复杂过程控制系统设计与Simulink仿真
过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验实验一 过程控制系统建模 (1)实验二 PID 控制 (2)实验三 串级控制 (6)实验四 比值控制 (13)实验五 解耦控制系统 (19)实验一 过程控制系统建模指导内容:(略)作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。
作业题目二: 某二阶系统的模型为2() 222n G s s s n n ϖζϖϖ=++,二阶系统的性能主要取决于ζ,nϖ两个参数。
试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶系统的理解,分别进行下列仿真:(1)2n ϖ=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线;(2)0.8ζ=不变时,n ϖ分别为2, 5, 8, 10时的单位阶跃响应曲线。
实验二 PID 控制指导内容:PID 控制器的参数整定是控制系统设计的核心内容,它根据被控过程的特征确定PID 控制器的比例系数、积分时间和微分时间。
PID 控制器参数整定的方法很多,概括起来有两大类:(1) 理论计算整定法主要依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接使用,还必须通过工程实际进行调整和修改。
(2) 工程整定方法主要有Ziegler-Nichols 整定法、临界比例度法、衰减曲线法。
这三种方法各有特点,其共同点都是通过实验,然后按照工程实验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
工程整定法的基本特点是:不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定;方法简单,计算简便,易于掌握。
a . Ziegler-Nichols 整定法Ziegler-Nichols 整定法是一种基于频域设计PID 控制器的方法。
基于频域的参数整定是需要考虑模型的,首先需要辨识出一个能较好反映被控对象频域特性的二阶模型。
第五章控制系统的Simulink仿真

第五章控制系统的Simulink仿真第五章控制系统的Simulink仿真5.1 Simulink仿真的参数设置5.1.1 系统模型的实时操作与仿真参数设置1.系统模型的实时操作在Simulink环境下创建系统仿真模型后,在菜单操作⽅式下可对系统模型或框图进⾏如下的实时操作:(1)被仿真模块的参数允许有条件地实时修改。
(2)离散模块的采样时间允许实时修改。
(3)允许⽤浮空⽰波器(Floating Scope)实时观察任何⼀点或⼏点的动态波形。
(4)在进⾏⼀个系统仿真的过程中,允许同时打开另⼀个系统进⾏处理。
2.仿真参数的设置⽅法系统仿真前要对仿真算法、输出模式等各种参数进⾏设置,这就是“Simulation”下的“Simulation Parameters”菜单命令要完成的任务。
打开⼀个仿真参数对话框后可以设置仿真参数,该对话框包含以下5个可相互切换的标签页:(1)Solver解算器标签页:设置仿真的起始时间与终⽌时间、仿真的步长⼤⼩与求解问题的算法等。
(2)Workspace I/O⼯作空间标签页:管理对MATLAB⼯作空间的输⼊和输出操作。
(3)Diagnostics标签页:设置在仿真过程中出现各类错误时的操作处理。
(4)Advanced标签页:设置⾼级仿真属性,如模块的简化、在仿真过程中使⽤逻辑信号等。
(5)Real-Time Workshop标签页:设置实时⼯具中的参数,如允许⽤户选择⽬标语⾔模板、系统⽬标⽂件等。
5.1.2 Solver解算器标签页的参数设置执⾏“Simulation”下的“Simulation Parameters”命令后,会弹出仿真参数设置对话框标签之⼀“Solver”解算器标签页。
“Solver”标签页参数设定是进⾏仿真⼯作前准备的必须步骤,基本参数设定包括仿真的起始时间与终⽌时间、仿真的步长⼤⼩与求解问题的算法等。
当选择算法是可变步长类型“Variable-step”时,“Solver”标签页如图5-1所⽰;当选择固定步长类型的算法“Fixed-step”时,“Solver”标签页如图5-2所⽰。
控制系统的Simulink仿真

06 结论与展望
结论
