,则πR2=800,可得R2≈254.6.因为225<254.6<256,所以152<R2<162.因为误差可以小于1 m,所以花坛的半径大约是15 m 或16 m.点睛:考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.也考查了估算无理数的大小.a的立方根是﹣2,求a+b的值.82.已知实数a+b的平方根是±4,实数13【答案】16【解析】分析:根据“a+b的平方根是±4”可求得a+b.详解:∵实数a+b的平方根是±4,∴a+b=16.点睛:本题考查了平方根的意义,如果一个数的平方等于a(a≥0),那么这个数叫做a的平方根;一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根.83.一个底为正方形的水池的容积是450m3,池深2m,求这个水池的底边长.【答案】水池的底边长为15米【解析】分析:设底面正方形的边长为xm,根据长方体的体积公式列出方程,解方程求得x的值,即可得这个水池的底边长.详解:设底面正方形的边长为xm,根据题意可得,2x ,2450解得x=±15,又因x>0,∴x=15.即水池的底边长为15米.答:水池的底边长为15米.点睛:本题考查了平方根的实际应用,利用长方体的体积公式列出方程是解决本题的关键.84.如图是一块面积为144cm2的正方形纸片,小欣想沿着边的方向用它裁出一块面积为98cm2无拼接的长方形纸片,且使它的长、宽之比为2:1,不知能否裁出来,正在发愁,小亮看见了说:“肯定能用一块面积大的纸片裁出一块面积小的纸片呀!”你同意小亮的观点吗?你能用这块正方形纸片裁出符合要求的长方形纸片吗?说说你的理由.【答案】小亮的观点错误,不能用这块正方形的纸片裁剪出符合条件的长方形纸片【解析】分析:设长方形的宽为xcm,则长方形的长为2xcm,根据面积的值列方程求x,长方形的长2x不能大于原正方形的边长.详解:不同意小亮的观点,不能用这块正方形的纸片裁出符合条件的长方形纸片.理由是:设长方形的宽为xcm,则长方形的长为2xcm,根据题意,得:2x2=98,解得:x=7(负值舍去),则长方形的长为2x=14(cm),∵cm,即12cm,∴14>12,∴小亮的观点错误,不能用这块正方形的纸片裁剪出符合条件的长方形纸片.点睛:本题考查了平方根的实际应用,与实际问题相关的应用中,求出的值要检验是否符合实际意义.85+(1-y)2=0.(1)求x,y的值;(2)求1xy +()()1x1y1+++()()1x2y2+++…+()()1x2016y2016++的值.【答案】(1)21xy=⎧⎨=⎩;(2)20172018分析:(1)由已知条件易得:2-xy=0且1-y=0,由此即可求得x 、y 的值;(2)将(1)中所求x 、y 的值代入(2)中的式子可得:111121324320182017++++⨯⨯⨯⨯,然后利用()11111n n n n =-++(n 为正整数)将所得式子变形即可完成计算得到所求结果.详解:(1)根据题意得2010xy y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩; (2)∵x=2,y=1,∴原式=121⨯+132⨯+143⨯+…+120182017⨯ =1-12+12-13+13-14+…+12017-12018=1-12018=20172018. 点睛:(1)知道:“①一个式子的算术平方根和平方都是非负数;②若两个非负数的和为0,则这两个非负数都为0”是解答第1小题的关键;(2)知道:“()11111n n n n =-++(n 为正整数),且能由此将原式变形化简”是解答第2小题的关键.86.(1)-(12)-1+20140; (2)求4x 2-100=0中x 的值.【答案】(1)3;(2)x=±5【解析】(1)结合“零指数幂的意义、负整数指数幂的意义和算术平方根的定义”进行分析计算即可;(2)按“平方根”的定义进行分析解答即可.详解:(1)原式=4-2+1=3;(2)∵4x2-100=0,∵4x2=100,∵x2=25,∵x=±5.点睛:熟记“零指数幂的意义、负整数指数幂的意义、平方根和算术平方根的定义”是正确解答本题的关键.87.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a,小数部分为b,求2+的值.a b【答案】(1)S=13,边长为(2)6【解析】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.88.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.【答案】(1)a=5,b=2,c=3 ;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.89.已知(x-1)2 =4,求x 的值.【答案】x=3或x=-1.【解析】分析:先开平方求出(x ﹣1)的值,继而求出x 的值.详解:(x ﹣1)2=4,开平方得:x ﹣1=±2,解得:x =3或x =﹣1.点睛:本题考查了平方根的知识,解答本题关键是掌握开平方的运算.90.已知a ,b 满足4a -=0,解关于x 的方程2(3)15a x b --=.【答案】x=±6【解析】分析:利用非负性质求出a,b 的值,代入方程求解.详解:由题意得: a -4=0, b -7=0∵a =4,b =7将a =4,b =7代入(a -3)2x -1=5b ,得(4-3)2x -1=5×7∵2x =36x =±6点睛:0≥,0a ≥,20a ≥,所以题目经常就是这三种任意两种的和为0,或者三者的和为0.。

