吸收系数的测定[1]

吸收系数的测定[1]
吸收系数的测定[1]

吸收系数的测定

一、实验目的

1、了解填料吸收塔的构造,流程及其操作;

2、了解吸收剂进口条件(L,x2,t)的变化对操作结果的影响;

3、掌握气相总体积吸收系数(K Y a)的测定方法。

二、实验原理:

1、吸收塔的操作和调节

吸收操作的最终结果是表现在气体出口组成y2或回收率Ф上,因此降低y2(或提高Ф)是操作调节的目标。气体的进口条件(V,y1)是由前一工序决定的,吸收剂的进口条件(L,x2,t)是可控制和调节的。

(1)、吸收剂用量L的改变

这是常用的调节方法,当气体流量V不变,L增加,吸收速率N A增加,溶质吸收量增加,那么Y2减小,吸收率增大。当液相阻力较小(气膜控制)。L增大,吸收总系数变化较小或基本不变,溶质吸收量增加主要是平均推动力增大而引起;当液相阻力较大(液膜控制)L增大,吸收总系数大幅度增大,而平均推动力可能减小,但总的结果是使吸收率增大。

(2)、吸收剂入口温度t

温度降低使气体溶解度增大,相平衡常数m减小。对气膜控制过程,过程阻力1/K y a≈1/k Y a 。但平均推动力增大,吸收效果变好;而对液膜控制过程,过程阻力1/K Y a≈m/k X a将减小,平均推动力或许会减少,但总的结果是吸收效果变好,Y2减小。

(3)、进口浓度x2

x2降低,使塔顶推动力增大,全塔推动力增大,有利于吸收。这里有两种情况应注意(1)当L/V>m。气液两相在塔顶,接近平衡时,L增大,即L/V增大并不能使Y2明显降低,这时降低x2是有效的。(2)当L/V

(L/V(L/V

Y

Y

Y2

X2,X2 X1, X1 X2 X1 X1’

(1) (L/V)>m (2) (L/V)<m

气相总体积吸收系数的测定

由吸收速率方程 N A =K Y A △Y m =K Y aV 填料△Y m 得 Ym

a K Y ?=填料V N A

式中

K Y a ——气相总体积吸收系数,kmol/m 3

h

N A ——吸收速率,kmol/h , 可由N A =V (Y 1-Y 2)求算

V ——kmolB/h ,惰性气体流量,可有空气流量计读数经换算求得。 ∵'

10PT T P V V ON

=测 又 4

.221

.

100T T P P V V ?=测

∴4

.221

00'?=T P PT V V ON

式中 V ON ——转子流量计读数,m 3

/h 。

P ——操作压力 kPa , P=大气压+表压=131.3kPa 。 大气压可近似取101.3kPa P 0为大气压(101.3kPa)。 T 1——气体进口温度, K 。

T 0‘

——为273+20=293K , T 0=273K 。 V 填料——填料体积,m 3

本实验中,塔径Ф41×3,塔料充填高度为0.25m 。 ∴V 填=0.785D 2

Z=0.785×0.0352

×0.25=2.4×10-4m 3

4、△Y m ——气相平均推动力

2

12

1ln Y Ym Y Y Y ???-?=

? 式中①111mX Y Y -=?

m 为相平衡常数,可根据水的进出口的平均温度从实验附录中查得。 X 1可由物料衡算式求得 )()(2121X X L Y Y V -=- 当X 2=0 L

Y Y V X )

(211-=

∴ 式中L 为kmol/h 可由水的转子流量计读数L N (L/N)经换算而得

N N N L L M L L 05556.018

1000

101033=?==

--ρ (kmol/h)。 气相总体积吸收系数与V, L 的关系 根据双膜理论,在一定温度下

a

k m

a k a K X Y Y +

=11 a k a k X Y ,分别为气膜,液膜吸收系数(Kmol/m 3h )

由文献可知 a Y AV a k = b X BL a k =

显然K Y a 与液、气流量都有关,其关系可用下式表示 b a Y L CV a K =

本实验用丙酮—空气混合气以水作吸收剂,其液膜、气膜阻力均占一定比例,可以通过实验测得常数C 、a 、b 的值。

三、实验装置与流程:

图示说明:

(1)、空气压缩机; (2)、压力表;

(3)、空气压缩机旁路阀; (4)、空气压力调节阀; (5)、气动压力定值器;

(6)、压力表; (7)、空气流量计;

(8)、丙酮汽化器; (9)、空气加热器;

