分式与分式方程应用(期中考试复习)精品PPT教学课件
合集下载
第06课时 分式方程及其应用PPT课件

根据题意得:26a+35(200-a)=6280,
(2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购
解得:a=80.
买了多少条 A 型芯片?
答:购买了 80 条 A 型芯片.
+3
例 1 [2017·宁夏] 解方程:
-
4
-3 +3
=1.
[方法模型] 解分式方程时易出现的错误:
(1)漏乘没有分母的项;
(2)没有验根;
(3)去分母时,没有注意符号的变化.
解:去分母,得 x2+6x+9-4x+12=x2-9,
移项、合并同类项,得 2x=-30,
系数化为 1,得 x=-15,
)
B.4
=1 的解为 x=2,则 m
C.3
D.2
-1
=1 的解
为 x=2,∴x=2 满足关于 x 的分式方程
-3
-1
-3
=1,∴
2-1
=1,解得 m=4.故选 B.
高频考向探究
探究三 分式方程的应用
例 3 [2018·岳阳] 为落实党中央“长江大保护”新发展理念,我
市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然
完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化
面积比乙工程队完成 300 平方米的绿化面积少用 3 小时.乙工
程队每小时能完成多少平方米的绿化面积?
解:设乙工程队每小时能完成 x 平方米的
300 300
绿化面积.根据题意,得
-
2
=3.
解得 x=50.
经检验,x=50 是分式方程的解且符合题意.
第三章整理《分式》(复习)ppt课件

顺水速=静水速+水流速 逆水速=静水速-水流速
设是水流速为xkm/ h
则 水 为 20 + x)km/ h 顺 速 (
逆 速 (20 - x)km/ h 水 为
72 48 = 20 + x 20 − x
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变 扩大3 扩大9 扩大4
3、 填空: x ( x − y ) = ( x − 2
y)
x + xy
x+y
例1:化简求值 :
a−2 a −1 a−4 ( 2 − 2 )÷ a + 2a a + 4a + 4 a + 2 2 其中a满足:a + 2a − 1 = 0
1. 若分式
A、 A、x≠-1 C、x≠2 、
若有意义, 应满足( 若有意义,则x应满足( B ) 应满足
B、 ≠-1且 B、x ≠-1且x ≠2 D、x ≠-1或x ≠2 、 或
x −4 ( x + 1)( x − 2)
若值为0, 应满足( 若值为 ,则x应满足( B ) 应满足
A、x=2 、 C、 、
1km
中点 18km }
xkm / h
甲 A
乙 B
甲走了总共20km 甲走了总共
设 乙的速度 xkm / h 则 甲的速度( x + 0.5)km / h
20 18 = x + 0.5 x
1、一项工程,若甲队单独做,恰好在规定的日期 、一项工程,若甲队单独做, 完成,若乙队单独做要超过规定日期3天完成 天完成; 完成,若乙队单独做要超过规定日期 天完成;现 在先由甲、乙合做2天 在先由甲、乙合做 天,剩下的工程再由乙队单独 也刚好在规定日期完成, 做,也刚好在规定日期完成,问规定的日期是多 少天? 少天? 1 甲每天的工作量 x 设 天 甲x
八年级数学上册第二章分式与分式方程复习课件(30张PPT)

