奇数和偶数(五年级)

合集下载

2023年人教版数学五年级下册奇数和偶数的运算性质说课(优选3篇)

2023年人教版数学五年级下册奇数和偶数的运算性质说课(优选3篇)

人教版数学五年级下册奇数和偶数的运算性质说课(优选3篇)〖人教版数学五年级下册奇数和偶数的运算性质说课第【1】篇〗教学内容:义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。

说教学目标:1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

说教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

说教学过程:复习引入新课。

(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。

)活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。

不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。

你知道第11个同学按过开关后,“开关”是打开的还是关闭了?(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况开、关;开、关;开、关;开、关;开、关;开、关……让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?3、第二次汇报交流。

投影下表:用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。

即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。

因为47是奇数,开关被打开;108是偶数,开关被关闭。

五年级奥数(奇数与偶数)

五年级奥数(奇数与偶数)

奇数与偶数例1:1+2+3+······+2008,结果是偶数还是奇数?分析与解答:方法一:利用求和公式直接求和,可判断和的奇偶性等差数列的和=(首项+末项)×项数÷21+2+3+······+2008=(1+2008)×2008÷2=(1+2008)×1004因为1004是偶数,偶数与任一自然数的积仍是偶数,所以和是偶数方法二:在自然数列中,奇数与偶数相同排列,在1-2008这2008个自然数中,奇数、偶数各有2008/2=1004(个),1004个奇数或偶数的和都是偶数。

两个偶数的和是偶数,所以1+2+3+······+2008的和是偶数。

练习:1、任意取出1994个连续自然数,它们的总和是奇数还是偶数?2、用0,1,2,3······9十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,那么这五个两位数的和是多少?3、判断23×47×65×132×239的积是偶数还是奇数?4、已知83+95+77+89+A=2001,请判断A是奇数还是偶数?例2.有5张扑克牌,画面向上。

小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。

要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。

而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。

所以无论他翻动多少次,都不能使5张牌画面都向下。

五年级数学奇数偶数的性质知识

五年级数学奇数偶数的性质知识

五年级数学奇数偶数的性质知识
五年级数学奇数偶数的性质知识大全
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。

以下是店铺精心整理的`五年级数学奇数与偶数知识点,仅供参考,欢迎大家阅读。

五年级数学奇数偶数的'性质知识篇1
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。

(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;
(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9.
五年级数学奇数偶数的性质知识篇2
1、奇数和偶数
整数可以分成奇数和偶数两大类、能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

2、奇数与偶数的运算性质
性质1:偶数±偶数=偶数,
奇数±奇数=偶数。

性质2:偶数±奇数=奇数。

性质3:偶数个奇数相加得偶数。

性质4:奇数个奇数相加得奇数。

性质5:偶数×奇数=偶数,
奇数×奇数=奇数。

【五年级数学奇数偶数的性质知识大全】。

人教版五年级下 第二讲 奇数和偶数

人教版五年级下 第二讲 奇数和偶数
分析: 每人有基础分15分,每答1道题,分数将增加 或减少一个奇数(增加5分、1分或减少1分)。 因而答30道题,将增加或减少30个奇数。由 于30是偶数,30个奇数相加减,结果必为偶数。 但15是奇数,所以每个人的得分是奇 数(=15〒偶数),1993个人的得分总和 也是奇数。
5、1992是24个连续偶数的和, 其中最大的偶数是多少? 分析:把这24个偶数前后配对,共
1、从图中选出5个数来,使它们 的和等于35,能否选出来?为什 么?
2 10 4 6 8 4
2
8
12
解:要使和为35,这五个数 应至少有1个奇数,可图中的 9个数均为偶数,所以选不出 5个数的和是35。
【例2】袋中放有51个白球和100个黑球,小明每次 从中任意摸两个球放在外面,如果是同色球,小明 就再放一个黑球到袋中;如果是异色球,则将白球 放回,小明从袋中摸了149次后,袋中还剩下几个 球?它们是什么颜色?
2、任意取出1994个连续自然数, 它们的总和是奇数还是偶数? 分析:
这1994个自然数中,若第一个 数是奇数,则最后一个数是偶数; 若第一个数是偶数,则最后一个数 是奇数,所以无论第一个是什么数, 奇数和偶数都一样多。都有: 1994〔2=997(个) 997个偶数相加和是偶数,997 个奇数相加和是奇数, 奇数+偶数=奇数,
4、有一串数,最前面的四个数 依次是1、9、8、7。从第五个 数起,每一个数都是它前面相 邻四个数之和的个位数字。问: 在这一串数中,会依次出现1、 9、8、8这四个数吗? 提示:
数列:19 87599 03137 45953 29933 规律:从第三个数开始奇偶规律是 偶奇奇奇奇… 所以不可能出现连续两个偶数的情 况 即不会依次出现1988这四个数