(10)、丙酮蒸汽—空气混合器; (11)、水预热器; (12)、填料吸收塔; (13)、水转子流量计; (14)、液封;

14

T 4

2 3

T1、T2、T3、、T4—温度计;

V4、V6、、V10—流量调节阀;

V3、V5、V7、V8、V9、V11—启闭阀;

A1、A2—气体进出口取样口;

(二)设备规格型号

装置大小:400×300×1800

(1

(2

(3)空气预热器

加热功率:0.5KW 配电子调压器:1只

(4)液体预热器

加热功率:0.4KW 配电子调压器:1只

(5)混合气体配制系统

液体有效容积:2.5L

(6

(7)空气压缩机

型号Z-0.25/6排气量0.25m3/min,额定压力0.6Mpa用旁路阀门和气动压力定值器,使压缩机包内空气压力在0.05~0.1Mpa,送入吸收塔的空气压力一般恒定在0.03Mpa。

(8)成分分析

气相成分用气相色谱仪分析

气相色谱仪:GC9800T型

色谱数据处理机:918型

实验步骤

实验前准备工作:

将液体丙酮(CP级)用漏斗加入丙酮气化器,液位高度约为液位计高度的三分之二以上;关阀V3、开阀V5向恒压水槽供水使其装满而不溢出为度,然后关阀V5;

启动空气压缩机,调节压缩机包内空气压力在0.05~0.1Mpa时,打开V2,然后调节气动压力

4

定值器,使进入系统的压力恒定在0.03Mpa;

打开V4,调节空气流量为300、500 L/H;

打开V6,调节水流量3.0、5.0L/H;

室温大于15℃时,空气不需要加热,配制混合气体气相组成y1在12%~14%mol%左右;假如室内温度偏低,可预热空气,使y1达到要求。

要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器,温度t3<35℃维持液封(阀V10)确保气体不从塔地窜出;

各仪表读数恒定5min以后即可记录气体进出塔温度T1、T2及水进出塔温度T3、T4,用5~10ml 针筒取样分析y1’, y2’。(A1取样测y1‘,A2取样测y2’)注意取气样时要排气三次,第四次气体作为气体样品。同一样品要分析2~3次,取其平均值。

实验结束,断电、关压缩机排气阀V2,关V4、V6、V7。

五、实验纪录

日期室温℃大气压装置编号

六、数据处理

5

计算举例(序号)

七、实验结论

八、讨论

Y1,X2,V,t不变,分析L增大对K Y a,Ф的影响。

Y1,X2,V,L不变,分析温度升高对K Y a,Ф的影响。

从数据上看出,平衡常数m随温度的变化较大,随组成的变化较小。可认为在浓度很低时,m仅为温度的函数,服从亨利定律。

6

导热系数测量

导热系数测量 在某些应用场合,了解陶瓷材料的导热系数,是测量其热物理性质的关键。陶瓷耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。作为有效的散热器能保护集成电路板与其它电子设备不受高温损坏,陶瓷已经成为微电子工业领域关键材料。若要在和热相关的领域使用陶瓷材料,则要求精确测量它们的热物理性能。在过去的几十年里,已经发展了大量的新的测试方法与系统,然而对于一定的应用场合来说并非所有方法都能适用。要得到精确的测量值,必须基于材料的导热系数范围与样品特征,选择正确的测试方法。 基本理论与定义 热量传递的三种基本方式是:对流,辐射与传导。对流是流体与气体的主要传热方式,对固态与多孔材料传热不起重要作用。 对于半透明与透明陶瓷材料,尤其在高温情况下,必须考虑辐射传热。除了材料的光学性质外,边界状况亦能影响传热。关于辐射传热方式的详细介绍见文献一(1)。 对于陶瓷材料而言传导是最重要的传热方式。热量的传导基于材料的导热性能——其传导热量的能力(2)。厚度为x 的无限延伸平板热传导可用Fourier 方程进行描述(一维热传递): Q = -λ·△T/△x Q 代表单位表面积在厚度(△x)上由温度梯度(△T)产生的热流量。两个因子都与导热系数(λ)相关联。在温度梯度与几何形状固定(稳态)的情况下,导热系数代表了需要多少能量才能维持该温度梯度。 在对建筑材料(如砖)与绝热材料进行表征时,经常用到k 因子。k 因子与材料的导热系数和厚度有关。 k –value = λ/ d 这一因子并不能用来鉴别材料,而是决定最终产品厚度的决定因素。 现代电子元件与陶瓷散热器上通常发生的是动态(瞬时)过程。需要更复杂的数学模型描述这些动态热传递现象,在此不做讨论。

