《公式法解一元二次方程》教案3

合集下载

用公式法解一元二次方程教案

用公式法解一元二次方程教案

用公式法解一元二次方程教案教案标题:用公式法解一元二次方程教案目标:1. 学生能够理解一元二次方程的定义和性质。

2. 学生能够运用公式法解一元二次方程。

3. 学生能够应用所学知识解决实际问题。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟):- 引入一元二次方程的概念,让学生回顾一元一次方程的解法。

- 提问:一元二次方程与一元一次方程有什么区别?2. 理论讲解(15分钟):- 介绍一元二次方程的一般形式:ax^2 + bx + c = 0。

- 解释方程中各项的含义,并强调a ≠ 0。

- 解释一元二次方程的解的概念。

3. 公式法解一元二次方程(25分钟):- 推导一元二次方程的解公式:x = (-b ± √(b^2 - 4ac)) / (2a)。

- 通过示例演示如何运用公式解一元二次方程。

- 强调解方程时需注意判别式(b^2 - 4ac)的正负。

4. 练习(10分钟):- 分发练习题,让学生独立解决一元二次方程。

- 鼓励学生提问并解答他们的问题。

第二课时:1. 复习(5分钟):- 回顾上节课所学的内容,让学生回答一些相关问题。

2. 实际问题应用(20分钟):- 提供一些实际问题,例如:求解抛物线的焦点、求解物体自由落体的时间等。

- 引导学生将实际问题转化为一元二次方程,并运用公式法解决。

3. 拓展(10分钟):- 提出一些拓展问题,例如:如何解决a = 0的情况、如何解决无理数解的情况等。

- 鼓励学生思考并给予适当的提示。

4. 总结(10分钟):- 归纳一元二次方程的解法,重点强调公式法的应用。

- 总结学生在本节课学到的知识和技能。

教学资源:1. 教材:包含一元二次方程的教材章节。

2. 练习题:包含一元二次方程的练习题,涵盖不同难度和应用场景。

评估方法:1. 课堂练习:通过学生在课堂上解决练习题的表现来评估他们对公式法解一元二次方程的掌握程度。

2. 实际问题应用:通过学生在解决实际问题时的表现来评估他们将所学知识应用于实际情境的能力。

数学《用公式法解一元二次方程》教案

数学《用公式法解一元二次方程》教案

数学《用公式法解一元二次方程》教案教学目标:1.掌握二次方程的概念和基本形式。

2.掌握用公式法解一元二次方程的步骤和方法。

3.培养学生独立解决问题的能力。

教学重点:1.用公式法解一元二次方程的方法。

2.培养学生的思维能力。

教学难点:1.理解二次方程的本质。

2.掌握公式法解二次方程的方法。

教学准备:1.黑板、粉笔、草稿纸、尺子等。

2.教学课件和教学视频。

教学过程:Step 1 引入新知二次方程概念及基本形式1.请同学们回忆一下关于方程的知识,存在的意义是什么?2.初步定义二次方程:含有未知数的二次方的方程被称为二次方程。

3.请同学们熟悉二次方程的基本形式:ax²+bx+c=0 (其中a≠0)Step 2 用公式法解一元二次方程1. 引导同学们发掘出解一元二次方程的公式-x1=-b+√(b²-4ac)/2a,x2=-b-√(b²-4ac)/2a。

2.解释公式的含义:通过计算,我们可以求出二次方程的两个解,也就是方程的两个根。

3.请同学们举例说明如何用公式法解一元二次方程。

4.当 b²-4ac=0 时,x1=x2=-b/2a,这个式子大家应该知道,它的意思是“根相等”,请举例说明。

Step 3 通过例题训练能力1.请同学们分组,自行完成以下二次方程的求解:[1] x²-5x+6=0;[2] 3x²-5x+2=0;[3] 5x²-2x-1=0。

2.请同学们互相交流讨论,然后用课本提供的答案核对。

Step 4 课堂总结1.请同学们谈谈对本节课所学内容的理解,以及对解一元二次方程的方法有哪些拓展和应用。

2.出示题目:已知一个矩形长和宽均为a,若面积为S,请问矩形的对角线长是多少?3.引导同学们思考,建立方程并通过解方程来得出答案。

Step 5 课后作业1.完成课后练习题。

2.自行选择几个实际问题,建立相关方程并通过解方程来得出答案。

3.扩展阅读本章相关内容,为下一次课的学习做准备。

用公式法求解一元二次方程教学设计

用公式法求解一元二次方程教学设计

第二章一元二次方程3.用公式法求解一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。

所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。

其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。

为此,本节课的教学目标是:①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。

②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。

④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力三、教学过程分析本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。

第一环节;回忆巩固活动内容:①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0全班同学在练习本上运算,可找位同学上黑板演算②由学生总结用配方法解方程的一般方法:第一题: 2x2+3=7x解:将方程化成一般形式: 2x2-7x +3=0两边都除以一次项系数:2 023272=+-x x配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+-x x即: 01625)47(2=--x1625)47(2=-x两边开平方取“±” 得:4547±=-x 4547±=x写出方程的根 ∴ x1=3 , x2=21第二题: 3x2+2x+1=0解:两边都除以一次项系数:3 031322=++x x配方:加上再减去一次项系数一半的平方 02391)31(3222=+-++x x即: 01825)31(2=++x1825)31(2-=+x ∵01825<-∴原方程无解活动目的:(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。