2024年人教版数学五年级下册奇数和偶数的运算性质说课稿(精推3篇)

2024年人教版数学五年级下册奇数和偶数的运算性质说课稿(精推3篇)

人教版数学五年级下册奇数和偶数的运算性质说课稿(精推3篇)〖人教版数学五年级下册奇数和偶数的运算性质说课稿第【1】篇〗一、教材与学生1、教材《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的.因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。

2、学生五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力.但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。

二、教学目标1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性;2.运用设疑——猜想——验证—运用的教学模式,培养的自主探究的能力;3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。

三、教法和学法主要是自主探究与开放式教学相结合.1、让学生自主探索规律,并全程参与。

我想,什么也不能代替学生的亲身体验。

这里我讲一个小故事——有一天,我感冒了。

不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。

同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。

为什么不在适当的时候把课堂还给学生呢?!2、大胆开放,抛弃束缚。

我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的**,应该是*等的,**的。

这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗?因此我打破了教材的局限,设计了一个崭新的思路——四、教学设计和思路(一)游戏导入,感受奇偶性1、游戏一:6只小鸭子、5只蝴蝶找伴2、游戏二:转轮盘(1)讲要求:指针停在几上就再走几步;(2)独白:A请他们全班去吃饭,地方吗B学生开心极了,当听到是东方饺子王………一片赞叹。

C结果:乘兴而来,败兴而归,有的指责我—骗人(我—我怎么骗人了?)讨论:为什么会出现这种情况呢?如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。