解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.
分式和分式方程复习 ppt课件

ppt课件
14
小结
1.通过本节课你复习了哪些知识? 2.应用分式方程知识解决问题时应注意什么问题?
ppt课件
15
1.分式方程的概念 2.分式方程根的概念 3.分式方程的增根问题 4.分式方程的解法 5.分式方程的应用
ppt课件
16
作业1.复习二元一次方程组的内容,掌握概念, 解法,及应用.
2.搜集典型题目5道以上,并有自己对题目 的见解.
(A)
2 x 1
5 x3
(B)3y 1
2
y5 6
2
(C)2x2
1 2
x3
0
(D)2x
5
8x 1 7
考点2分式方程根的概念
例2、若
(A)
9 5
x 3是分式方程 3ax
(B)
9
5 (C)
5 9
2x
1的解,则a的值为(D
(D)
5 9
)
例3关于x的分式方程 m 3 1的解为正数,则m的取值范 围是__________ x 1 1 x
x2 4 2(x 2)
x=-2是增根,应舍去,原方程无解
3.关于x的方程的
m 1 x2
解是负数,则m的取值范围是_m__<_2_且__m_≠0
4.已知
x
a
2
与
b x2
的和等于
x
4x 2
则
4
a
2
,b
2
.
解:根据题意得
ab
4x
x 2 x 2 x2 4x
a(x 2) b(x 2) 4x
ppt课件
1
教学目标
• 1.熟练掌握分式方程的相关概念,解法以及列分式 方程解应用题.
八年级数学上册第二章分式与分式方程全章热门考点整合应用习题pptx课件鲁教版五四制

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
考点2 一个性质——分式的基本性质
6. [2023·泰安新泰市期末]下列各式从左到右的变形中,正确
的是(
C
)
+
+
A. =
B. =
+
−
C.
=
−
(−)
D.
1
2
3
4
5
6
7
8
18
19
20
−
8. (1)不改变分式的值,使分式
+
的分子与分母的最高次
项的系数是整数,且分子、分母不含公因式;
【解】原式=
1
2
3
4
5
6
7
8
−
+
9
10
.
11
12
13
14
15
16
17
18
19
20
(2)不改变分式的值,使分式
−
+
的分子与分母的最高
=
−
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
【点拨】
−
∵ - =
=3,
∴ y - x =3 xy ,
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
考点2 一个性质——分式的基本性质
6. [2023·泰安新泰市期末]下列各式从左到右的变形中,正确
的是(
C
)
+
+
A. =
B. =
+
−
C.
=
−
(−)
D.
1
2
3
4
5
6
7
8
18
19
20
−
8. (1)不改变分式的值,使分式
+
的分子与分母的最高次
项的系数是整数,且分子、分母不含公因式;
【解】原式=
1
2
3
4
5
6
7
8
−
+
9
10
.
11
12
13
14
15
16
17
18
19
20
(2)不改变分式的值,使分式
−
+
的分子与分母的最高
=
−
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
【点拨】
−
∵ - =
=3,
∴ y - x =3 xy ,
北师版八年级下册第五章分式和分式方程复习课件(28张PPT)

解分式方程一定要 验根 。
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0
2024版年度分式方程的应用公开课精品课件