公式法解一元二次方程---教案

公式法解一元二次方程---教案

《公式法解一元二次方程》教案一、教学内容解析1.具体内容:《公式法解一元二次方程》这个内容在人教版教材中对应的是九年级上册第一章第三节《公式法》.本节主要研究一元二次方程的公式解法,一元二次方程的求根公式是用配方法得到的,可以说,公式法是配方法的一般化和程式化,利用求根公式可以更为便捷地解一元二次方程.本节课的教学内容包括以下三个方面:①承接上节内容,提出用配方法求解方程ax2+bx+c=0(a≠0)的问题,进而推导求根公式;②用公式法求解一元二次方程,同时体会用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程;③通过对b2-4ac的讨论,得出根的判别式与方程根的情况之间的关系.《课标》中对本节课的要求是能用公式法解数字系数的一元二次方程,会用一元二次方程个根的判别式判别方程是否有实数根和两个实数根是否相等.2.教育价值:在思想方法上,求根公式的推导运用了配方法,其基本思想是降次,通过配方法转化为可直接开方的形式,推导过程中还涉及分类讨论的思想.数学思想方法凝聚着数学的精髓和灵魂,尽管学生走上社会后,数学知识似乎渐渐淡忘了,但留存的应是那种铭刻在心头的数学思想、数学思维方式.从运算的角度看,公式包含了初中阶段所学过的全部六种代数运算:加、减、乘、除、乘方、开方,体现了公式的和谐统一.各级运算的顺序自动决定了一元二次方程的解题顺序.开平方运算不是总能进行的,要根据判别式的符号来判断方程是否有实数根,如果有实数根,则由三个系数来确定.通过运算可以完美地解决根的存在性、根的个数、根的求法三个问题,可以说是“万能”求根公式.它向我们展示了抽象性、一般性和简洁性等数学的美和魅力.3.与相关内容的联系:方程是初中数学的核心概念,在初中数学中占有重要的地位.在学习一元二次方程之前学生已经学会了解一元一次方程、二元一次方程和分式方程等,积累了一定的解方程的经验,体会到解分式方程时需要通过去分母将分式方程转化为整式方程,渗透了转化的数学思想,为研究一元二次方程的解法奠定了基础.,同时一元二次方程的“公式法”是在学习了直接开方法和配方法之后必须掌握的另一种解一元二次方程的方法,是配方法的一般化和程式化,利用它可以更便捷地解一元二次方程.另外,一元二次方程的解法为高中阶段学习二元二次方程组和一元高次方程的解法提供了方法的引领,发挥着重要的作用.从知识的发展来看,学生通过一元二次方程的学习,不仅是对已经学过的实数、整式、二次根式等知识的巩固,也为今后学习二次函数以及高中阶段的算法等知识奠定基础,起到了承上启下的作用.二、教学目标1.经历一元二次方程的求根公式的推导过程,领悟其基本思想(降次化归)与基本方法(配方法);2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况,能够运用公式法求解一元二次方程(数字系数);3.通过推导求根公式,加强推理技能训练,发展逻辑思维能力和善于发现问题的思维素质.三、学生学情分析学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;学生原有的认知结构中已有的知识是直接开平方法解一元一次方程以及用配方法解数字系数的一元二次方程,学生通过直接开平方法、配方法解一元二次方程的学习,对于降次化归的理论依据(开平方)以及基本思路(将一元二次方程转化为两个一元一次方程)已比较熟悉.这节课可以借助学生已有的配方经验,从具体到抽象,得到一元二次方程一般形式的解,即求根公式.但是九年级学生的思维水平处于具体形象思维向抽象思维过渡阶段,对于一般形式的一元二次方程求解过程以及公式法求解一元二次方程本质的理解仍然存在一定的困难.具体体现在以下几个方面:1.学生独自运用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式的过程会遇到困难.2.在用配方法进行公式推导时,忽视对b 2-4ac 取值的讨论是学生的易错点,也是难点,此讨论又是分类思想的渗透,判别式的应用也在此得以体现.3.对 2244-2a ac b a b x ±=+的化简也会存在问题,有些学生会对由2244-2a ac b a b x ±=+到aac b a b x 2422-±=+的变化不理解. 4.用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程,只要确定系数a 、b 、c 的值,代入公式就能求出方程的根,学生对这个本质的理解会存在困难.四、教学策略分析策略1——课前通过用配方法解数字系数的一元二次方程,回忆用配方法解一元二次方程的一般步骤,为本节课中的用配方法推导一元二次方程的求根公式奠定理论基础,同时为了降低学生解字母系数的一元二次方程的难度,将推导的过程分为两个环节,第一环节以填空题的形式,让学生明确二次项系数化为1、移项、配方等过程,掌握每一步的具体做法以及变形的依据.第二环节则采用小组讨论和全班共同探索的方式进行,这样就解决了学生独立推导求根公式所面临着种种困难的问题.策略2——当推导到22a 4ac 4-b )a 2b (=+2x 这一步时,通过设计问题串引发学生的思考,逐步意识到只有当配方的结果是一个非负数时才能进行开方运算,于是针对22a 4ac4-b 展开进一步的探讨,渗透分类讨论的数学思想,此环节采用小组交流的方式进行,避免了学生独立思考时思维的局限性.策略3——对2244-2a ac b a b x ±=+ 进行化简时可能会出现两种情况,一部分学生会误认为2244a acb -的化简结果就是a 2ac 4-b 2,没有考虑到4a 2开方的结果是a 2,缺少分类讨论的思想;还有一部分是对aac b a b x 2422-±=+不会化简,为了突破这个难点,在教学设计时采用采用多媒体课件及板书的结合,以填空的形式引发学生的思考,∵a ≠0,当a >0时2244-2a ac b a b x ±=+ ,当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有2244-2a ac b a b x ±=+ ,这样也就解决了学生在推导公式过程中的又一个难题.策略4——为了强化学生对用公式法求解一元二次方程本质的理解,在教学活动中不是直接告诉学生这个过程就是代数式求值的过程,而是通过具体的例题展示和练习让学生自己经历先确定系数a 、b 、c ,再判断b 2-4ac ,最后代入公式求解一元二次方程的过程,亲身感受到用公式法求解一元二次方程本质就是一个代数式求值的过程.另外,为了便于学生理解,教学环节中又设计了一个程序图来表示用公式法解一元二次方程的步骤,更能直观形象地反映这一本质,同时揭示了“神器”的奥秘,引申出高中阶段要学习的算法知识,体现了知识的前后联系.五、教学过程第一环节情境引入活动内容:数学竞赛,比一比看谁做的又快又准.用配方法解下列方程:(1)2x2-3x+1=0; (2)3x2-6x+4=0.找男生代表和女生代表到前面板演,其余同学在题单上运算.设计意图:与本节课有实质性联系的内容是前一节的配方法,以此为新知识的生长点呈现练习题:用配方法解两个上述方程,即激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.使学生认识到每一个数字系数的一元二次方程都可以用配方法来求解,同时体验到配方法的局限性.由此产生疑难和困惑,感悟到具体的配方法已经不够了.思考:(1)回忆用配方法解一元二次方程的基本思路是什么?