填料吸收传质系数的测定

序号:40 化工原理实验报告 实验名称:填料吸收传质系数的测定 学院:化学工程学院 专业:化学工程与工艺

1、熟悉填料塔的构造与操作。 2、观察填料塔流体力学状况,测定压降与气速的关系曲线。 3、掌握总传质系数K x a 的测定方法并分析影响因素。 4、学习气液连续接触式填料塔,利用船只速率方程处理传质问题的办法。 一、 实验原理 本装置先用吸收柱讲将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数a x K ,并进行关联,得到 b a V AL K ?=a x 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实 验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1、填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa 线)。当有喷淋量时,在低气速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图1中c 点),持液量开始增大,压降-气速线向上 弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 图一 填料层压降-空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。整理得到相应的传质速率方式为: m p x A x V a K G ???=

实验四填料吸收塔的操作及吸收传质系数的测定

实验四填料吸收塔的操作及吸收传质系数的测定姓名:学号:;学院专业级班; 同组同学姓名:;;。 实验日期:;天气:;室温:大气压:;成绩: . 一、实验目的 1.了解填料吸收塔的结构和操作流程; 2.掌握产生液泛现象的原因和过程。 3.明确吸收塔填料层压降p与空塔气速u在双对数坐标中的关系曲线及其意义,了 解实际操作气速与泛点气速之间的关系 4.了解吸收剂进口条件的变化对吸收操作结果的影响; 5. 掌握气相总容积吸收传质系数Ky,α的测定方法 二、基本原理 吸收是指利用气体中各组分在液相中溶解度的差异而分离气体混合物的操作。在吸收过 程中,所用液体成为吸收剂(或溶剂);气体中被溶解的组分称为吸收质或溶质;不被溶解 的气体组分称为惰性气体或载体;吸收操作所得到的液体称为溶液(主要成分为吸收剂和溶质);剩余的气体为尾气,主要成分为惰性气体,还有残余的吸收质。 1.气液相平衡关系 大多数气体物质A溶解形成稀溶液时,稀溶液上方溶质A的平衡分压p A*与其在溶液 中的 摩尔分数x A成正比: p A* = Ex A (4-1) 这就是亨利定律。式中,E为亨利系数(kPa)。 若气相组成也用平衡摩尔分数y*表示,则(3-4-1)式可写为:

y A* = Ex A/p (4-2) 令E/p= m,则 y A* = mx A (4-3) 式中,m为相平衡系数,量纲为1。 吸收过程中,溶液和气体的总量在不断变化,使得吸收过程的计算比较复杂。为了简便 起见,工程计算中采用在吸收过程中数量不变的惰性气体(如空气)和纯吸收剂为基准,用 物质的量之比(也称为比摩尔分数)来表示气相和液相中吸收质A的含量,并分别用Y A和 X A表示。平衡时,其关系式为: Y A*= mX A/(1?(1?m)X A) 当溶液浓度很低时,X A很小,则1+(1-m)X A?1,式(3-4-4)可简化为: Y A*=mX A 2.填料吸收塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为 1.8— 2.0。在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时。由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。 3.吸收速率方程式

填料吸收塔的操作和吸收系数的测定

昆明理工大学实验报告 课题名称:化工原理实验 实验名称:填料吸收塔的操作和吸收系数的测定 姓名:成绩: 学号:班级: 实验日期: 实验内容:1.测定干填料及不同液体喷淋密度下填料的阻力降△P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混合气体中氨的体积吸收系数K a。 Y

填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学特性。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料塔上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降△P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降△P与空塔气速u的关系可用式△P=u1.8—2.0表示。在双对数坐标系中为一条直线,斜率为1.8—2.0。在有一条喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守△P∝u1.8—2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时。由于上升气流与下降液体的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在△P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与塔顶表压的大小,直到发生液泛为止。 2.体积吸收系数K Y a的测定 在吸收操作中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气液两相在塔内逆流接触,使气体混合物中的溶质溶解在吸收质中,于是塔顶主要为惰性组分,塔底为溶质与吸收剂的混合液。反映吸收性能的主要参数是吸收系数,影响吸收系数的因素很多,其中有气体的流速、液体的喷淋密度、温度、填料的自由体积、比表面积以及气液两相的物理化学性质等。吸收系数不可能有一个通用的计算式,工程上常对同类型的生产设备或中间试验设备进行吸收系数的实验测定。对于相同的物料系统和一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。 本实验用水吸收空气—氨混合气体中的氨气。氨气为易溶气体,操作属于气膜控制。在