控制系统Simulink仿真是一种有 效的工具,可用于模拟和分析各 种控制系统的性能。通过使用 Simulink,研究人员和工程师可 以轻松地构建和修改控制系统模 型,并使用各种仿真工具进行系 统分析和优化。
Simulink提供了广泛的模块库和 工具,可用于构建各种类型的控 制系统模型,包括线性、非线性、 离散和连续系统。这些模块可以 方便地组合和修改,以适应特定 的控制系统需求。
非线性系统仿真
总结词
对非线性系统的动态行为进行模拟的过程。
详细描述
非线性系统在Simulink中可以通过使用非线性模块进行模拟。非线性系统是指系统的 输出与输入不成比例的系统,例如某些电子设备或机械系统。在Simulink中,可以使 用非线性模块来模拟这些系统的行为,例如非线性增益、饱和等。通过调整模块参数,
• 未来,Simulink可能会引入更多先进的仿真技术和算法,以提高仿真精度和 效率。例如,基于模型的控制设计、自适应控制、预测控制等先进控制算法可 能会被集成到Simulink中,以提供更强大的分析和优化工具。
• 此外,随着物联网和智能制造等领域的快速发展,Simulink可能会扩展其模 块库和工具箱,以支持这些领域的控制系统建模和仿真。例如,增加与传感器 、执行器和其他智能设备的接口模块,以及支持实时仿真和嵌入式系统开发的 工具箱。
保障生产安全
控制系统能够及时检测和预防潜在的安全隐患, 降低事故发生的可能性。
3
节能减排
优化控制参数,降低能耗和排放,符合绿色环保 要求。
控制系统的发展历程
01
02
03
模拟控制系统
基于MatlabSimulink的控制系统设计与仿真

基于MatlabSimulink的控制系统设计与仿真控制系统设计与仿真是现代工程领域中至关重要的一部分,它涉及到对系统的建模、控制器设计以及性能评估等方面。
MatlabSimulink作为一款强大的工程仿真软件,在控制系统设计与仿真中扮演着重要的角色。
本文将介绍基于MatlabSimulink的控制系统设计与仿真的基本原理、方法和应用。
1. 控制系统设计基础在开始介绍基于MatlabSimulink的控制系统设计与仿真之前,我们首先需要了解控制系统设计的基础知识。
控制系统通常由被控对象、传感器、执行器和控制器等组成。
其中,被控对象是需要被调节或控制的物理系统,传感器用于采集被控对象的状态信息,执行器则根据控制器输出的信号对被控对象进行调节,而控制器则根据传感器采集的信息和设定的目标来生成控制信号。
2. MatlabSimulink简介MatlabSimulink是MathWorks公司推出的一款用于数学建模、仿真和算法开发的工具。
它提供了丰富的模块库和直观的图形化界面,使工程师能够快速地建立模型、进行仿真并进行实时分析。
在控制系统设计领域,MatlabSimulink可以帮助工程师快速搭建控制系统模型,并进行性能评估。
3. 控制系统建模与仿真在MatlabSimulink中,可以通过拖拽不同的模块来建立控制系统模型。
常见的模块包括传感器、执行器、PID控制器等。
通过连接这些模块,并设置相应的参数,可以构建一个完整的控制系统模型。
一旦建立好模型,就可以进行仿真分析了。
MatlabSimulink提供了丰富的仿真工具,可以对系统进行时域分析、频域分析等。
4. 控制器设计与调试在控制系统设计中,控制器设计是至关重要的一环。
MatlabSimulink提供了各种常见的控制器设计方法,如PID控制器、状态空间反馈等。
工程师可以根据系统需求选择合适的控制器,并通过仿真来验证其性能。
此外,在调试阶段,MatlabSimulink还提供了丰富的调试工具,如信号监视器、作用力显示等,帮助工程师快速发现问题并进行调整。
控制系统Simulink仿真PPT课件(MATLAB学习资料)

积分环节的幅值与 成反比,相角恒为-
时,幅相特性从虚轴
处出发,
沿负虚轴逐渐趋于坐标原点,程序如下:
g=tf([0,1],[1,0]); nichols(g); grid on
运行程序输出如图6-14曲线②所示。
。当
在Simulink中积分环节的使用如如图6-15所示。 运行仿真输出图形如图6-10所示。
• 频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解 方法,故又称为频率响应法,频率法的优点较多,具体如下:
• 首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。 • 其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存