(word完整版)初中七年级数学下册-平方根训练题及答案

(word完整版)初中七年级数学下册-平方根训练题及答案

初中七年级数学下册-平方根训练题及答案一•选择题:1下列命题中,正确的个数有()①1的算术平方根是1;②(-1 )2的算术平方根是-1;③一个数的算术平方根等于它本身个数只能是零;④-4没有算术平方根•A.1 个B.2 个C.3 个D.4 个2、一个自然数的算术平方根是x,则下一个自然数的算术平方根是(A. , x +1B. x 1C. f 1D.x+13、设x=(-3 )2 ,y,(3)2 , 那么xy等于()A.3B.-3C.9D.-94、(-3)2的平方根是()A.3B.-3C. ± ,D. ± 95、x是16的算术平方根,那么x的算术平方根是()A.4B.2C. ,2D. ± 4二、填空:6、36的算术平方根是______ ,36的算术平方根是________ .7、________________________ 如果a3=3,那么a= ___________ . 如果V^=3,那么a= .8、一个正方体的表面积是78,则这个正方体的棱长是 ________ .9、算术平方根等于它本身的数是________ .10、& 6)2 = _______ , - J( 7)2 = _____ . ± V52 = ______ ,V02 = ________11、J25的算术平方根是 _________ .三、解答题:12、求满足下列各式的非负数x的值:13、求下列各式的值(1)- 、._( 0.1)2;(2) .25 + 36 ;⑶14、若x 2 =2,求2x+5的算术平方根15、已知a为,.170的整数部分,b-1是400的算术平方根,求訂b •(1)169x 2=100 (2)x 2-3=016、有一块正方形玻璃重 6.75千克,已知此种玻璃板每平方厘米重 1.2克,求这块玻璃板的边长.17、某农场有一块长30米,宽20米的场地,要在这块场地上建一个鱼池为正方形,使它的面积为场地面积的一半,问能否建成?若能建成,鱼池的边长为多少?(精确到0.1米)答案:I. B 2.C 3.C 4.C 5.B 6.D 7.D 8.D 9.B 10.B± 5, | a | 16.4 II. ± 6,6 12.a=? ± , 3 a=9 13. 、帀14.0,0.1 15.6,-7,17. ± .518.919. (-4) 2,0,x 2+1, 都有立方根当a=0,-a 2有平方根;当0,-a 2没有平方根20. (1)x > 2 (2)x 为任何数(3)x > 010 厂21. (1)x= ±(2)x= ± .3 ⑶x=0 或41322. (1)-0.1 (2) ± - (3)11 (4)0.42223. x=2,2x+5 的平方根土324. a=13,b=21; ..a b = , 3425.75厘米26.能,?设鱼池的边长为1x 米,则x2= X 30X 20, x 2=300, x ~ 17.3。

七年级下数学实数平方根习题含答案解析

七年级下数学实数平方根习题含答案解析

七年级下实数平方根练习题含答案解析一、单选题(共10题;共20分)1.下列等式正确是A. B. C. D.2.下列说法中正确的是()A. 9的平方根为3B. 化简后的结果是C. 最简二次根式D. ﹣27没有立方根3.在下列式子中,正确的是()A. =﹣B. ﹣=﹣0.6C. =﹣13D. =±64.下列说法正确的是( )A. 3的平方根是B. 对角线相等的四边形是矩形C. 近似数0.2050有4个有效数字D. 两个底角相等的梯形一定是等腰梯形5.下列说法错误的是()A. 一个正数的算术平方根一定是正数B. 一个数的立方根一定比这个数小C. 一个非零的数的立方根,仍然是一个非零的数D. 负数没有平方根,但有立方根6.下列说法不正确的是()A. 的平方根是B. ﹣2是4的一个平方根C. 0.2的算术平方根是0.04D. ﹣27的立方根是﹣37.下列运算正确的是()A. =±3B. (﹣2)3=8C. ﹣22=﹣4D. ﹣|﹣3|=38.4的平方根是()A. ±16B. 16C. ±2D. 2B.9.求一个正数的算术平方根,有些数可以直接求得,如,有些数则不能直接求得,如.