五年级下册数学试题-奇数和偶数(含答案)沪教版

五年级下册数学试题-奇数和偶数(含答案)沪教版

4.7奇数和偶数所有的整数可以分为两类:奇数和偶數,其中奇数是指那些不能被2整除的整数,例如土1,土3,土5等,而偶数是指那些能被2整除的整数,如0,土2,土4等整数的奇偶性有如下的一些简单性质:(1)偶数土偶数=偶数,偶数土奇数=奇数,奇数土奇数=偶数,奇数土偶数=奇数,(2)偶数x偶数=偶数,奇数x偶数=偶数,奇数x奇数=奇数,(3) 两个整数之和与这两个整数之差的奇偶性相同,(4)两个整数的和或差是偶数,这两个数的奇偶性相同,(5)两个整数的和或差是奇数,这两个数的奇偶性相反.(6)偶数个奇数相加得偶数,奇数个奇数相加得奇数,任意个偶数相加得偶数,(7)奇数连乘积是奇数;连乘中,有一个因数是偶数,积定是偶数,利用整数的奇偶性质,可以成功解决许多数学问题.例题精选:例题1、在黑板上写上1,2,3,...10每次擦去任意两个数,换上这两个数的和或差,重复这样的操作手续若干次,直到黑板上仅留下一个数为止,试问:这个数能否是零?证明你的结论?巩固1、在1,2,3,……2002中的每个数前面添上一个正号或负号,它们的代数和是奇数还是偶数?例题2、能否在下式的格子中适当的填上“+”或“-",使等式成立?若能,请给出一种填法,若不能,请说出理由1口2口3口4口5口6口7口8=9巩固2、下列每个算式中,至少有一个奇数;一个偶数;那么这12个整数中,至少有几个偶数?口+口=口,口—口=口,口x口=口,口÷口=口例题3、如果a,b,c 是三个任意整数,那么a+b2,b+c2,a+c2A、都不是整数B、至少有兩个整数C、至少有一个整数D、都是整数巩固3、用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a= 1991,a×b×c×d-b= 1993,a×b×c×d-c= 1995,a×b×c×d-d=1997.试说明:符合条件的整数a、b、c、d是否存在例题4、参加会议的人,有不少互相握过手,问握手的次数是奇数的那部分人的人数是奇数还是偶数?为什么?巩固4、能否有整数m,n,使得m2 -n2=1998?例题5、一串数排成一行,它们的规律是:前面两个数都是1,从第三个数开始,毎一个数都是前两个数的和.如下所示:1,1,2,3,5,8,13,21,34,55……同:这串数的前100个数(包括第100数)中,有多少个偶数?巩固5、桌上放着七只杯子,杯口全朝上,每次翻转四个杯子,向:能否经过若干次这样的翻动,使全部的杯子口都朝下?习题A1、先求正整数中前10个奇数的和,再求正整数中前n个奇数的和.2、七个连续的奇数的和为399,求这七个数.3、1+2+3+……+2008,,结果是偶数还是奇数?为什么?4、有100个自然数,它们的和是偶数,在这100 个自然数中,奇数的个数比偶数的个数多,问:这些数中至多有多少个偶数?5、有12整卡片,其中3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7,你能否从中选出五张,使它们上面的数字和为20?为什么?6、有一串数,最前面的四个数依次是1、9、8、7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字,问:在这一串数字中,会依次出现1、9、8、8这四个数吗?7、用0、1、2、3、... 9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?8、任意改变某一个三位数的各位数字的顺序得到一个新数,试证新数与原数之和不能等于999.9、三个连续的偶数之积是一个六位数15* * * 8,求这三个偶数.10、求证;四个连续奇数的和一定是8的倍数4.7奇数和偶数(答案)所有的整数可以分为两类:奇数和偶数,其中奇数是指那些不能被2整除的整数,例如土1,土3,土5等,而偶数是指那些能被2整除的整数,如0,土2,土4等整数的奇偶性有如下的一些简单性质:(1)偶数土偶数=偶数,偶数土奇数=奇数,奇数土奇数=偶数,奇数土偶数=奇数,(2)偶数x偶数=偶数,奇数x偶数=偶数,奇数x奇数=奇数,(3)两个整数之和与这两个整数之差的奇偶性相同,(4)两个整数的和或差是偶数,这两个数的奇偶性相同,(5)两个整数的和或差是奇数,这两个数的奇偶性相反.(6)偶数个奇数相加得偶数,奇数个奇数相加得奇数,任意个偶数相加得偶数,(7)奇数连乘积是奇数;连乘中,有一个因数是偶数,积定是偶数,利用整数的奇偶性质,可以成功解决许多数学问题.例题1、在黑板上写上1,2,3,…,10,每次擦去任意两个数,换上这两个数的和或差,重复这样的操作手续若干次,直到黑板上仅留下一个数为止,试问:这个数能否是零?证明你的结论?解答:不可能.1.如果擦去的是两个是偶数,则这两个数的和或差仍是偶数,得到新的数组仍是奇数;2.如果擦去的是两个是奇数,则这个数的和或差则是偶数,得到新的数组仍是奇数;3.如果擦去的是一个偶数一个奇数,则这个数的和或差则是奇数,得到新的数组仍是奇数.所以最后得到数一定还是奇数.巩固1、在1,2,3,…,2002中的每个数前面添上一个正号或负号,他们的代数和是奇数还是偶数?解答:因为两个整数的和与差的奇偶性相同,所以在1,2,3,…,2002中每个数前面添上正号或负号,其代数和应与1+2+3+…+2002的奇偶性相同,而1+2+3+⋯+2002=1 2(1+2+3+⋯+2002)=12(1+2002)×2002=2003×1001为奇数,所以所求代数和也为奇数.例题2、能否在下式的格子中适当的填上“+”或“-”,使等式成立?若能,请给出一种填法,若不能,请说明理由.1□2□3□4□5□6□7□8=9不能巩固2、下列每个算式中,至少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□,□÷□=□解答:要是最少的偶数,所以加法中必然会有一个偶数;乘法中若要保证至少有一个奇数,则必须有两个偶数;减法中必然会有一个偶数;除法中至少有两个偶数,所以这些式子中至少有6个偶数.