体现了哪种数学思想?设计意图:通过提问,一方面加深对学生数学思想方法的渗透,另一方面,与本节课公式法解一元二次方程的本质形成对比,增强学生对知识的理解和掌握.(2)用配方法解一元二次方程的一般步骤有哪些?设计意图:复习用配方法解一元二次方程的步骤为后面用配方法推导一元二次方程的求根公式做铺垫.(3)所有的一元二次方程都能用配方法求解吗?你喜欢配方法吗?为什么?(4)能否有更简便和更一般的方法求一元二次方程的根呢? 出示 “计算神器”,指出只要知道a 、b 、c 就能很快判断出方程根的情况,并且很快计算出方程的根.用“计算神器”计算上面两个一元二次方程,并让学生随机说出一个一元二次方程,进行求解.设计意图:借助“计算神器”,一方面激发学生学习数学的兴趣,调动积极性;另一方面,使学生初步感受到一元二次方程的根的情况就是由系数a 、b 、c 决定的.特别是计算神器的原理又是高中阶段的算法的程序图,这样处理体现知识的前后联系.第二环节 新知探究活动1:推导求根公式.用配方法解一元二次方程:ax 2+bx +c =0(a ≠0)学生阅读题单上小亮同学的用配方法解方程ax 2+bx +c =0(a ≠0)时的一部分过程,请将横线上的部分补充完整,并指出每一步的依据.解:∵a ≠0∴方程两边都除以a 得0ac x a b x 2=++ ,得 ac x a b x 2-=+ 配方,得 222ac x a b x ) () (+-=++ 即: 2x )____(+=思考:(1)按照配方法的步骤,下一步应该做什么呢?(2)现在能直接两边开平方吗?如果能开平方,写出开平方后的结果,如果不能,说明理由.(学生小组内讨论)(3)什么情况下 04422≥-a ac b? 引导学生分析∵ a ≠0∴ 4a 2>0 要使04422≥-aac b 只要 b 2-4ac ≥0即可.当b 2-4ac ≥0时,两边开平方取“±” 得:2244-2a ac b a b x ±=+ (4)如何2244-2a ac b a b x ±=+对进行化简呢? (学生先独立思考再小组交流讨论)PPT 呈现:对2244-2a ac b a b x ±=+化简结果进行分析∵a ≠0当a >0时aac b a b x 2422-±=+ 当a <0时aac b a ac b a b x 2424222-=--±=+ ∴无论a >0还是a <0 ,都有aac b a b x 2422-±=+ 最后得出aac b b x 242-±-=设计意图:由于用配方法推导求根公式是本节课的一个难点,为了突破这个难点,于是将公式的推导过程分为两个部分,第一部分,只要学生知道配方法的步骤及每一步对应的依据就能很快完成推导过程,但是后一部分对开方的条件的判断以及对2244a ac b ab x -±=+的化简结果的讨论都是本节课上学生的困难所在,于是采用多媒体课件及板书的结合,以填空的形式引发学生的思考,大大降低了推导公式的难度,达到让学生跳一跳就能摘到桃子的效果.(5)如果b 2-4ac <0时,会出现什么问题?归纳:我们把a ac b b x 242-±-=称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.设计意图:理解一元二次方程求根公式中各字母代表的意义及条件,理解公式的结构特征,突出数学问题的本质.活动2:典例示范.例:用公式法解方程:2x 2-3x +1=0 .板书示范 解:这里 a =2, b =-3, c =1.b 2-4ac =(-3)2-4×2×1=1>0.413221)3(±=⨯±--=x ,即,11=x , 212=x . 思考:例题与第一环节中的第(1)题对比,哪种解法更简捷? 设计意图:回到情境中的练习,运用求根公式解方程2x 2-7x +3=0,使学生体会到求根公式的优越性,感悟从特殊到一般、发现提出问题的方法.请模仿例题完成下面的做一做做一做:用公式法解下列方程(1)2x2-22x+1=0 ;(2)5x²-3x=x+1 ; (3)x2+17=8x .思考:(1)第(2)题与第一环节中的第(2)题对比,哪种解法更简捷?(2)通过例题与练习题的学习,请思考用公式法求解一元二次方程的一般步骤有哪些?(3)观察这三道题,你还有什么发现?归纳:对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac>0时,一元二次方程实数根;当b2-4ac=0时,一元二次方程实数根;当b2-4ac<0时,一元二次方程实数根.一元二次方程ax2+bx+c=0(a≠0)的根的情况由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ来表示.设计意图:通过解方程使学生进一步体会求根公式的实质是代数式求值的过程,并归纳用求根公式解一元二次方程的基本思路.使学生运用求根公式解方程的同时,体验判别式与根的个数的关系,特别是判别式小于0时直接得到无实数根而不用代入求根公式,概括出在用求根公式解一元二次方程时可以先确定判别式的值代入求根公式,从而丰富和优化学生的认知结构.第三环节 巩固应用1.判断下列方程根的情况:(1)x 2+5x +6=0 (2)9x ²+12x+4=0设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度.第四环节 感悟收获谈谈本节课的收获和体会?你还有哪些问题?学生发言,互相补充,教师点评完善. 既要关注知识的整理与归纳,更要关注本节课研究问题的过程以及运用的数学思想方法.设计意图:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,引导学生建立知识之间的内在联系,概括本节课的核心知识及运用的数学思想和研究方法,旨在使学生生成组织良好的数学认知结构网络.另外,用程序图表示用公式法解一元二次方程的步骤,揭开神器的秘密,学生的好奇心得到满足.第五环节 当堂检测1.一元二次方程y 2+3y -4=0的根的情况为( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定2.已知关于x 的一元二次方程x ²+2x +a =0有两个相等的实数根,则a 的值是( ) A. 1 B. -1 C. 41 D. 413.用公式法解方程4x2+9=12x设计意图:紧扣目标点设计达标测评题,全面了解学生学习水平,及时发现学生认识中存在的问题,给予有效指导,保证当堂落实.第六环节布置作业必做题:习题2.5 知识技能第1、2、3题选做题:尝试用不同种方法解一元二次方程2x²-3x+1=0,通过解答过程谈一谈每种解法的优势与不足.六、教学反思本节课的设计目标明确,重点突出,课前以数学竞赛(用配方法解一元二次方程)引入,调动了学生学习数学的积极性,同时激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.公式的推导过程本来是本节课的难点所在,课前设计的各种为了突破难点的策略都发挥了极大的作用,学生在问题的引导下,同伴的互助下很顺利地推导出了一元二次方程的求根公式.公式的训练、落实有效,对判别式的归纳从特殊到一般思路很清晰,归纳也条理.在整个课堂教学活动中,不仅关注数学知识与能力的发展,同时也重视数学思想方法的渗透;不仅有学生独立思考解决问题的环节,同时也关注了学生之间的合作交流,培养了学生之间的合作精神,不仅注重了对学生基础知识和基本技能的评价,同时又注重了对学生情感态度的评价.。