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。 h T T S t Q ) (21-??=??λ 单位时间通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: B B h T T R t Q )(212 -???=??πλ 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品的传热速率。 这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

实验四填料塔吸收传质系数的测定

实验四填料塔吸收传质 系数的测定 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

4填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2)

])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y =m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p 总压,Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 可得x 1。 4.3实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

射线的吸收与物质吸收系数的测定

实验九Y射线的吸收与物质吸收系数U的测定 实验目的 1 .了解射线与物质相互作用的特性 2.了解窄束射线在物质中的吸收规律 3?测量其在不同物质中的吸收系数 实验原理 一、射线与物质的作用 射线是由于原子核由激发态到较低的激发态退激(而原子序数Z和质量数A均保持不变)的过程中产生的,包括:(1)或衰变的副产品(2)核反应(3) 基态激发三部分,是处于激发态原子核损失能量的最显著方式;由于射线具不 带电、静止质量为0等特点决定了它同物质的作用方式与带电粒子不同,带电粒子(或粒子等)在一连串的多次电离和激发事件中不断地损失其能量,而射线与物质的相互作用却在单次事件中完全吸收或散射。光子(射线)通过物体时会与其中的下述带电体发生相互作用: 1)被束缚在原子中的电子; 2)自由电子(单个电子); 3)库仑场(核或电子的); 4)核子(单个核子或整个核)。 这些类型的相互作用可以导致:光子的完全吸收、弹性散射、非弹性散射三 种效应中的一种(在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种)表现为: 光电效应: 低能光子所有的能量被一个束缚电 子吸收,核电子将其能量的一部分用来克 服原子对它的束缚,成为光电子;其余的 能量则作为动能,发生光电效应。 (光电效 应)

康普顿效应: 光子还可以被原子或单个电子散射, 当 光子的能量(约在 1MeV )大大超过 电子的结合能时,光子与核外电子发生非 弹性碰撞,光子的一部分能量转移给电 子,使它反冲出来,而散射光子的能量和 运动方向都发生了变化,发生康普顿效应。 电子对效应: 若入射光子的能量超过 1.02MeV , 光子在带电粒子的库仑场作用下则 可能产生正、负电子对,产生的电子对 总动能等于 光子能量减去这两个电子 的静止质量能(2mc 2=l.022MeV ) 子发生光电效应、康普顿效应和电子对效应损失能量; 射线一旦与吸收物质 原子发生这三种相互作用,原来能量为 h 的光子就消失,或散射后能量改变、 并偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射 束中移去。 二、物质对 射线的吸收规律: 作用特点: 射线与物质原子间的相互作用只要发生一次碰撞就是一次大的 能量转移;它不同于带电粒子穿过物质时,经过许多次小能量转移的碰撞来损失 它的能量。带电粒子在物质中是逐渐损失能量, 最后停止下来,有射程概念; 射 线穿过物质时,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子 穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度” 来表示射线对物质的穿透情况。 吸收规律:本实验研究的主要是窄束 射线在物质中的吸收规律。所谓窄束 射线是指不包括散射成份的射线束,通过吸收片后的 光子,仅由未经相互作用 或称为未经碰撞的光子所组成。 “窄束” 一词是实验上通过准直器得到细小的束而 从上面的讨论可以清楚地看到,当 光子穿过吸收物质时,通过与物质原 (电子对效应)

常见材料导热系数 版

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管

壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等 填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q???????Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者