在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数 联系起来。因而可以根据频率特性曲线的形状去选择系统的结构和参 数,使之满足时域指标的要求。 • 此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实 验方法求得。这对于某些难以用机理分析方法建立微分方程或传递函 数的元件(或系统)来说,具有重要的意义。因此,频率法得到了广泛 的应用,它也是经典控制理论中的重点内容。
• 2)由于对数可将乘除运算变成加减运算。当绘制由多个环节串联而成的系统的对数坐标图 时,只要将各环节对数坐标图的纵坐标相加、减即可,从而简化了画图的过程。
• 3)在对数坐标图上,所有典型环节的对数幅频特性乃至系统的对数幅频特性均可用分段直 线近似表示。这种近似具有相当的精确度。若对分段直线进行修正,即可得到精确的特性曲 线。
其频率特性为:
一阶复合微分环节幅相特性的实部为常数1,虚部与 成正比,如图5-26曲线①所示。 不稳定一阶复合微分环节的传递函数为:
其频率特性为:
一阶复合微分环节的奈奎斯特曲线图编 程如下: clc,clear,close all g=tf([1,1],[0 1]);
Simulink与控制系统仿真第二版课程设计

MATLAB/Simulink与控制系统仿真第二版课程设计前言MATLAB/Simulink是一种常用的科学计算软件,在控制系统仿真中也有着广泛的应用。
本文将介绍MATLAB/Simulink与控制系统仿真第二版课程设计的相关内容,希望能够为初学者提供一些参考。
课程设计概述本次课程设计重点涵盖了以下内容:1.利用MATLAB/Simulink搭建控制系统仿真模型;2.设计控制器并进行参数调整;3.利用仿真结果进行系统性能分析。
软件准备在进行课程设计之前,我们需要准备以下软件:1.MATLAB/Simulink 软件,版本不低于 R2018a。
2.Control System Toolbox 软件。
可以通过MathWorks官网进行下载或安装。
实验进程实验一:建立控制系统模型1.利用模块库中的控制系统工具箱,选择Transfer Fcn模块,表示一般的传递函数。
2.建立一个常数块,作为控制输入变量。
3.利用Math Operation模块,实现控制输入变量和传递函数的乘积。
4.将Transfer Fcn模块的输出接入Scope模块,用于显示输出波形。
5.搭建完整的模型,并进行仿真,观察输出波形。
实验二:参数调整与PID控制1.在控制系统模型中,选择PID Controller模块。
2.设计PID控制器的参数,包括比例系数、积分时间和微分时间。
3.在仿真结果中,观察PID控制器的作用效果,并尝试进行参数调整,找到最优的控制器参数。
实验三:闭环控制系统1.利用模块库中的控制系统工具箱,搭建一个闭环控制系统模型。
2.包括控制器、对象以及反馈环节,模拟实际的控制系统。
3.在仿真结果中,观察闭环控制系统的工作效果,并进行性能分析。
实验结果与分析在完成以上三个实验后,我们得到了如下结果:•初步的控制系统仿真模型,可以实现基本的控制作用;•经过PID控制器的参数调整后,模型的控制精度得到了显著提高;•闭环控制系统的应用,进一步提升了系统的控制效果。
MATLAB-simulink系统仿真与控制
SIMULINK概述
SINKS模块库
XY Graph:显示二维图形 To Workspace:将输出写入MATLAB的工作空 间
To File(.mat):将输出写入数据文件
SIMULINK概述
SINKS模块库 Display
属性窗口:
SIMULINK概述
SINKS模块库
Display:显示 说明:该模块显示输入的值,可以通过选择 Format(格式)选项来控制显示的格式。
SIMULINK概述
简介 从 名 称 上 看 SIMULINK 有 两 个 主 要 功 能 : SIMU(仿真)和LINK(连接),即该软件 可以利用鼠标在模型窗口上绘制出所需要 的控制系统模型,然后利用SIMULINK提供 的功能来对系统进行仿真和分析。
SIMULINK概述
简介 所谓模型化图形输入是指SIMULINK提供了 一些按功能分类的基本的系统模块,用户 只需要知道这些模块的输入输出及模块的 功能,而不必考察模块内部是如何实现的, 通过对这些基本模块的调用,再将它们连 接起来就可以构成所需要的系统模型,进而 进行仿真与分析.电力系统的建摸和仿真就 是在SIMLINK环境中实现的.