一元二次方程公式法解题的详细教案

一元二次方程公式法解题的详细教案

一元二次方程公式法解题的详细教案一、教学目标:1、了解一元二次方程及其相关定义和公式;2、理解一元二次方程的概念、性质和解法;3、掌握一元二次方程公式法的解题方法;4、通过实例演算提高学生的数学思维和解决问题的能力。

二、教学重难点:1、掌握解一元二次方程公式法的具体步骤2、学会如何应用一元二次方程的公式来解决实际问题。

三、教学准备:1、熟悉一元二次方程的相关定义、公式和解法;2、准备多组解法不同的一元二次方程实例,带有中等难度的例题。

四、教学过程:1、引入例题请同学们思考以下问题:(1)当一个球从高度为8m处落下,经过多长时间最先着地?(2)如果一个长方体的房间,面积是72平方米,其中长是6m,高是3m,求它的宽。

这两个问题可以用数学方法来解决。

那么我们要学习什么数学知识来解决这个问题呢?这个问题就是有关于一元二次方程的问题。

2、一元二次方程请同学们一起回顾:什么是一元二次方程?1、一元二次方程的定义:含有形如x²的二次项,也含有一次项和常数项的一次方程,叫做一元二次方程。

2、一元二次方程的标准形式:ax²+bx+c=0 (其中a≠0)3、一元二次方程的通解公式:x1=[-b+√(b²-4ac)]/2a,x2=[-b-√(b²-4ac)]/2a(两个根的求解公式,其中a,b,c分别代表一元二次方程中的系数)4、一元二次方程的性质:①若a>0,则方程ax²+bx+c=0称为开口向上的,若a<0,则称为开口向下的。

②方程ax²+bx+c(a≠0)又称为二次函数f(x)=ax²+bx+c的函数式。

③当a=0时,ax²+bx+c=0变为一次方程,方程的根唯一,等于-b/a。

3、一元二次方程公式法解题一个一元二次方程a x² + bx + c = 0,x表示未知数,a、b、c 为已知数,通式求解要求三个数的值都是已知的,在一些情况下,已知的数可能只有两个或一个,那么如何解决这种情况呢?我们就可以用到一元二次方程公式法!1、解题步骤:(1)将一元二次方程y = ax²+ bx + c转化为标准形式ax²+ bx + c = 0。