(完整版)13液液传质系数的测定

液液传质系数的测定 A 实验目的 (1) 掌握用刘易斯池测定液液传质系数的实验方法; (2) 测定醋酸在水与醋酸乙酯中的传质系数; (3) 探讨流动情况、物系性质对液液界面传质的影响机理。 B 实验原理 实际萃取设备效率的高低,以及怎样才能提高其效率,是人们十分关心的问题。为了解决这些问题,必须研究影响传质速率的因素和规律,以及探讨传质过程的机理。 近几十年来,人们虽已对两相接触界面的动力学状态,物质通过界面的传递机理和相界面对传递过程的阻力等问题进行了研究,但由于液液间传质过程的复杂性,许多问题还没有得到满意的解答,有些工程问题不得不借助于实验的方法或凭经验进行处理。 工业设备中,常将一种液相以滴状分散于另一液相中进行萃取。但当流体流经填料、筛板等内部构件时,会引起两相高度的分散和强烈的湍动,传质过程和分子扩散变得复杂,再加上液滴的凝聚与分散,流体的轴向返混等问题影响传质速率的主要因素,如两相实际接触面积、传质推动力都难以确定。因此,在实验研究中,常将过程进行分解,采用理想化和模拟的方法进行处理。 1954年刘易斯[1] (Lewis)提出用一个恒定界面的容器,研究液液传质的方法,它能在给定界面面积的情况下,分别控制两相的搅拌强度,以造成一个相内全混,界面无返混的理想流动状况,因而不仅明显地改善了设备内流体力学条件及相际接触状况,而且不存在因液滴的形成与凝聚而造成端效应的麻烦。本实验即采用改进型的刘易斯池 [2] [3] 进行实验。由于刘易斯池具有恒定界面的特点,当实验在给定搅拌速度及恒定的温度下,测定两相浓度随时间的变化关系,就可借助物料衡算及速率方程获得传质系数。 () * W W W W W C C K dt dC A V -=?- (1) () 0* 0000C C K dt dC A V -=? (2) 若溶质在两相的平衡分配系数m 可近似地取为常数,则

实验八 吸收系数的测定

4.8吸收系数的测定 一、实验目的 1. 了解填料吸收装置的基本流程及设备结构; 2. 掌握总体积吸收系数的测定方法,了解单膜控制过程的特点; 3. 了解气体空塔速度和喷淋密度对总吸收系数的影响; 4. 了解气体流速与压降的关系。 5. 吸收率的测定 二、基本原理 要决定填料塔的塔高,总吸收系数是有待确定的参量,而实验测定是其来源之一,另外在测定生产中塔的性能时,也需要测定总吸收系数,在吸收过程为单膜控制时,单膜吸收系数近似等于总吸收系数,因而可用总吸收系数的测定,代替单膜吸收系数的测定,从而可建立单膜吸收系数的实验关系式。 当吸收溶液的浓度小于10%时,平衡关系服从亨利定律,则总吸收系数为 m Y Y h Y Y G K ??-= )(21α (4-35) 式中:h —填料层高度,m ; Y 1、Y 2—分别为塔底与塔顶的气体摩尔流量,kmol/(m 2·h); ΔY m —气相平均推动力。 三.实验装置的基本情况: 图4-16 填料吸收塔实验装置流程示意图 1-鼓风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U 型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力 实验流程示意图见图4-16,空气由鼓风机1送入空气转子流量计3计量,空气通过流量

计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。 吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 四. 实验方法及步骤: 1. 测量干填料层(△P /Z)─u 关系曲线: 先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,?然后在对数坐标纸上以空塔气速 u 为横坐标,以单位高度的压降△P /Z 为纵坐标,标绘干填料层(△P /Z)─u 关系曲线(见图二). 2. 测量某喷淋量下填料层(△P /Z)─u 关系曲线: 用水喷淋量为40L /h 时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为40L /h 下(△P /z)─u?关系曲线(见图二),确定液泛气速并与观察的液泛气速相比较。 ⑴选泽适宜的空气流量和水流量(建议水流量为30L /h)?根据空气转子流量计读数为保证混合气体中氨组分为0.02-0.03左右摩尔比,计算出氨气流量计流量读数。 (2)先调节好空气流量和水流量,打开氨气瓶总阀8调节氨流量,使其达到需要值,在空气,氨气和水的流量不变条件下操作一定时间过程基本稳定后,?记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。 (3)尾气分析方法: a.排出两个量气管内空气,使其中水面达到最上端的刻度线零点处,并关闭三通旋塞。 b.用移液管向吸收瓶内装入5mL 浓度为0.005M左右的硫酸并加入1─2滴甲基橙指示液。 c.将水准瓶移至下方的实验架上,缓慢地旋转三通旋塞,让塔顶尾气通过吸收瓶,旋塞的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环流动为限。 从尾气开始通入吸收瓶起就必需始终观察瓶内液体的颜色,?中和反应达到终点时立即关闭三通旋塞,?在量气管内水面与水准瓶内水面齐平的条件下读取量气管内空气的体积。 若某量气管内已充满空气,但吸收瓶内未达到终点,可关闭对应的三通旋塞,?读取该量气管内的空气体积,同时启用另一个量气管,继续让尾气通过吸收瓶。 d.用下式计算尾气浓度Y 2 因为氨与硫酸中和反应式为: 2NH 3+H 2SO 4=(NH 4)2SO 4 所以到达化学计量点(滴定终点)时,被滴物的摩尔数n NH3和滴定剂的摩尔数 n H2SO4 之比为: n NH3∶n H2SO4=2∶1 n NH3=2n H2SO4=2M H2SO4·VH2SO4 Y2= 空气 N n NH 3 = 4 .220 (4 2422)量气管 量气管T T V SO H SO H V M ? ? 式中: n NH3,N 空气─分别为NH3和空气的摩尔系数, M H2SO4─硫酸溶液体积摩尔浓度, mol 溶质/l 溶液