分式方程和不等式是数学建模中 的重要工具,可以帮助我们理解 和描述现实世界中的复杂关系。
2024/2/2
22
分式方程与函数综合应用
2024/2/2
函数关系描述 分式方程可以用来描述函数关系,通过解析式表示出自变 量和因变量之间的关系。这种关系可以用于预测、控制和 分析实际问题。
函数图像分析 分式方程的函数图像具有独特的特点,如渐近线、拐点等。 通过分析这些特点,我们可以更深入地理解函数的性质和 变化规律。
课程目的
通过本次公开课,使学生了解分式方程 的基本概念、性质和解法,掌握分式方 程在实际问题中的应用,培养学生的逻 辑思维能力和数学素养。
2024/2/2
4
分式方程简介
01
02
03
分式方程的定义
分式方程是含有分式(即 分母中含有未知数的式子) 的方程。
2024/2/2
分式方程的特点
分式方程具有形式复杂、 解法多样等特点,需要灵 活运用各种数学知识和技 巧进行求解。
分式方程的应用
分式方程在实际生活中有 着广泛的应用,如工程问 题、经济问题、物理问题 等。
5
课程内容与安排
课程内容
本次公开课将涵盖分式方程的基本概念、性质、解法以及应用等方面。具体包 括分式方程的定义、性质、解法介绍,以及通过实例讲解分式方程在实际问题 中的应用。
课程安排
本次公开课将分为多个环节,包括理论讲解、例题演示、学生互动、课堂练习 等。通过丰富多样的教学形式,使学生更好地理解和掌握分式方程的应用。
1)$,进一步化简求解得到 $x=1$,但需要注意 $x=1$ 是原方程的增根,因此原方
程无解。
求解分式方程 $frac{2}{x+1} - frac+1)(x-2)$,然后将方程两 边乘以最简公分母,得到整 式方程 $2(x-2) - x(x+1) = (x+1)(x-2)$,进一步化简求
2024/2/2
22
分式方程与函数综合应用
2024/2/2
函数关系描述 分式方程可以用来描述函数关系,通过解析式表示出自变 量和因变量之间的关系。这种关系可以用于预测、控制和 分析实际问题。
函数图像分析 分式方程的函数图像具有独特的特点,如渐近线、拐点等。 通过分析这些特点,我们可以更深入地理解函数的性质和 变化规律。
课程目的
通过本次公开课,使学生了解分式方程 的基本概念、性质和解法,掌握分式方 程在实际问题中的应用,培养学生的逻 辑思维能力和数学素养。
2024/2/2
4
分式方程简介
01
02
03
分式方程的定义
分式方程是含有分式(即 分母中含有未知数的式子) 的方程。
2024/2/2
分式方程的特点
分式方程具有形式复杂、 解法多样等特点,需要灵 活运用各种数学知识和技 巧进行求解。
分式方程的应用
分式方程在实际生活中有 着广泛的应用,如工程问 题、经济问题、物理问题 等。
5
课程内容与安排
课程内容
本次公开课将涵盖分式方程的基本概念、性质、解法以及应用等方面。具体包 括分式方程的定义、性质、解法介绍,以及通过实例讲解分式方程在实际问题 中的应用。
课程安排
本次公开课将分为多个环节,包括理论讲解、例题演示、学生互动、课堂练习 等。通过丰富多样的教学形式,使学生更好地理解和掌握分式方程的应用。
1)$,进一步化简求解得到 $x=1$,但需要注意 $x=1$ 是原方程的增根,因此原方
程无解。
求解分式方程 $frac{2}{x+1} - frac+1)(x-2)$,然后将方程两 边乘以最简公分母,得到整 式方程 $2(x-2) - x(x+1) = (x+1)(x-2)$,进一步化简求
《分式》PPT教学课件(第1课时)