SIMULINK概述
SINKS模块库
Scope显示窗口:
SIMULINK概述
SINKS模块库
工具条说明:在Scope窗口顶部的工具栏
上,从左至右依次为:打印按钮,参数设 臵按钮,XY轴同时放大按钮,X轴放大按 钮,Y轴放大按钮,自动收缩按钮,保存X 轴设臵按钮,调出保存过的X轴的设臵按 钮,浮动Scope窗口按钮等。
SIMULINK概述
使用Scope(示波器)模块实例
SIMULINK概述
上机操作
控制系统建模与仿真基于MATLABSimulink的分析与实现
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
实现
通过
仿真
技术
进行
分析
方法
分析
matlabsi mulink
仿真
系统
simulink
实现
介绍
工程
精彩摘录
精彩摘录
《控制系统建模与仿真基于MATLABSimulink的分析与实现》精彩摘录 随着科技的发展和社会的进步,控制系统在各个领域中的应用越来越广泛, 掌握控制系统的建模与仿真技术对于科学研究、工程实践等方面都具有重要意义。 而《控制系统建模与仿真基于MATLABSimulink的分析与实现》这本书,正是为满 足这一需求而编写的。
阅读感受
而真正让我感到震撼的是第4章到第8章的内容。作者利用MATLAB强大数据处 理、绘图函数和Simulink仿真工具,对被控对象模型进行了系统建模、分析、计 算、性能指标的优化及控制器设计。从时域、频域、根轨迹、非线性及状态空间 几个方面,完成了对系统性能指标的验证及控制系统设计。这其中的细节和深度, 都足以显示作者对这一领域的深入理解和实践经验。
目录分析
在“仿真技术”部分,目录涵盖了控制系统仿真的基本原理、仿真模型的建 立、参数设置以及仿真结果的分析等内容。还介绍了如何利用MATLABSimulink进 行仿真,使得读者能够快速上手这一强大的仿真工具。
目录分析
“应用实例”部分通过多个具体的案例,展示了如何将建模与仿真技术应用 于实际控制系统。这些案例既有简单的单输入单输出系统,也有复杂的非线性多 输入多输出系统,具有很高的实用价值。
基于MATLABSimulink的控制系统设计与仿真
基于MATLABSimulink的控制系统设计与仿真控制系统设计是现代工程领域中至关重要的一部分,它涉及到对系统动态特性的分析、建模、控制器设计以及系统性能评估等方面。
MATLAB Simulink作为一款强大的工程仿真软件,在控制系统设计与仿真领域有着广泛的应用。
本文将介绍基于MATLAB Simulink的控制系统设计与仿真过程,包括系统建模、控制器设计、性能评估等内容。
1. 控制系统设计概述控制系统是通过对被控对象施加某种影响,使其按照既定要求或规律运行的系统。
在控制系统设计中,首先需要对被控对象进行建模,以便进行后续的分析和设计工作。
MATLAB Simulink提供了丰富的建模工具和仿真环境,可以帮助工程师快速准确地建立系统模型。
2. 系统建模在MATLAB Simulink中,可以利用各种不同的模块来构建系统模型,如传感器、执行器、控制器等。
通过简单拖拽这些模块并连接起来,就可以构建出完整的系统结构。
同时,Simulink还支持连续系统和离散系统的建模,可以方便地进行时域和频域分析。
3. 控制器设计控制器是控制系统中至关重要的一部分,它根据系统反馈信息对输出信号进行调节,以实现对被控对象的精确控制。
在MATLAB Simulink中,可以使用各种不同类型的控制器设计工具,如PID控制器、状态空间反馈控制器等。
通过这些工具,工程师可以快速设计出符合系统要求的控制器。
4. 性能评估在完成控制器设计后,需要对系统性能进行评估。
MATLAB Simulink提供了丰富的仿真功能,可以对系统进行动态响应、稳定性、鲁棒性等方面的评估。
通过仿真结果,工程师可以及时发现问题并进行调整优化。
5. 实例分析为了更好地说明基于MATLAB Simulink的控制系统设计与仿真过程,我们以一个温度控制系统为例进行分析。
首先建立被控对象的数学模型,然后设计PID控制器,并利用Simulink进行仿真验证。
最后根据仿真结果对系统性能进行评估,并进行必要的调整。
Simulink控制系统建模与仿真
变量延迟模块
Variable Transport Delay
与可变时间延迟模块相似。 7