义乌市二中九年级数学上册 第二章 一元二次方程 3用公式法求解一元二次方程教学案无答案北师大版

义乌市二中九年级数学上册 第二章 一元二次方程 3用公式法求解一元二次方程教学案无答案北师大版

3 用公式法求解一元二次方程教学目标【知识与技能】1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程. 【过程与方法】通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想. 【情感态度】让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.【教学重点】求根公式的推导和公式法的应用. 【教学难点】理解求根公式的推导过程及判别公式的应用. 教学过程一、情境导入,初步认识用配方法解方程: (1)x 2+3x+2=0 (2)2x 2-3x+5=0【教学说明】学生板演,复习旧知. 二、思考探究,获取新知1.探究:用配方法解方程:ax 2+bx+c=0(a ≠0).分析:前面具体数字已做了很多,我们现在不妨把a 、b 、c 也当成具体数字,根据配方法的解题步骤推下去.解:移项,得:ax 2+bx=-c因为a ≠0,所以方程两边同除以a ,得: x 2+b a x=c a- 配方,得:x 2+b a x+(2b a )2=c a -+(2b a)2即(x+2b a )2=2244b aca- ∵a ≠0,∴4a 2>0,当 b 2-4ac ≥0时,2244b ac a -≥0∴x+2b a =即∴x 1=2b a -+x 2=2b a-【归纳总结】由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子b 2-4ac ≥0),就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式; (3)利用求根公式解一元二次方程的方法叫公式法; (4)由求根公式可知,一元二次方程最多有两个实数根.用公式法解一元二次方程时,必须注意两点:(1)将a 、b 、c 的值代入公式时,一定要注意符号不能出错;(2)式子b2-4ac ≥0是公式的一部分.【教学说明】让学生思考对于一般形式的一元二次方程ax 2+bx+c=0(a ≠0) 能否用配方法求出它的解,通过解方程发现归纳一元二次方程的求根公式.2.用公式法解下列方程,根据方程根的情况你有什么结论? (1)2x 2-3x=0;(2)3x 2;(3)4x 2+x+1=0.【归纳总结】(1)当Δ=b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根,即x 1x 2;(2)当Δ=b 2-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=-2ba; (3)当Δ=b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根. 【教学说明】进一步体会一元二次方程的根与b 2-4ac 的关系. 三、运用新知,深化理解1.用公式法解下列方程. (1)2x 2-x-1=0; (2)x 2+1.5=-3x ;(3)x 2;(4)4x 2-3x+2=0.分析:用公式法解一元二次方程,需先确定a、b、c的值,再算出b2-4ac的值,最后代入求根公式求解.【教学说明】(1)一元二次方程ax2+bx+c=0(a≠0)的根是由一元二次方程的系数a、b、c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把a、b、c的值代入(3)由求根公式可以知道一元二次方程最多有两个实数根.2.不解方程,判定方程根的情况(1)16x2+8x=-3;(2)9x2+6x+1=0;(3)2x2-9x+8=0;(4)x2-7x-18=0.分析:不解方程,判定方程根的情况,只需根据b2-4ac的值大于0、小于0、等于0的情况进行分析即可.b2-4ac的值是在一元二次方程一般形式下得出的,所以首先必须将方程化为一般形式.3.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0,就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴a<-2∵ax+3>0即ax>-3,∴x<-3/a,∴所求不等式的解集为x<-3/a.【教学说明】主体探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.四、师生互动,课堂小结本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并掌握利用根的判别式判断一元二次方程根的情况.教材反思通过复习配方法使学生对一元二次方程的定义及解法有一个深刻的印象.然后让学生用配方法推导一般形式ax2+bx+c=0(a≠0)的解,并掌握利用根的判别式判断一元二次方程根的情况,使学生的推理能力得到加强.21.3 实际问题与一元二次方程第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.22.4 图形的位似变换图形在平面直角坐标系中的位似变换一、教学目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.二、重点、难点1.重点:用图形的坐标的变化来表示图形的位似变换.2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.难点的突破方法(1)相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,因此一些特殊的相似(如位似)也可以用图形坐标的变化来表示..(2)带领学生共同探究出位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点..为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.(3)在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的.如:已知:△ABC三个顶点坐标分别为A(1,3),B(2,0),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,根据前面(2)总结的变化规律,点A的对应点A′的坐标为(1×2,3×2),即A′(2,6),或点A的对应点A′′的坐标为(1×(-2),3×(-2)),即A′′(-2,-6).类似地,可以确定其他顶点的坐标.(4)本节课的最后要给学生总结(或让学生自己总结)平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而图形放大或缩小(位似变换)之后是相似的.并让学生练习在所给的图案中,找出平移、轴对称、旋转和位似这些变换.三、例题的意图本节课安排了两个例题,例1是教材P63的例题,它是在引导学生寻找出位似变换中对应点的坐标的变化规律后的一个用图形的坐标的变化来表示图形的位似变换的题目,其目的是巩固新知识,帮助学生加深理解用图形的坐标的变化来表示图形的位似变换知识,此题目应让学生用不同方法作出图形.例2是教材P64的一个问题,它是“平移、轴对称、旋转和位似”四种变换的一个综合题目,所给的图案由于观察的角度不同,答案就会不同,因此应让学生自己来回答,并在顺利完成这个题目基础上,让学生自己总结出这四种变换的异同.四、课堂引入1.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示. 3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 五、例题讲解例1(教材P63的例题)分析:略(见教材P63的例题分析) 解:略(见教材P63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A′′的坐标为(-6×)21(-,6×)21(-),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,……. 解:答案不惟一,略. 六、课堂练习 1. 教材P64.1、22. △ABO 的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F 的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.七、课后练习1.教材P65.3, P66.5、82.请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限).3.如图,将图中的△ABC以A.为位似中心,放大到 1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化.教学反思。

公式法解一元二次方程教案

即(x+ )2=
∵b2-4ac≥0且4a2>0
∴ ≥0
直接开平方,得:x+ =±
即x=
∴x1= ,x2=
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
尝试应用
例1.用公式法解下列方程.
(1)2x2-4x-1=0(2)5x+2=3x2
(3)(x-2)(3x-5)=0(4)4x2-3x+1=0
解:
(2)将方程化为一般形式
3x2-5x-2=0
a=3,b=-5,c=-2
b2-4ac=(-5)2-4×3×(-2)=49>0
x=
x1=2,x2=-
(3)将方程化为一般形式
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
检验学生对于公式法的利用情况是否熟练。
2.求根公式本身就很难,形式复杂,代入数值后出错很多.
其实在做题过程中提醒学生先确认a,b,c的相应的数值准确后,再检验一下判别式,这是很关键的两步,不要过于着急待入求值,在教学中,这一点还是需要进一步强调的。.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果
3、本节课的内容相对比较枯燥,在教学环节的设置上缺乏一些创新,学习的积极性调动不起来,对学生地鼓励性的语言过少。

公式法解一元二次方程教案

公式法解一元二次方程一、教学目标1知识目标(1)会利用配方法推导出求根公式和理解判别公式的意义;(2使学生能熟练地运用公式法求解一元二次方程.2能力目标(1)通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.(2)求根公式的引入,让学生进一步提高求解一元二次方程的的能力。

3德育目标(1)让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感;(2)求根公式的引入,培养学生寻求更简便方法的探索精神,同时公式的简洁美,也可以让学生认识数学美,从而提高学习数学的兴趣。