a b2 a b2
1
b a4 a b4 a b2 .
注意 判断一个分式是不是最简分式,要严格按照定义来 判断,就是看分子、分母有没有公因式.分子或分母 是多项式时,要先把分子、分母因式分解.
三 分式的求值
分式的求值 对一些较复杂的分式求值,应先约分化简,再代入具体数据 求值.常用方法有整体代入法,倒数法,换元法和配方法等.
课堂小结
❖分式的概念 ①分子分母都是整式; ②分母中必含有字母. ❖分母中字母的取值不能使分母值为零,否则分式无意义. ❖当分子为零且分母不为零时,分式值为零. ❖分式的基本性质
课后作业
见《学练优》本课时练习
第十二章 分式和分式方程
分式
第2课时
学习目标
1.理解约分和最简分式的意义.(难点) 2.根据定义找出分式中分子与分母的公因式,并会约分. 3.理解分式求值的意义,学会根据已知条件求分式值.(重点)
1
;
2
a b
b a
2 4
;
3
x2
y 8x 8
.
解析: 最简分式: x2 y2 ; x2 2x 1 .
y2 2x2 8x 8
不是最简分式:
m2 2m 1 m2
1
;
a b
b a
2 4
.
m2 2m 1 m 12 m 1;
1 m2
m 1m 1 m 1
分式的特点 分式的特征是: ①分子、分母 都是 整式 ;
②分母中含有 字母 .
二 分式有(无)意义及分式值为0
观察与思考
探究 求下列分式的值:
x … -2 -1
0
1
2…
x x-2 …
1 2
1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D、10-4=0.0001
2020/12/8
7
7.已知:x1, mx1, n x x x1
则m、n的大小关系为( C )
A、m>n B、m=n C、 m<n D、无法确定
2020/12/8
8
8. 解分式方程
x x1 a x1 x2 x2x2
时产生增根,则a的值为( D )
A、2 C、 0或-3
B、-3 D、- 3或3
日期:
演讲者:蒝味的薇笑巨蟹
2020/12/8
9
二、解答题
1. 计算
mm 3m269m23
解:原式 m 6 m3
m3 (m3)m (3) 2
m 3 m3 m3
m 3
2020/12/8
m 3
10
2. 先化简,再选择一个你喜欢的数代
入
x22 x4 x6 4xx 2 3 2xx 12
求值.
2(x3) x2 1 解:原式= (x2)2x(x3)x2
a 1
A、2a 1 a 1
C、 1 a 1
B、 1 a 1
D、 2
2020/12/8
5
5. 若 1 1 1 ,则 y x x y xy x y
等于( A)
A、-1 C、-2
B、1 D、 3
2020/12/8
6
6. 下列算式中正确的是( D )
A、3.140
B、 (0.1)-2=0.001
C、 (10-2 ×5)°=1
2 1 x(x2) x2
2x 1
2020/12/8
x(x 2)
x
11
解方程:(注意与分式运算的区别)
•
(1)x27xx24xx261
解:方程两边都乘以x(x+1)(x-1),去分母得:
7 (x 1 )4 (x 1 )6x,
7 x 7 4 x 4 6 x
x 3 5
经检验 : x3是原方程的解 5
2020/12/8
12
(2) 1 2 4 x1 x1 x21
解• :方程两边乘以(x+1)(x-1)得: (x1 )2(x1 )4 x12x24 x1
经检验 : x1是原方程的解
2020/12/8
13
三.应用题
• 1.农机厂职工到距工厂15千米的某 地去检修农机,一部分人骑自车走, 过了40分钟,其余的人乘汽车出 发,他们同时到达,已知汽车的速 度是自行车速度的3倍,求两种车 的速度。
C、扩大3倍
D、扩大4倍
2020/12/8
3
3.将 ( 1 ) 1 , (-2)0,(-3)2这三个数按
6
从小到大的顺序排列正确的是(
)
•A.(2)0(1)1(3)0 6
C.(3)2(2)0(1)1 6
B.(1)1(2)0(3)2 6
D.(2)0(3)2(1)1 6
2020/12/8
4
4. 化简 a2 a 1 得(C )
v
s
t
顺水航行 20x 72
72 20 x
逆水航行 20x 48
48 20 x
解:设水流每小时流动x千米。
72 48
2020/12/8
20x 20x
17
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
2020/12/8
1
x2 4 1. 若分式 x 2 x 2 有意义, 则x应满足( B )
A、x≠-1 B、x ≠-1且x ≠2 C、x≠2 D、x ≠-1或x ≠2
2020/12/82 Nhomakorabea 4x2 y2
2. 若将分式
中的x、
2x 3y
y的值都扩大2倍,则分式的值
( A)
A、扩大2倍
B、不变
2020/12/8
14
分析:设自行车的速度为x千米/小
时,汽车的速度为3x千米/小时,
路程
速度
时间
(千米) (千米/小时) (小时)
自行车 15
x
汽 车 15
3x
等量关系:
2汽020/1车2/8 所用时间=自行车所用时间- 小时15
先填表,后列方程。(只列方程,不用解方程)
(2)甲、乙两人骑自行车各行28公里,甲比乙快
1 小时,已知甲与乙速度比为8:7,求两人速度。 4
解:设甲的速度8x千米/时, 乙的速度是7x千米/时。 甲
v st
8x 28
28 8x
28 28 1 7x 8x 4
2020/12/8
乙 7 x 28 28
7x
16
(3)一船在静水中每小时航行20千米,顺水航行 72千米的时间恰好等于逆水航行48千米的时间, 求每小时的水流速度。