但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得.请同学们观察下表:运用你发现的规律解决问题,已知≈1.435,则≈()A. 14.35B. 1.435C. 0.1435D. 143.510.若a2=36,b3=8,则a+b的值是()A. 8或﹣4B. +8或﹣8C. ﹣8或﹣4D. +4或﹣4二、填空题(共4题;共6分)11.0的平方根是________12.-64的立方根是________,的平方根是________.13.已知时,.请你根据这个结论直接填空:(1)________;(2)若,则________.14.=a,=b,则=________.三、解答题(共4题;共20分)15.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.16.已知2x﹣y的算术平方根为4,﹣2是y的立方根,求﹣2xy的平方根.17.2a-1和3a-4是一个数的平方根,b的立方根是-2,求a-b的算术平方根.18.已知的立方根是3,16的算术平方根是,求:的平方根.四、综合题(共2题;共38分)19.判断下列各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.20.观察发现:…(1)表格中x=________,y=________.(2)应用:利用a与数位的规律解决下面两个问题:①已知≈ 3.16,则≈________,≈________;②已知= k,=________,=________(用含k的式子表示).(3)拓展:= m,=________,=________(用含m的式子表示)答案解析部分一、单选题1.【答案】D【解析】【解答】、原式,不符合题意;、原式,不符合题意;、原式没有意义,不符合题意;、原式,符合题意.故答案为:.【分析】原式利用平方根定义及二次根式的性质判断即可得到结果.2.【答案】B【解析】【解答】解:A、9的平方根是±3,所以选项A不正确;B、= = ,所以选项B正确;C、=2 ,所以不是最简二次根式,选项C不正确;D、﹣27的立方根是﹣3,所以选项D不正确.故选B.【分析】根据平方根和立方根的定义作判断.3.【答案】A【解析】【解答】解:A,=﹣,故A选项正确;B、﹣≈﹣1.9,故B选项错误;C、=13,故C选项错误;D、=6,故D选项错误.故选:A.【分析】A、根据立方根的性质即可判定;B、根据算术平方根的定义即可判定;C根据算术平方根的性质化简即可判定;D、根据算术平方根定义即可判定.4.【答案】C【解析】【分析】A、根据平方根的定义,可判断;B、根据矩形的定义可判定;C、根据有效数字的定义,可判定;D、根据等腰梯形的定义,即可判定.【解答】A、根据一个正数有两个平方根,它们互为相反数;故本选项错误;B、根据对角线相等且平分的四边形是矩形;故本选项错误;C、根据有效数字的定义,近似数0.2050有4个有效数字;故本选项正确;D、根据同一底上两个角相等的梯形是等腰梯形;故本选项错误.故选C.【点评】本题考查了平方根、矩形、有效数字及等腰梯形的定义及性质,熟记这些概念才能熟练应用,是解答这类题目的关键.5.【答案】B【解析】【分析】根据立方根,算术平方根,平方根的定义对各选项分析判断后利用排除法求解.【解答】A、一个正数的算术平方根一定是正数正确,故本选项不符题意;B、一个数的立方根一定比这个数小错误,例如:-8的立方根是-2,-2>-8,故本选项符合题意;C、一个非零的数的立方根,仍然是一个非零的数正确,故本选项不符题意;D、负数没有平方根,但有立方根正确,故本选项不符题意.故选B.【点评】本题考查了立方根,平方根算术平方根的定义,是基础题,熟记概念是解题的关键6.【答案】C【解析】【解答】解:A、的平方根是,正确;B、﹣2是4的一个平方根,正确;C、0.04的算术平方根为0.2,不正确;D、﹣27的立方根是﹣3,正确;故选C.【分析】利用立方根,平方根以及算术平方根的定义判断即可.7.【答案】C【解析】【解答】解:A、,故原选项计算错误,故此选项不符合题意;B、,故原选项计算错误,故此选项不符合题意;C、,计算正确,故此选项符合题意;D、,故原选项计算错误,故此选项不符合题意.故答案为:C.【分析】根据算术平方根的定义,有理数的乘方,绝对值及相反数分别进行计算,然后判断即可.8.【答案】C【解析】【解答】解:∵4=(±2)2,∴4的平方根是±2.故选C.【分析】由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答.9.【答案】A【解析】解答:根据表格的规律:,,可知≈1.435,则≈14.35.分析:根据被开方数的小数点移动两位,算术平方根的小数点每移动一位求出即可.10.【答案】A【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..二、填空题11.【答案】0【解析】【解答】解:0的平方根是0,故答案为:0.