例题3、如果a,b,c,是三个任意整数,那么a+b2,b+c2,a+c2A、都不是整数B、至少有两个是整数C、至少有一个整数D、都是整数解答:1.假设a,b,c都是偶数或都是奇数,则a+b,b+c,a+c都是偶数那么a+b2,b+c2,a+c2都是整数;2.假设a,b,c中有两个是偶数,一个是奇数,那么a+b2,b+c2,a+c2有一个是整数;3.假设a,b,c中有一个是偶数,两个是奇数,那么a+b2,b+c2,a+c2有一个是整数;综上所述:a+b2,b+c2,a+c2至少有一个是整数.所以选C巩固3、巩固3、用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a= 1991,a×b×c ×d-b= 1993,a×b×c×d-c= 1995,a×b×c×d-d=1997.试说明:符合条件的整数a、b、c、d是否存在解答:用代表整数的字母a,b,c,d写成等式组:a×b×c×d-a=1991a×b×c×d-b=1993a×b×c×d-c=1995a×b×c×d-d=1997试说明符合条件的整数a,b,c,d是否存在.解答:由原题等式组可知:a(bcd-1)=1991b(acd-1)=1993c(abd-1)=1995d(abc-1)=1997因为1991,1993,1995,1997均为奇数,且只有奇数×奇数=奇数所以a分别为奇数.所以a×b×c×d=奇数所以a,b,c,d的乘积分别减去a,b,c,d后一定为偶数.这与原等式组矛盾.所以不存在满足题设等式组的整数a,b,c,d例题4、参加会议的人,有不少互相握过手,问握手的次数是奇数的那部分人的人数是奇数还是偶数?为什么?解答:偶数.每人相互握手一次,当握奇数次手时,说明其它人数有奇数个,加上自己,那么总人数就是偶数个.巩固4、能否有整数m,n,使得m2−n2=1998?解答:m2−n2=1998(m+n)(m-n)=1998则m+n,m-n的奇偶性必相同,即:①m+n,m-n同为奇数,乘积为奇数,与1998矛盾;②m+n,m-n同为偶数,乘积能被4整除,与1998被4除余2矛盾综上所述:必不存在整数m,n,使得m2−n2=1998例题5、一串数排成一行,它们的规律是:前面两个数都是1,从第三个数开始,毎一个数都是前两个数的和.如下所示:1,1,2,3,5,8,13,21,34,55……同:这串数的前100个数(包括第100数)中,有多少个偶数?解答:从数列中可以得到规律每两个奇数之后为一个偶数,其中前100个数中偶数的个数为100÷3=33…1,故这串数前100个数中有33个偶数.巩固5、桌上放着七只杯子,杯口全朝上,每次翻转四个杯子,问:能否经过若干次这样的翻动,使全部的杯子杯口都朝下?答案:不能.我们将向上的杯子记为0,向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个数之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.习题A1、先求正整数中前10个奇数的和,再求正整数中前n个奇数的和.答案:100,n2.2、七个连续的奇数的和为399,求这七个数.答案:51,53,55,57,59,61,63;这七个数的平均数为中间的数,因为平均数为57,所以可得这七个数.3、1+2+3+……+2008,,结果是偶数还是奇数?为什么?答案:偶数4、有100个自然数,它们的和是偶数,在这100 个自然数中,奇数的个数比偶数的个数多,问:这些数中至多有多少个偶数?答案:根据数的奇偶性可知,100个自然数,奇数的个数比偶数的个数多,那么奇数最少有51个,偶数有49个,但由于51个奇数的和为奇数,再加上49个偶数100个自然数的和是奇数,所以100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.5、有12整卡片,其中3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7,你能否从中选出五张,使它们上面的数字和为20?为什么?答案:不能,因为1,3,5,7都是奇数,5个奇数的和还是奇数,不能得到偶数20.6、有一串数,最前面的四个数依次是1、9、8、7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字,问:在这一串数字中,会依次出现1、9、8、8这四个数吗?答案:不会7、用0、1、2、3、... 9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?答案:(4+6+7+8+9)×10+(0+1+2+3+5)=3518、任意改变某一个三位数的各位数字的顺序得到一个新数,试证新数与原数之和不能等于999.答案:令该数为ABC,则:1、全为奇数−−结果3位均为偶数;2、全为偶数−−结果3位均为偶数;3、AB奇,C偶−−A,B必须全与偶数相加才能都为奇数,不成立;4、AB偶,C奇−−A,B必须全与奇数相加才能都为奇数,不成立;故新数与原数之和不能等于999.9、三个连续偶数之积是一个六位数15***8,求这三个偶数.答案:连续偶数的末位数的乘积有规律,末位为8的数只能由末位为2、4、6的连续偶数相乘得到.由于这是个六位数,所以这3个数都是两位数.因为某数的立方的第一个数是1,所以十位数是5,即这三个数是52、54、56.10、求证:四个连续奇数的和一定是8的倍数.答案: 设最小的奇数为2n-1(n是正整数),后面三个依次是2n+1,2n+3,2n+5.四个数的和为:(2n-1)+(2n+1)+(2n+3)+(2n+5),=8n+8,=8(n+1).所以是8的倍数.。