保温隔热绝热材料性能检测导热系数检测方法

保温隔热绝热材料性能检测导热系数检测方法 1.1 适用范围及引用标准 1.1.1 适用范围 本规程规定了保温、隔热、绝热材料导热系数的检测方法。本规程适用于保温、隔热、绝热材料干燥匀质试件导热2·K/W)的测定,且所系数(被测试件的热阻应大于0.1 m测定的结 果均为在给定平均温度和温差下试件的导热系数。 1.1.2 引用标准 下列标准所包含的条文,通过在本规程中引用而构成为本规程的条文。使用本规程的各方应探讨使用下列标准最新版本的可能性。 GB 4132 绝热材料名词术语 GB 10294-1988 绝热材料稳态热阻及有关特性的测定 防护热板法 GB 10295-1988 绝热材料稳态热阻及有关特性的测定 热流计法 GB 10296-1988 绝热材料稳态热阻及有关特性的测定 圆管法 GB 10297-1988 非金属固体材料导热系数的测定方法 热线法 护热平板法塑料导热系数试验方法GB 3399-1982

1.2 仪器设备 1.2.1 量具 应符合GB6342规定。 1.2.2 导热系数仪 导热系数仪根据测试原理不同可分为分为防护热板式导热系数仪、热流计式导热系数仪等。防护热板式导热系数仪示意图见图1.1,热流计式导热系数仪示意图见图1.2。

置装件试a双 b 单试件装置 1.1 防护热板式导热系数仪示意图图 a 单热流计不对称布置

b 双热流计对称布置 式件c 双试装置热流计式导热系数仪示意图图1.2 检测程序1.3 导热系数检测程EPS)1.3.1 绝热用模塑聚苯乙烯泡沫塑料(序GB 10294-1988GB 或按测数热板EPS导系的定。GB 10294-1988规定进行;仲裁方法时执行10295-1988.1.3.1.1 状态调节 样品应去掉表皮并自生产之日起在自然条件下放置28d后进测试。样品按GB/T 2918-1998中23/50二级环境条件进行,在温度(23±2)℃,相对湿度45%~55%的条件下进行16 h状态调节。 1.3.1.2厚度测量

实验四填料塔吸收传质系数的测定

4填料塔吸收传质系数的测定 实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 0 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3 ·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= ?(6-3)

2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2 ; (3)平衡关系。 本实验的平衡关系可写成 y=m x(6-4) 式中:m相平衡常数,m=E/P; E亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得; p总压,Pa,取压力表指示值。 对清水而言,x2=0,由全塔物料衡算 可得x1。 实验装置与流程 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。 图6—1吸收装置流程图 2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填

伽马射线吸收系数的测量

γ射线的吸收与物质吸收系数μ的测定 初阳学院综合理科081班马甲帅08800140 指导老师林根金 摘要: 本实验研究的主要是窄束γ射线在金属物质中的吸收规律。测量γ射线在不同厚度的铅、铝中的吸收系数。通过对γ射线的吸收特性,分析与物质的吸收系数与物质的面密度,厚度等因素有关。根据已知一定放射源对一定材料的吸收系数来测量该材料的厚度。 关键词:γ射线吸收系数μ60Co、137Cs放射源 引言:γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。原子核衰变和核反应均可产生γ射线。γ射线具有比X射线还要强的穿透能力。γ射线是处于激发态原子核损失能量的最显著方式,γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。γ射线是光子,光子会与被束缚在原子中的电子、自由电子、库伦场、核子等带电体发生相互作用。不同能量的γ射线与物质的相互作用效果不同,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。因此研究不同物质对γ射线的吸收规律的现实意义非常巨大,如在核技术的应用与辐射防护设计和材料科学等许多领域都有应用。 正文 1实验原理 1.1 γ射线与带电体的作用原理 γ射线与带电体的相互作用会导致三种效应中的一种。理论上讲,γ射线可能的吸收核散射有12种过程。这些效应所释放的能量在10KeV到10MeV之间的只有三种,也就是基本上每种相互作用都产生一种主要的和吸收散射过程。这三种主要过程是: 1.1.1光电效应: 低能γ光子所有的能量被一个束缚电子吸收,核电子将其能量的一部分用来克服原子对它的束缚,成为光电子;其余的能量则作为动能,发生光电效应。 1.1.2 康普顿效应: γ光子还可以被原子或单个电子散射,当γ光子的能量(约在1MeV)大大超过电子的结合能时,光子与核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化,发生康普顿效应。 1.1.3 电子对效应: 若入射光子的能量超过1.02MeV,γ光子在带电粒子的库仑场作用下则可能产生正、负电子对,产生的电子对总动能等于γ光子能量减去这两个电子的静止质量能(2mc2=1.022MeV) 1.2 三种γ射线与带电体发生相互作用的基础上,物质对γ射线的吸收规律如下: 1.2.1作用特点:γ射线与物质原子间的相互作用只要发生一次碰撞就是一次大的能量