【分析】根据如果一个数的平方等于a,这个数就叫做a的平方根进行解答即可.12.【答案】-4;±2【解析】【解答】解:-64的立方根是-4=4,4的平方根是±2,即的平方根是±2,故答案为:-4,±2.【分析】根据立方根及算术平方根、平方根的定义填空即可.13.【答案】(1)3(2)4039【解析】【解答】(1);(2),,,.故答案为:3,4039.【分析】(1)根据时,,直接计算,即可;(2)根据平方差公式可得x的值,进而得2x+1的值,即可求出的值.14.【答案】0.1b【解析】【解答】解:∵=b,∴= = = =0.1b.故答案为:0.1b.【分析】算数平方根的小数点移动法则为”内2外1“,根号里边移动2位,外边移动1位,5.67与567小数点相差2位,以为标准移动小数点.三、解答题15.【答案】解:由题意得:,∴a=5,b=2.∵9<13<16,∴3<<4.∴c=3.∴a+2b-c=6.∴a+2b-c的平方根是± .【解析】【分析】根据算数平方根和平方根的定义,可列出方程组,计算得出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册《平方根》试题选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .42.64的算术平方根为( ). A .8±B .8C .8-D .163.9的平方根是( ) A .3 B .-3C .3或-3D .814.14的算术平方根是( ) A .12- B .12C .±12D .1165.下列各式中,正确的是( )A 2=-B 9=C .3=-D 3=-6.9的算术平方根是( )A .BC .3D .7.按照如图所示的计算程序,若输入x ,经过第二轮程序计算之后,输出的值为116-,则输入的x 的值为( )A .12±B .12-C .14±D .14-8=( ) A .4-B .4±C .4D .29.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .10.下列说法正确的是( ) A .1-是1的平方根B .算术平方根等于本身的数是0C .若||a a =-,则a 是负数D .23x y-的系数为13-,次数为211.一个正数的两个平方根分别为3a +和42a -,则这个正数为( ) A .7B .10C .10-D .10012.已知26,4x y ==,且0xy >,则x y +的值为( )A .8B .8-C .8或8-D .2或2-一、 填空题(本大题共6小题,每小题3分,共18分)13.一个正数的两个平方根分别是1a -和3a +,则这个数为_____________.14.若|2|0x -=,则12xy -=_____.15()210y +=,则x y -=_________.16.若一个正数的平方根是21a -和5a -,则这个正数是______. 17.已知一个正数的平方根是21a +和4a -,则a 的值是__________.1850b -=,则()2a b -的值是_____.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根. 20.(1)已知:m 3=8,n 2=9,且mn <0,求m 2-2mn+n 2的值.(2)已知a =5,b 2=9,(c -1)2=4,且ab >0,bc <0,求式子ab -bc -ca 的值. 21.(1)1x -的算术平方根为3,4是2y +的一个平方根,求23x y -(2)若代数式()()223245x ay x y ++--+的值与y 的取值无关(a 为某一确定的数),求当2x =-时这个代数式的值.22.如图,图1中小正方形的个数为1个;图2中小正方形的个数为:21342+==个;图3中小正方形的个数为:213593++==个;图4中小正方形的个数为:21357164+++==;…(1)根据你的发现,求出13519++++=____________.(2)根据你的发现,第n 个图形中有小正方形:135++++___________=_________个.(3)由(2)中的结论,解答下列问题已知连续奇数的和:818385(21)3300n +++-=…,求n 的值. 23.计算(1)| 6.5|| 3.5|+-- (2)112418239⎛⎫÷-+ ⎪⎝⎭ (3)2220162(2)(1)-+-- 24.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品. 下面我们用四个卡片代表四名同学(如图):(1)列式,并计算:①﹣3经过A ,B ,C ,D 的顺序运算后,结果是多少? ②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a经过D,C,A,B的顺序运算后,结果是55,a是多少?