人教版五年级数学下册 奇数与偶数

人教版五年级数学下册 奇数与偶数

你能很快判断下列算式的结果 是奇数还是偶数吗?
20149+2018
奇数 + 偶数 = 奇数
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5
和是奇数
不用计算,判断下列算式的结果 是奇数还是偶数。
1+3+5 +7
和是偶数
1.十个自然数1,2,3,……10的和是 奇数还是偶数?
解法一:
1+2+3+4+5+6+7+8+9 +10 = 55
《奇数和偶数》
人教版五年级下册
什么叫做偶数? 什么叫做奇数? 整数中,是2的倍数的数叫做偶数。 不是2的倍数的数是奇数。
自然数的王国有两大家族
奇数
个位
1 3 5 7 9
……
偶数
个位 0
2 4 6 8 10 ……
判断一个数是奇数还是偶 个位 数,看个位
抽奖游戏
游戏1规则:盒子1装的 都是偶数,从盒子中任意取 出两张卡片,如果两数之和 是 一份。
奇数,可以兑换小礼品
思考:继续抽下去会中奖吗? 是什么原因拿不到礼物呢?
你总结出什么规律呢?
偶数+偶数= 偶数

偶数+偶数= 偶数
偶数:


抽奖游戏
思考:继续抽下去会中奖吗? 是什么原因拿不到礼物呢?
你总结出什么规律呢?
奇数+奇数= 偶数

奇数+奇数= 偶数
奇数:


抽奖游戏
思考:继续抽下去会中奖吗? 是什么原因拿到礼物呢?
发现规律:奇数次朝下,偶数次朝上。
不用计算,判断下列算式的结果 是奇数还是偶数。

2024年人教版数学五年级下册奇数和偶数的运算性质教案模板(精推3篇)

2024年人教版数学五年级下册奇数和偶数的运算性质教案模板(精推3篇)