二、教学的重、难点(1)教学的重点:熟练地用求根公式求解一元二次方程。

(2)教学的难点:会利用配方法推导出求根公式和理解判别公式的意义。

三、教学过程1.复习导入新课在上课之前让学生做一元二次方程2x2-8x-9=0 (拿一位学生的题目在投影仪下讲解,并提问学生配方法的一般步骤,写在黑板的。

)2x2-8x-9=0解:二次项系数化为1得:x2-4x-92=0;移项得:x2-4x=92;配方得:x2-4x+22=92+22;变形得:(x-2)2=172,两边开方得:x-2=一般要将带根号的分母化为整数,分子分母同时乘以分母)解得:x 1x 2=.配方法的步骤(提问学生):1.化(将二次项系数化为1,将一元二次方程化为一般形式)2.移项(将常数项移到方程右边)3.配方(两边同时加上一次项系数一半的平方)4.变形(将方程变为()2mx n p +=的形式,其中当p ≥0时,方程有解,当p<0时,方程无实数解)5.开方(在p ≥0的前提下)6.写(注意格式)用所学“配方法”解一元二次方程并总结步骤,不仅复习了之前的知识,还为下面推导一元二次方程的求根公式做准备。

2.呈现问题,层层递进,探索新知a 2x +b x +c=0(a ≠0)(这是一元二次方程的一般形式,对比一下2x 2-8x-9=0的做法,我们有没有办法求解 a x 2+bx+c=0呢?) 化简、移项、配方、变形由我和学生一起探究完成 a 2x +b x +c=0(a ≠0)解:二次项系数化为1得:x 2+b a x+ca=0;(将二次项系数化为1:这里a 不等于0,所以方程两边同时除以a.移项得:x 2+ b a x=-c a ;(c a 移到右边,变成-c a) 配方得:x 2+b a x+22b a ⎛⎫⎪⎝⎭=-c a + 22b a ⎛⎫ ⎪⎝⎭(两边同时加上二次项系数一半的平方)变形得:(x+2b a )2=2244b ac a -,(我们回过头来看一下配方法求方程的步骤,当方程变为()2mx n p +=的形式,其中当p ≥0时,方程有解,当p<0时,方程无实数解。

“用公式法解一元二次方程”教案

“用公式法解一元二次方程”教案阳春三中 温萍【课 题】12.1用公式法解一元二次方程(3)——公式法【教学目标】1.使学生理解一元二次方程的求根公式的推导过程。

2.引导学生熟记求根公式aac b b x 242-±-=并理解公式中的条件042≥-ac b3.使学生能熟练地运用求根公式解一元二次方程。

【教学重点】1.掌握一元二次方程的求根公式。

2.熟练地运用求根公式解一元二次方程。

【教学难点】求根公式的推导【教学过程】(一)复习引入我们学过了一元二次方程的两种解法,它们是1.直接开平方法:a x =2 )0(≥a2.配方法:(提问步骤)(二)讲授新课1.用配方法推导一元二次方程的求根公式:)04(2422≥--±-=ac b aac b b x 2.分析公式的特点,帮助学生的记忆公式。

3.讲解例题。

例1、解方程 0232=+-x x解:2,3,1=-==c b a2b 189214)3(42=-=⨯⨯--=-ac >0∴213121)3(±=⨯±-=x ∴21=x 12=x例2、 解方程 4722=+x x解:原方程可化为04722=-+x x∵2=a 7=b 4-=c813249)4(247422=+=-⨯⨯-=-ac b >0∴ 49722817±-=⨯±-=x ∴ 211=x 42-=x 例3、解方程 012212=+-x x 解:原方程可化为 02222=+-x x∵ 1=a 22-=b 2=c088214)22(422=-=⨯⨯--=-ac b∴ 2222120)22(==⨯±--=x ∴ 221==x x例4、解方程 03422=-+-x x解:原方程可化为 03422=+-x x∵ 2=a 4-=b 3=c82416324)4(422-=-=⨯⨯--=-ac b <0∴ 此方程没有实数根思路导引:(1)方程(1)是满足一般式,确定a 、b 、c 后代入求根公式,即可求出方程的根。

3用公式法求解一元二次方程-初中九年级上册数学(教案)(北师大版)