非连续模块组(Discontinuities)
8
非连续模块组的模块及功能介绍
名称
饱和模块 Saturation
死区模块 Dead Zone 动态死区模块 Dead Zone Dynamic 磁滞回环模块 Backlash 滞环继电模块
10
离散模块组的模块及功能介绍
名称
单位延迟模块 Unit Delay
离散时间积分模块 Discrete-Time Integrator
形状
功能介绍
实现Z域单位延迟,等同于离散时间算 子z-1。
实现离散时间变量积分。
离散传递函数模块 Discrete Transfer Fcn
实现脉冲传递函数模型。
离散滤波器模块 Discrete Filter
脉冲信号输出。
斜坡信号输出。
正弦波信号输出。
阶跃信号输出。
随机数输出。
连续仿真时钟;在每一仿真步输 出当前仿真时间。 离散仿真时钟;在指定的采样间 隔内输出仿真时间。
16
信宿模块组(Sinks)
17
信宿模块组的模块及功能介绍
名称
输出端口模块 Out1
示波器模块 Scope
X-Y示波器模块 XY Graph
第五章 Simulink的控制系统建模 与仿真
本节基于MATLAB 7.1版本, Simulink 6.3版本详细介绍Simulink在控
制系统中的建模与仿真方法。
1
5.1 Simulink模块库
图5.1.1 Simulink启动界面
2
常用模块组(Commonly Used Blocks)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银河航空航天大学课程设计(论文)题目复杂过程控制系统设计与Simulink仿真班级学号学生姓名指导教师目录0. 前言 (1)1. 总体方案设计 (2)2. 三种系统结构和原理 (3)2.1 串级控制系统 (3)2.2 前馈控制系统 (3)2.3 解耦控制系统 (4)3. 建立Simulink模型 (5)3.1 串级 (5)3.2 前馈 (5)3.3 解耦 (7)4. 课设小结及进一步思想 (15)参考文献 (15)附录设备清单 (16)复杂过程控制系统设计与Simulink仿真姬晓龙银河航空航天大学自动化分校摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。
建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。
关键字:串级;前馈;解耦;建模;Simulink。
0.前言单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。
但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。
为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。
从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。
这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。
计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。
通过对过程仿真的分析,得到被仿真系统的动态特性。
过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。
同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。
控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。
控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。
在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。
随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。
1.总体方案设计本次设计共分为三个部分,分别对串级、前馈、解耦三个复杂过程控制系统进行设计。