人教版数学五年级下册奇数和偶数的运算性质教案模板(精推3篇)〖人教版数学五年级下册奇数和偶数的运算性质教案模板第【1】篇〗教学内容:北师大版教材五年级上学期14——15页。

教学目标:1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经理探索加法中数的奇偶性变化的过程,在活动中发现加法中的数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

教学过程:一、情境一:师:同学们喜欢旅游吗?一定去过笔架山吧!今年夏天,老师也去了一次笔架山,可不巧,海水淹没了天桥,我只好坐船上山了,这些船从北岸到笔架山,在从笔架山回到北岸,不断往返,老师选了一条船,买了往返船票(边说边在黑板上画简图),老师在回来时,想正好到达山下时,船也正好到山下,船摆渡10次后,还是11次后,我赶到山下,能正好坐上船啊?自己独立思考,然后和小组交流一些,说出你的道理。

小组交流,汇报。

师:你不仅帮助了老师,还从中发现了一条规律,你们是怎样发现这条规律的?学生汇报方法,教师引导学生进行“列表”“画示意图”等方法解决问题。

二、情境二师:同学们玩过有奖游戏吗?今天老师给大家带来一个有奖游戏,游戏规则是:掷色子,掷到几,就从转盘上的数下一格向前走几,走到有奖的格子奖品就归你了。

(图略)师:谁想第一个来试一试?师:在游戏中,你们发现了什么?生:刚才这几位同学得到的都是糖,为什么得不到学习用品呢?师:问题提的真好,有思考价值。

为什么他们拿到的奖品都是糖,得不到有实用价值的奖品?你们可以互相交流一下,看看为什么这样?学生交流,汇报奇数+奇数=偶数;偶数+偶数=偶数师:你还能举些例子来证明你们的发现是正确的吗?(学生举例子证明)师:你们能修改一下规则,让这个游戏一定能等到学习用品吗?引导学生发现:奇数+偶数=奇数。

三、解决问题:小华买了一支铅笔,两块橡皮,付了两角钱,售货员阿姨找给他3角钱,小华知道橡皮、铅笔单价都是整角,而且铅笔是4角钱一支,他马上对售货员说:“阿姨,你把账算错了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇数和偶数
在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

奇数和偶数常用的性质:
(1). 连续自然数中的奇数和偶数是相间排列的;,连续的奇数与奇数相差2,连续的偶数与偶数相差2;
(2). 偶数个奇数相加的和是偶数,奇数个奇数相加的和是奇数,任意个偶数相加的和是偶
数;
(3). 奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数,偶数±奇数=奇数;(4). 奇数×偶数=偶数,奇数×奇数=奇数,偶数×偶数=偶数
小热身:(1)23×47×65×132×239的积是()。

(2)375+842+1365+2973+5280的和是()。

例1:1+2+3+······+2018,结果是偶数还是奇数
练:1、48+49+50+······+101,结果是偶数还是奇数
2、任意取100个连续的自然数,它们的总和是奇数还是偶数任意取110个连续的自然数,它们的总和是奇数还是偶数
3、用0,1,2,3······9十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,那么这五个两位数的和是多少
例2、有3张扑克牌,画面向上。

小明每次翻转其中的2张,那么,他能在翻动若干次后,使3张牌的画面都向下吗
练:1、有5张扑克牌,画面朝上,小刚每次翻转其中的3张。

他能在翻转若干次后,使5张牌的画面都向下吗
2、6个小朋友排成一排(站的方向相同),做“向后转”的游戏,每次其中的5个小朋友做向后转的动作,能否经过若干次后使6个小朋友全部改变站的方向
3、有1到50号共50盏电灯,拉一下亮,再拉一下灭。

50个学生依次拉,第一个学生把1的倍数的灯绳拉一下,灯全亮了,第二个学生把2的倍数的灯绳都拉一下,第三个学生把3的倍数的拉一下,······第50个学生把50的倍数的灯拉一下,最后,有几盏灯是亮的。

相关文档
最新文档