七年级数学下册《平方根》试题答案二、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知实数a的一个平方根是2-,则此实数的算术平方根是()A.2±B.2-C.2D.4【答案】C∵-2是实数a的一个平方根,∴4a=,∴4的算术平方根是2,故选:C.2.64的算术平方根为().A.8±B.8C.8-D.16【答案】B解:64的算术平方根为8;故选:B.3.9的平方根是()A.3B.-3C.3或-3D.81【答案】C一个非负数的平方根有两个,它们互为相反数,则9的平方根为3或-3,故选:C.4.14的算术平方根是()A.12-B.12C.±12D.116【答案】B解:14的算术平方根为12.故选:B .5.下列各式中,正确的是( )A 2=-B 9=C .3=-D 3=-【答案】C解:A 2==,结果是2,故本选项错误;B =,结果是3,故本选项错误;C 、3=-,结果是-3,故本选项正确;D 故选择:C .6.9的算术平方根是( )A . BC .3D .【答案】C解:9的算术平方根是3. 故选:C .7.按照如图所示的计算程序,若输入x ,经过第二轮程序计算之后,输出的值为116-,则输入的x 的值为( )A .12±B .12-C .14±D .14-【答案】A 解:∵20x ≥∴20x -≤,即每轮程序计算后所得结果是非正数设第一轮程序计算后结果为a由题意可得2116a -=-解得:14a =-或14a =(不符合已得结论,故舍去)∴14a =-,且符合小于18-则输入的x 应满足214-=-x 解得:12x =± 故选A .8=( ) A .4- B .4±C .4D .2【答案】C4==, 故选:C .9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .【答案】C32711159x mx x --++22257x nx --=()()32722111552x m x n x +--++由题意知,2211=0m -, 155=0n +, ∴=2m ,=3n -,∴()()=323=9mn n -+--⨯-, 9的平方根是3±,∴()mn n -+平方根为3±,10.下列说法正确的是( ) A .1-是1的平方根B .算术平方根等于本身的数是0C .若||a a =-,则a 是负数D .23x y-的系数为13-,次数为2【答案】A解:A 、-1是1的平方根,故正确;B 、算术平方根等于本身的数是0和1,故错误;C 、若||a a =-,则a 是负数或零,故错误;D 、23x y-的系数为13-,次数为3,故错误;故选A .11.一个正数的两个平方根分别为3a +和42a -,则这个正数为( ) A .7 B .10C .10-D .100【答案】D一个正数的两个平方根分别为3a +和42a -, 利用正数两个平方个的性质,它们是互为相反数,3a ++42a -=0, 7=0a -, =7a , 3=10a +,()22310100a +==.故选择:D .12.已知26,4x y ==,且0xy >,则x y +的值为( )A .8B .8-C .8或8-D .2或2-解:∵26,4x y ==, ∴x=±6,y=±2, ∵0xy >,∴x=6,y=2,或x=-6,y=-2,∴x y +=6+2=8,或x y +=-6+(-2)=-8, 故选C .三、 填空题(本大题共6小题,每小题3分,共18分)13.一个正数的两个平方根分别是1a -和3a +,则这个数为_____________. 【答案】-1解:根据题意得,a -1+a+3=0, 解得,a=-1, 故答案为:-1.14.若|2|0x -=,则12xy -=_____. 【答案】2解:|2|0x -=,20x ∴-=,0x y +=,2x ∴=,2y =-,∴112(2)222xy -=-⨯⨯-=,故答案为:2.15()210y +=,则x y -=_________. 【答案】3()2210x y -++=,20x ∴-=,10y +=,解得2x =,1y =-,()213x y ∴-=--=.故答案为:316.若一个正数的平方根是21a -和5a -,则这个正数是______. 【答案】9解:由题可知:2a -1+ a -5=0, 解得:a=2.这个正数为=(2-5)2=9. 故答案为:9.17.已知一个正数的平方根是21a +和4a -,则a 的值是__________.【答案】5-∵一个正数的平方根是21a +和4a -,2140a a ∴++-=, 5a =-,故答案为:-5.18150a b --=,则()2a b -的值是_____. 【答案】16150a b --=,∴10,50a b -=-=,解得:1,5a b ==, ∴()()221516a b -=-=; 故答案为16.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数. (2)已知22360c d d --=,求d +c 的平方根. 