首先研究各复杂控制系统的结构以及工作原理原理,画出它们的原理框图,分析这些系统的特点,包括其被控过程的动态特性、对扰动的抗干扰能力等等,然后对这些系统进行具体设计,建立SImulink模型,然后选择合适的工业过程进行参数整定及系统分析。
总体方案如图1所示:图1 课程设计整体方案设计2. 三种系统结构和原理2.1 串级控制系统控制系统具有多个控制器和一个执行机构,这些控制器被一个一个地串联起来,前一个控制器的输出就是后一个控制器的设定值,其执行机构由最后一个控制器控制,这种系统被称为串级控制系统。
串级控制系统的基本组成如图2所示:图2 串级控制系统的基本组成为了提高系统性能,在以1c 为被控量的被控对象中适当选取另一个可测变量2c 为中间变量,2c 称为副被控量,也称副参数,相对于2c 把1c 称为主被控量,也称主参数。
以2c 为分界,把整个受控过程分成两个组成部分,以2c 为输出的部分称为副对象,而以2c 为输入的部分称为主对象。
主被控量和副被控量通过各自的控制器构成闭环控制。
副被控量的控制回路在内,其设定值就是主控制器的输出,而副控制器的输出就直接控制控制阀,这两个控制回路称为内环和外环。
通常把作用在主对象上的扰动1q 称为一次扰动,作用在副回路上的扰动2q 称为二次扰动。
2.2 前馈控制系统前馈控制是针对扰动量及其变化进行控制的。
其原理图如图3:图3 前馈控制原理图在前馈控制中,)(s G f (s)3G 为干扰源至系统输出的干扰通道传递函数;)(s G d 为前馈调节器函数;)()(32s G s G 为干扰源至系统输出的控制通道传递函数;(s)1G 为给定环节传2c2q1q可测干扰递函数。
系统输出为:Y=X·(s)1G )()(32s G s G +M()(s G d (s)2G +)(s G f )(s)3G 干扰对系统的作用是通过干扰通道进行的,前馈的控制原理是给系统附加一个前馈通道,使所测量的系统扰动通过前馈控制器改变控制量。
利用扰动所附加的控制量与扰动对被控量影响的叠加消除和减小干扰的影响。
2.3 解耦控制系统解耦方法有很多方法,这里只说前馈补偿解耦设计。
过程可以表示为)()()()()(y 2121111s u s W s u s W s += )()()()()(2221212s u s W s u s W s y +=若令 2112121111)()()()()()()(u s W s W s u s W s u s W s y FF ++= 而又满足 0)()()(11FF 12=+s W s W s W 则有 )()()(1111s u s W s y =而同理令)()()()()()()()(22212211212s u s W s u s W s W s u s W s y FF ++=可得 )()()(2222s u s W s y =这样就实现了过程解耦,式(1)和式(2)为补偿器结构,它和串联补偿不同,采用的是前馈补偿的不变性原理。
其系统构成如图4所示:)()()(11122s W s W s W FF -=)()()(22211s W s W s W FF -=(1)(2)3. 建立Simulink 模型3.1 串级以隧道窑系统对象进行仿真研究。
考虑将燃烧室温度作为副变量,烧成温度为主变量,燃烧室温度为副变量的串级控制系统中主、副对象的传递函数1o G 和2o G 分别为:主、副控制器的传递函数1c G 和2c G 为:建立系统的Simulink 模型如图5所示:图5 串级控制时系统的Simulink 模型在图5中,q1为一次扰动,取阶跃信号;q2为二次扰动,取阶跃信号;PID C1为主控制器,采用PID 控制;PID C2为副控制器,采用PID 控制;2o G 为副对象;1o G 为主对象;r 为系统输入,取阶跃信号;c 为系统输出,它连接到示波器上,可以方便的观测输出。
3.2 前馈这里进行前馈—反馈复合控制系统仿真。
前馈—反馈复合控制系统仿真主要包括:系统辨识、控制系统整定和系统仿真等内容。
假设被控对象的干扰通道传递函数为:221)1)(110(1)(;)13)(130(1)(++=++=s s s G s s s G o o 22111)();11(c c c c K s G sT K G =+=s e s s s G s G 10)110)(18(15)()(-++=系统被控部分传递函数为:s e s s s G s G 8)110)(15(6)()(-++=给定部分传递函数为:1)(=s G c采用前馈、反馈分别整定的方法,前馈整定参数为5.2-=d K ,8,521==d d T T 。