圆球法测量导热系数

圆球法测定材料导热系数 一、目的 在稳定传热情况下,利用圆球法测定粒状材料的导热系数,并用图解法确定此材料的导热系数与温度之间的线性关系 λ=λ0(1+bt) 二、原理 本实验是利用在稳定传热情况下,以球壁导热公式作为基础来求得粒状材料的导热系数λ。设有一空心球体,球的内表面直径d 1,外表面直径为d 2,壁 厚21 2d d -=δ,如果内、外表面的温度维持不变,并等于t 1和t 2,则根据傅立 叶定律得 δπλπλ21212 121)(11)(2d d t t d d t t Q -=--= (1) 移项得 ) ()(21212121t t d d IU t t d d Q -=-= πδ πδλ (2) 式中: I 为电热器的工作电流 U 为电热器的工作电压; λ为试验材料在温度2 21t t t -=时的导热系数。 如果需要求得λ和温度之间的变化关系,则必须测定在不同温度下的导热系数,然后将测得的导热系数值λ1、λ2、λ3…λn 及其对应的t 1、t 2、t 3…t n 在坐标纸上绘出其坐标位置,如下图所示。

绘出坐标点后,应根据各的昂的位置揣摩一下,是否能够连成一条直线或连成一条曲线。由于固体材料的导热系数与温度之间的函数关系,在温度相差不过分悬殊时一般可以当作线性直线关系的。因此可通过各点间的中心位置绘一条直线,然后在直线上任取a、b两个坐标点并算出直线的截距,就不难求出函数式λ=λ0(1+bt),此式是描绘被测材料的导热系数与温度之间的经验关系式。实验点之所以不能完全落在一条直线上,是由于λ(t)不完全是线性关系,其次在实验中难免有种种误差所引起的偏差。 三、实验装置 本实验装置中,仅取四个温度工况。为了便于学生实验,四个不同温度工况由四个不同的实验球来实现。 每个实验球共有两个空心球体,球壁均用紫铜板冲压成形。内球外径为 d1,外球的内径为d2。四个空心球体的几何尺寸见下表: 球体结构的尺寸 球号d1 mm d2 mm d mm 1 80.0 160.0 163.0 2 80.0 160.0 163.0 3 80.0 160.0 163.0 4 80.0 160.0 163.0 内球中间装有电加热器,电加热器的功率自耦式调压器调节,输出的功率通过装在电加热器电源上的电压表和电流表读出,并由变送器将数据送入数据采集系统。

吸收系数的测定

吸收系数的测定 一、实训目的 1、 了解填料吸收装置的基本流程及设备结构; 2、 掌握吸收系数的测定方法; 3、 了解空塔气速和喷淋密度对总吸收系数的影响; 4、 了解气体空塔流速与压强降的关系。 二、基本原理 根据传质速率方程: m Y A Y K N ?= 即;m Y A Y F K F N G ?== 所以; m Y Y F G K ?= , 通过实验分别测定和计算(单位时间吸收的组分量)、(气液两相接触面积)、(平均传质推动力)的值,便可代入上式计算得吸收系数的值。 1、 单位时间吸收的组分量G (Kmol/h ) )(21Y Y V G -= 上式中:V(惰性气体流量)用空气转子流量计来测定;Y 1(进塔气体组成)可通过测定进塔时氨及空气流量来计算得到;Y 2(出塔气体组成)采用化学法进行尾气分析测定和计算得到。 2、 气液两相接触面积F(m 2) z D a aV F ?? ==24 π 上式中:V —填料的总体积(m 3 ) Z —填料层高度(m) D —吸收塔的内径(m) a —有效比表面积(m 2/m 3) η/t a a = 式中:a t —干填料的比表面积(m 2/m 3) η—填料的表面效率,可根据最小润湿分率查图表(参看教材) 最小润湿分率=规定的最小润湿率操作的润湿率 式中:填料的最小润湿分率=0.08m 3/m 2.h(规定的最少润湿率) 操作的润湿率=W/a t (m 3/m 2.h) 式中:W —喷淋密度,每小时每平方米塔截面上的喷淋的液体量。 (塔截面积)(水的体积流量)水Ω= V W 3、 平均传质推动力 m Y ? 本实验的吸收过程处于平衡线是直线的情况下,所以可用对数平均推动力法计算 m Y ?。