3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的标准形式和根的公式这两个重点。对于难点部分,如公式推导和判别式的应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用图形计算器绘制一元二次方程的图像,观察与x轴的交点。
五、教学反思
今天的教学中,我发现学生们对一元二次方程的公式法求解过程表现出较大的兴趣,但也存在一些理解上的难点。在讲解一元二次方程的标准形式和根的公式时,我尽量使用了生动的例子和实际情境,希望能够帮助他们更好地理解抽象的数学概念。
课堂上,我注意到有些学生在推导公式时感到困惑,特别是对于判别式的理解和应用。这让我意识到,需要更多的时间和耐心来解释判别式Δ = b^2 - 4ac的重要性,以及它如何决定方程的根的性质。在未来的教学中,我可能会引入更多的图形和实物模型来说明这一点,让学生能够直观地看到判别式与方程根之间的关系。
3用公式法求解一元二次方程-初中九年级上册数学(教案)(北师大版)
一、教学内容
本节课选自北师大版初中九年级上册数学第三章《一元二次方程》的第三节“用公式法求解一元二次方程”。教学内容主要包括以下三个方面:
1.掌握一元二次方程的标准形式:ax^2 + bx + c = 0(a ≠ 0);
2.介绍求一元二次方程的根的公式:x = [-b ± √(b^2 - 4ac)] / (2a);
最后,我意识到教学反思不仅是回顾课堂的过程,也是一个不断学习和成长的机会。通过反思,我能够更好地理解学生的需求,调整教学策略,以期在下一节课中达到更好的教学效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《公式法解一元二次方程》教案3安福县城关中学曹经富教学设计说明:根据教材的特点,把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.(1)教材分析“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华.(2)学情分析学生的知识技能基础:学生已经学习了一元一次方程、二元一次方程、一次函数以及二次根式的相关知识及应用,在本章中,又学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力.学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.教学目标1.理解一元二次方程求根公式的推导过程和判别式,培养数学推理的严密性和逻辑性以及由特殊到一般的数学思想.2. 能够根据方程的各项系数,判断出方程的根的情况,并能正确、熟练的使用求根公式解一元二次方程.3.结合用公式法解一元二次方程的练习,培养快速准确的运算能力和运用公式解决实际问题的能力.4.体验到所有的一元二次方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识.教学重点、难点教学重点:正确、熟练地使用一元二次方程的求根公式解一元二次方程,提高学生的综合运算能力.关键是由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形式展开,利用学生已有的知识,通过自学让学生主动参与到教学活动中来,让学生处于主导地位.通过比较合理的问题设计、小组讨论形式让学生更好的掌握知识.教学难点:正确地推导出一元二次方程的求根公式,理解b2-4ac判别式对一元二次方程根的影响和应用.关键是在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式和灵活运用根的判别式课时设计一课时.教学策略整节课以“复习回顾——自学提要——分析探究——学以致用——总结升华”为主线,使学生亲身体验求根公式的探索过程,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.教学过程一 复习回顾1、一元二次方程 的一般形式是 .2、方程2410x -+= 的二次项系数是 ,一次项系数是 ,常数项是 .3、若方程(x —1)2= -9,则此方程 .4、用配方法解下列方程(1)6x 2-7x +1=0 (2)2x 2-8x -9=0答案:1. ax 2+bx +c =0(a≠0) 2.4 - 1 3.无实数解4.(1)移项,得:6x 2-7x =-1 二次项系数化为1,得:x 2-76x =-16配方,得:x 2-76x +(712)2=-16+(712)2即 (x -712)2=25144,x -712=±512x 1=512+712=7512+=1 x 2=-512+712=7512-=16(2)二次项系数化为1得x 2-4x -92=0; 移项x 2-4x =92;配方x 2-4x +22=92+4;(x -2)2=172,x -2或x ;解得x 1,x 2=【设计意图】复习一般式的化简以及系数的区分,为公式法的推导铺垫,其次利用所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备.二 自学指导阅读课本,并思考:1、用配方法解一元二次方程ax 2+bx +c =0(a ≠0)2、什么叫做根的判别式?3、满足什么条件时一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的数根?两个相等的实数根?没有实数根?4、什么是求根公式?5、用公式法解一元二次方程的一般步骤有几步?答案:1.解:20ax bx c ++=方程两边都除以a ,得:20b c x x a a ++= 配方,得:222()()22b b c b x x a a a a++=-+,即:2224()24b b ac x a a -+=当24b ac -≥0时,开平方得:2b x a +=所以方程的解是:x = 当24b ac -<0时,方程无实数根.2.一元二次方程的根的判别式一元二次方程20ax bx c ++=(a ≠0)的根的情况由24b ac -来确定,我们把24b ac -叫做一元二次方程20ax bx c ++=(a ≠0)的根的判别式,通常用符号“△”表示,即△=24b ac -.3.一般地,方程20ax bx c ++=(a ≠0).当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.反过来,有当方程有两个不相等的实数根时,△>0;当方程有两个相等的实数根时,△=0;当方程没有实数根时, △<0.注意:一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围.4. 一元二次方程20ax bx c ++=(a ≠0)的求根公式为:x =(240b ac -≥),其中公式中的a 、b 、c 分别是一元二次方程的二次项系数、一次项系数及常数项.我们用求根公式法求一元二次方程解的方法称为公式法.5.用公式法解一元二次方程的一般步骤是:①首先把一元二次方程化为一般形式;②确定公式中a 、b 、c 的值;③求出24b ac -的值;④若24b ac -≥0,则把a 、b 、c 及24b ac -的值代入求根公式即可求解.当24b ac -<0时,此时方程无实数解.【设计意图】通过相关问题的自学与小组合作交流探讨,使学生认识到有的一元二次方程是没有实数根的,学生会很自然的产生为什么有的一元二次方程没有实数根的疑问,教师适时引导学生一元二次方程的根与一元二次方程什么有关系问题,从而激发学生的求知欲望. 让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.三. 分析探究【设计意图】学生对于字母的一元二次方程的一般形式用配方法解决有难度,教师可进行适当引导与点拨、提示,培养学生独立思考的能力和推导能力.