若系统采用PID 控制,则系统结构框图如图6所示:图6 前馈—反馈复合控制系统方框图系统稳定性分析是实验调试中正确把握试验方法、试验参数的基本依据。
对图5所示系统反馈环节开环稳定性进行分析(不含PID 调节器部分),为分析方便取:s e e s s 311133+≈=- se e s s511155+≈=- 不含PID 调节器的开环传递函数可近似写成:)110()15)(13(62+++s s s可见开环系统不稳定。
可测干扰 M(s)反馈控制器取为PI 形式。
采用阶跃响应法整定PI 参数。
开环阶跃响应SImulink 框图如图7所示:图7 开环阶跃响应Simulink 框图其中阶跃输入控制量1=∆u ,因此得:利用各整定参数及系统模型辨识结果构建系统前馈—反馈复合控制Simulink 框图如图8所示:图8 系统前馈—反馈复合控制Simulink 框图3.3 解耦这里进行前馈补偿解耦控制仿真。
以锅炉燃烧系统为对象,可控制输入量为燃料流量29.09.0=⋅∆⋅∆⋅=Ly Tu K p 009.03==LK K PI和助燃空气流量,被控量和温度,为系统蒸汽压采用参数前馈补偿解耦法对噶系统进行仿真。
此为双输入双输出系统,初步选择输入x1、x2分别对应输出y1、y2。
经辨识,得系统输入、输出的传递关系为:由式(3)的系统静态放大系数矩阵为:即系统的第一放大系数矩阵为:系统的相对增益矩阵为:由相对增益矩阵可以看出,控制系统输入、输出的配对选择是错误的,应调换。
为了表述方便,调换后仍用输入x1(原x2)、x2(原x1)分别对应输出y1、y2,输入、输出之间的传递关系为:输入、输出重新匹配后,系统输入、输出结构如图9所示:(3)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1.055.0122211211k k k k ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡)()(191.01125125.0131)()(2121s X s X s s s s S Y S Y ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1.055.012221121122211211k k k k p p p p P ⎥⎦⎤⎢⎣⎡--=Λ04.104.104.104.0⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡(s)X (s)1s 1251s 91.01s 311s 25.0(s)(s)2121X Y Y (4)(5)(6)(7)图9 重新匹配后的系统耦合关系可求得相对增益矩阵为:由式(8)知,输入x1、x2分别对输出y1、y2的控制能力接近于1,通道间相互耦合接近零。
如不强调系统的动态跟随特性,只考虑稳态特性,则系统的两个通道耦合很弱不需要解耦。
但如果考虑动态情况,由于系统纯在耦合,则容易形成正反馈,应对系统进行耦合分析。
本次选择前馈方式实现解耦,前馈解耦控制器分别为:(1X 2X ⎥⎦⎤⎢⎣⎡--=Λ04.104.004.004.1(8)1324)(12++-=s s s G p (9))19(50112)(21++-=s s s G p (10)采用前馈解耦后,系统的结构图如图10所示:图10 采用前馈耦合后系统结构解耦前后系统的Simulink 阶跃仿真框图如图11所示:1s 25.0+ 1s 91.0+1s 31+ 1s 125+50450112++s s 1324++s s 输入)(1s X输入)(2s X+ __ ++++ +输出 )(1s Y输出)(2s Y前馈补偿被控耦合系统(a)系统不纯在耦合的Simulink仿真框图(b) 系统耦合Simulink仿真框图(c) 利用前馈补偿实现系统耦合的Simulink仿真框图图11 系统解耦状态对比Simulink仿真框图图11(a)为系统无耦合的Simulink阶跃仿真框图;图11(b)为系统耦合时Simulink阶跃仿真框图;图11(c)为系统采用前馈耦合后的Simulink阶跃仿真框图。