材料导热系数的测量

材料导热系数的测量 导热系数是反映材料的导热性能的重要参数之一,在工程技术方面是必不可少的。所以对导热系数的研究和测量就显得很有必要。金属材料的导热起主要作用的是自由电子的运动,无机非金属材料的导热则是通过晶格结构的振动(声子)来实现。目前测量导热系数的方法都是建立在傅立叶导热定律的基础上的,分为稳态法和动态法。本实验介绍用稳态法,稳态法是通过热源在样品内部形成稳定的温度分布后,再进行测量的方法。 一、实验目的 1. 了解稳态法测无机非金属材料的导热系数的方法; 2. 掌握KY-DRX-RW 型导热系数测试仪的硬件和软件操作规程; 3. 利用测试仪测量石英、陶瓷两种材料的导热系数。 二、实验仪器 上海实博实业有限公司生产的KY-DRX-RW 型导热系数测试仪,主要由测试头、电器测控系统、冷却恒温水槽、计算机系统组成。各部件接线如图所示。 测试头由加热器、连接样品的上下热极、冷却器、测量热电偶、加压系统组成。加热器采用不锈钢材料加工而成,内装内热式加热器,由高精度数显温控表控温,提供稳定的热极温度。上下热极由不锈钢制成,表面安装有热电偶,热极的作用是传递热量和测量热量。冷却器也是不锈钢材料加工而成,内有水槽,通过管导与外恒温水槽相连,利用外恒温水槽与冷却器的水循环,在冷却器中形成第二恒温场,提供上热极冷端稳定温度。测量热电偶由4支组成,分别测量上下热极表面的4个温度点,利用温度梯度计算热流量。加压系统用于消除试样与热 升降手柄 电脑 显示器 水管 通讯线缆 电源220V 恒温槽 测试主机背面 电器测控系统

极的热阻。 三、实验原理 当物体内部各处的温度不均匀时,就会有热量从温度较高处传递到温度较低处,这种现象叫热传导现象。对于各向同性的物质,在稳定传热状态下有傅立叶定律: t S dx dT Q ??-=?λ 比例系数称导热系数,其值等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通过单位面积所传递的热量,单位是瓦·米-1·开-1(W·m -1·K -1)。 本实验采用的是稳态法测量导热系数。试样被夹在两金属块之间,加压系统是经由一个升降压板和弹簧加压。加热单元是由铜或是其他高导热性的材料构成的,且包含有套筒或是相似的加热线圈。它用热绝缘材料(环氧FR -4)与周围的保温加热器相隔离。绝缘材料为5mm 厚度。保温加热器不受压力,以确保所有的测量能量都传到高测量棒上。测量棒是由高热导性材料构成,并且具有平行的工作表面。冷却单元是一个金属盒,由恒温池对其冷却。实验时,一方面加热单元直接将热量通过样品下平面传入样品,另一方面冷却单元使传入样品的热量不断由样品的上平面散出,当传入的热量等于散出的热量时样品处于稳定导热状态,这时样品的上下平面的温度分别为一定的数值。此时,通过样品厚度、半径、温度梯度与通过样品的热流便可计算导热系数。 具体计算过程如下: 1、流过待测样品的热流 )(*2112 12 T T Q d A -*= λ )(*4334 34 T T Q d A -*= λ Q 12 :流过下热极的热流,W Q 34 :流过上热极的热流,W λ 12 :下热极材料的热导,W/m·K λ34:上热极材料的热导,W/m·K T T 2 1 -:下热极两个热电偶的温差 T T 4 3 -:上热极两个热电偶的温差 A :垂直于热流方向的热极截面积,m 2 d :热极两温差电偶的距离,m 公式中 λ12 = λ34 = 18.5 W/m·K;d = 0.05 m ;热极直径为30mm

相关文档
最新文档