【答案】(1)x =5,169或21x =-,1521;(2)±3 (1)解:①23180x x ++-=,315x =,5x =,这个数是()2253169⨯+=, ②2318x x +=-,21x =-, 这个数是()221181521--=;(2)解:由题意得:2c -d =0,2360d -=, 解得:d =±6,c =±3.∵当d =-6,c =-3时,d +c =-9(舍),∴d +c 的平方根为.20.(1)已知:m 3=8,n 2=9,且mn <0,求m 2-2mn+n 2的值.(2)已知a =5,b 2=9,(c -1)2=4,且ab >0,bc <0,求式子ab -bc -ca 的值. 【答案】(1)25;(2)23或39 (1)由m 3=8,m=2, 由n 2=9,n=±3, 由mn <0, n=-3,当m=2,n=-3时, m 2-2mn+n 2, =4+12+9, =25,(2)由a =5,5a =±, 由b 2=9,b=±3, 由a b >0,,a b 同号,由(c -1)2=4,c -1=±2, c=3或-1, 由bc <0, b 、c 异号,当531a b c ===-,,时a b -bc -c a =15+3+5=23当533a b c ===-,-,时a b -bc -c a =15+9+15=39.21.(1)1x -的算术平方根为3,4是2y +的一个平方根,求23x y -(2)若代数式()()223245x ay x y ++--+的值与y 的取值无关(a 为某一确定的数),求当2x =-时这个代数式的值.【答案】(1)-22;(2)9解:(1)∵1x -的算术平方根为3,4是2y +的一个平方根,∴x -1=9,y+2=16,∴x=10,y=14,∴2x -3y=-22;(2)由题意可得: ()()223245xay x y ++--+ =223245x ay x y +--+ =()245x a y +-+∵与y 的值无关,∴a -4=0,∴a=4,将2x =-代入,原式=25x +=9.22.如图,图1中小正方形的个数为1个;图2中小正方形的个数为:21342+==个;图3中小正方形的个数为:213593++==个;图4中小正方形的个数为:21357164+++==;…(1)根据你的发现,求出13519++++=____________.(2)根据你的发现,第n 个图形中有小正方形:135++++___________=_________个. (3)由(2)中的结论,解答下列问题已知连续奇数的和:818385(21)3300n +++-=…,求n 的值.【答案】(1)100;(2)(2n ﹣1);n 2;(3)n=70解:(1)∵图1中小正方形的个数为1个;图2中小正方形的个数为:1+3=4=22=(132+)2个; 图3中小正方形的个数为:1+3+5=9=32=(152+)2个; 图4中小正方形的个数为:1+3+5+7=16=42=(172+)2个;…, ∴13519++++=(1192+)2=100个 故答案为:100;(2)∵图1中小正方形的个数为1个;图2中小正方形的个数为:1+3=4=22=(132+)2个; 图3中小正方形的个数为:1+3+5=9=32=(152+)2个; 图4中小正方形的个数为:1+3+5+7=16=42=(172+)2个;…, ∴第n 个图形中有小正方形的个数为:1+3+5+7+…+(2n ﹣1)=(1212n +-)2=n 2个. 故答案为:(2n ﹣1);n 2;(3)818385(21)3300n +++-=…∴[]()1279818385(21)12793300n +++++++--+++=…∴n 2-21792+⎛⎫ ⎪⎝⎭3300= ∴n 2-16003300=∴n 2=4900解得n=70或n=-70(不符合题意,舍去)故n=70.23.计算(1)| 6.5|| 3.5|+-- (2)112418239⎛⎫÷-+ ⎪⎝⎭ (3)2220162(2)(1)-+-- 【答案】(1)3;(2)15;(3)75. 解:(1)原式=6.5 3.5-=3;(2)原式=1912818181818⎛⎫÷-+ ⎪⎝⎭=151818÷ =118185⨯ =15; (3)原式=244+15-++ =75. 24.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如图):(1)列式,并计算:①﹣3经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是55,a 是多少?【答案】(1)①7;②206;(2)1-或11-.(1)①()23256-⨯--+⎡⎤⎣⎦, ()2656=-++, ()216=-+, 16=+,7=;②()25526--⨯+⎡⎤⎣⎦, ()25526=+⨯+,21026=⨯+, 10026=⨯+,2006=+,206=;(2)由题意得:()()226555a +--=,整理得:()2625a +=,解得65a +=±,即1a =-或11a =-.。

相关文档
最新文档