四 学以致用例1:不解方程,判定方程根的情况(1)16x 2+8x =-3 (2)9x 2+6x +1=0(3)2x 2-9x +8=0 (4)x 2-7x -18=0分析:不解方程,判定根的情况,只需用b 2-4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x +3=0这里a =16,b =8,c =3,b 2-4ac =64-4×16×3=-128<0所以,方程没有实数根.(2)a =9,b =6,c =1,b 2-4ac =36-36=0,∴方程有两个相等的实数根.(3)a =2,b =-9,c =8b 2-4ac =(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a =1,b =-7,c =-18b 2-4ac =(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.例2.用公式法解下列方程(1)2x 2-4x -1=0 (2)5x +2=3x 2(3)4x 2-x +116=0 (4)4x 2-3x +1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0∴方程有两个不相等的实数根.x =(4)422242--±==⨯∴x 1x 2 (2)将方程化为一般形式3x 2-5x -2=0a =3,b =-5,c =-2b 2-4ac =(-5)2-4×3×(-2)=49>0∴方程有两个不相等的实数根.x =(5)57236--±±=⨯ x 1=2,x 2=-13(3)a =4,b =-1,c =116b 2-4ac =(-1)2-4×4×116=0 ∴方程有两个相等的实数根.∴x 1= x 2= (1)1248--±=⨯ (4)a =4,b =-3,c =1b 2-4ac =(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.例3.某养鸡厂的矩形鸡舍靠墙.现在有材料可以制作竹篱笆20米,若欲围成42平方米的鸡舍,鸡舍的长和宽应是多少?能围成52平方米的鸡舍吗,若可以求出长和宽,若不能说明理由..解:(1)设鸡舍的长为x 米,则宽为202x -米, 由题意得:x ×202x -=42, 解得:x 1=14(14>10,故舍去),x 2=6(此时宽大于长,舍去).即可得鸡舍的长为6m ,宽为7米.(2)由题意得:x ×202x -=52, 整理得:x 2-20x +104=0,△=400-4×104<0,所以方程无解.故不可能围成面积为52平方米的矩形鸡舍.【设计意图】对求根公式解方程与应用作进一步深化,使不同层次的学生都有不同提高,进一步巩固本节课所学知识.五、总结升华1、用公式法解一元二次方程时要注意什么?2、任何一个一元二次方程都能用公式法求解吗?举例说明.3、若解一个一元二次方程时,b 2-4ac <0,请说明这个方程解的情况.【设计意图】采用学生小结教师补充的方式来概括本节课的知识.回答学生在学完本课后发现的未能解决的问题及创新性问题,给学生自由思考的空间.适当给以指导,培养学生归纳和语言表达能力,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.课后作业1.用公式法求一元二次方程的根时,首先要确定a 、b 、c 的值.对于方程﹣4x 2+3=5x ,下列叙述正确的是( )A .a =﹣4,b =5,c =3B .a =﹣4,b =﹣5,c =3C .a =4,b =5,c =3D .a =4,b =﹣5,c =﹣32.方程x 2﹣3x ﹣5=0的根的情况是( )A 、只有一个实数根B 、有两个不相等的实根C 、有两个相等的实数根D 、没有实数根3.方程x 2+x ﹣1=0的根是( )A .1﹣5B .15-+C .﹣1+5D .15-± 4.下列方程有实数根的是( )A 、2501x x +=-B 、12x -=-C 、x 2﹣x +1=0D 、2x 2+x ﹣1=05.已知直角三角形的三个边长为a 、b 、c ,∠C=90°,那么关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0的根的情况是( )A 、无实数根B 、有两个相等的实数根C 、有两个不相等的实根D 、不能确定6.已知一元二次方程2x 2﹣3x =1,则b 2﹣4ac =7.方程ax 2+bx +c =0(a ≠0)的判别式是 ,求根公式是8.一元二次方程x 2﹣x +4=0的解是9.用公式法解方程2x 2﹣7x+1=0,其中b 2﹣4ac = ,x 1= ,x 2=10.一元二次方程a 2﹣4a ﹣7=0的解为11.关于x 的一元二次方程﹣x 2+(2k +1)x +2﹣k 2=0有实数根,则k 的取值范围是12.解方程:(1)5x (x -3)=6-2x ; (2)3y 2+1=23y ; (3)(x -a )2=1-2a +a 2(a 是常数)13.解方程x 2=4x +2时,有一位同学解答如下:解:∵a =1,b =4,c =2,b 2﹣4ac =42﹣4×1×2=8,∴x 24b b ac -±-4822-±=-±即:即x 1=22-x 2=22-分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.14.(1)解下列方程:①x 2﹣2x ﹣2=0;②2x 2+3x ﹣1=0;③2x 2﹣4x +1=0;④x 2+6x +3=0;(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式.参考答案1.B2.B3.D4.D5.B 解:∵直角三角形的三个边长为a 、b 、c ,∠C=90°, ∴c 2=a 2+b 2①∴△=4b 2﹣4×(a +c )(c ﹣a )=4(a 2+b 2﹣c 2)=0,∴关于x 的方程(a +c )x 2﹣2bx +(c ﹣a )=0有两个相等的实数根.故选B.6.177. b 2﹣4ac8. 无实数解9. 4174-10. 2+ 2 11. k ≥94-12.(1)3,25-;(2)3;(3)1,2a -113.解:有错误.没有把x 2=4x +2变成一般式,b 、c 的值是错的.正确的解题过程如下:x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =2b a -=422=-即:x 1,x 2=2.14.解:(1)①解方程x 2﹣2x ﹣2=0①,∵a =1,b =﹣2,c =﹣2,∴x 212±=∴x 1x 2=1.②解方程2x 2+3x ﹣l=0,∵a =2,b =3,c =﹣1,∴x =2b a -∴x 1=34-=,x 2=34-=.③解方程2x 2﹣4x +1=0,∵a=2,b=﹣4,c=1,∴x===,x1=,x2=.④解方程x2+6x+3=0,∵a=1,b=6,c=3,∴x===﹣3,∴x1=,x2=.(2)其中方程①③④的一次项系数为偶数2n(n是整数).一元二次方程ax2+bx+c=0,其中b2﹣4ac≥0,b=2n,n为整数.∵b2﹣4ac≥0,即(2n)2﹣4ac≥0,∴n2﹣ac≥0,∴x====∴一元二次方程ax2+2nx+c=0(n2﹣ac≥0)的求根公式为.板书设计教学反思1.充分利用教材,在练习题与例题的编排上打破常规,通过设置自学提要—自学—探索—归纳—总结出公式法,再让学生用求根公式解决问题,深刻地体现了新教材的课改理念.2.在学习过程中,给学生留下了很大的思维空间,通过学生自主学习,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生.无论是公式的推导,还是公式的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼.3.在巩固新知识的阶段中,习题的编排上有梯度上,即注重了双基训练,又注重了能力的培养.使学生在掌握基础的前提下,循序渐进,步入公式的大家庭中.同时在探索升级中,进一步锻炼,培养了学生的猜想能力.。

相关文档
最新文档