楼板等效均布活荷载的计算

合集下载

双向板等效均布活荷载的确定

双向板等效均布活荷载的确定

双向板等效均布活荷载的确定摘要:本文根据《建筑结构荷载规范》(GB50009-2001)(2006版)附录B 中对双向板等效荷载计算的概述,介绍了工程设计中双向板上等效均布活荷载的计算方法,为后续使用电算软件对结构整体进行受力分析提供了计算数据。

关键词:双向板等效均布活荷载计算前言双向楼板由于其经济、美观等优势而被广泛应用于建筑中。

本人在设计某污水处理厂脱水机房时,遇到了设备搁置于二层楼面的情况,由于脱水机房内设备较多以及工艺的要求,无法将所有设备布置于梁上,需要将布置于楼板上的设备重量进行等效均布活荷载的换算。

根据《建筑结构荷载规范》(GB50009-2001)(2006版)第4.1.3条规定,楼面板上的局部线荷载、面荷载等可按附录B的规定,换算为等效均布活荷载。

而附录B中仅对局部荷载作用下,如何计算等效均布荷载做了粗略的规定,所提供的计算公式也仅适用于单向板情况。

对于双向板的等效均布活荷载计算,本文基于对规范的规定理解提出一种计算方法。

《建筑结构荷载规范》(GB50009-2001)(2006版)第B.0.1条指出:楼面(板、次梁及主梁)的等效均布活荷载应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形裂缝的等值要求来确定在一般情况下,可仅按内力的等值来确定;第B.0.6条指出,双向板的等效均布荷载可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。

这里通过一块楼板及其上部的设备荷载来介绍一下《建筑结构荷载规范》(GB50009-2001)第B.0.6条所述的双向板(这里所指的双向板一般指长边与短边长度之比小于或等于2.0的板,长边与短边长度之比大于2.0的板可按沿短边受力的单向板考虑)如何按四边简支的绝对最大弯矩等值确定其等效均布荷载。

而对于单向板上局部荷载的等效,《建筑结构荷载规范》(GB50009-2001)第B.0.4条、第B.0.5条已有详细说明,这里不再进行讨论。

板上隔墙等效荷载

板上隔墙等效荷载

a b
Max(a,b)MIN(a,b)板的长边尺寸
板的短边尺寸板的长边尺寸板的短边尺寸(mm)
(mm)(mm)(mm)8400840084008400 1.00板初始条件满
足平摊荷载
(kN/m2)隔墙荷载长边平行
板长边时
2.730 1.07隔墙荷载长边垂直
板长边时 2.730 1.07判断
4.本表是按该文章计算方法编制的,不代表本
3.个人认为:对于面积较小的楼板,似乎等效一、双向板上局部荷载(包括集
备注:1. 表中:q2: 当隔墙位置可灵活自由布不小于1.0kN/m2。

λ隔墙荷载作用方向
2.表中:q1=隔墙总荷载/楼板面积。

a/b
λ
q
qe q1q2qe/q1板上作用的隔墙荷载等效均布活荷载平摊荷载
MAX(q/3,1)(kN/m)(kN/m2)(kN/m2)
(kN/m2)隔墙荷载长边垂直
板长边时 2.7309 2.93 1.07 3.00 2.73
等效系数隔墙荷载作用方向
代表本人认可:文章中的计算方法是正确的。

等效荷载/平摊荷载乎等效荷载计算值大的太多,需进一步研究。

包括集中荷载)的等效均布活荷载qe的计算
自由布置时,非固定隔墙的自重可取每延米长墙重(kN/m)的1/3作为楼面活荷载的附加值(kN/m2)计入,附加值。

楼面等效均布荷载 B-1 计算结果

楼面等效均布荷载 B-1 计算结果

1 楼面等效均布荷载: B-11.1 基本资料1.1.1 工程名称:1.1.2 周边支承的双向板,板的跨度 L x = 3300mm ,L y = 3300mm ,板的厚度 h = 150mm ,楼面均布荷载 q k = 10kN/m 21.1.3 局部荷载1.1.3.1 第一局部荷载局部集中荷载 N' = 13.85kN ,荷载作用面的宽度 b tx = 150mm , 荷载作用面的宽度 b ty = 300mm ;垫层厚度 s = 0mm荷载作用面中心至板左边的距离 x = 1650mm ,最左端至板左边的距离 x 1 = 1575mm ,最右端至板右边的距离 x 2 = 1575mm荷载作用面中心至板下边的距离 y = 1650mm ,最下端至板下边的距离 y 1 = 1500mm ,最上端至板上边的距离 y 2 = 1500mm1.1.3.2 第二局部荷载局部集中荷载 N' = 8.85kN ,荷载作用面的宽度 b tx = 150mm , 荷载作用面的宽度 b ty = 300mm ;垫层厚度 s = 0mm荷载作用面中心至板左边的距离 x = 2700mm ,最左端至板左边的距离 x 1 = 2625mm ,最右端至板右边的距离 x 2 = 525mm荷载作用面中心至板下边的距离 y = 2700mm ,最下端至板下边的距离 y 1 = 2550mm ,最上端至板上边的距离 y 2 = 450mm1.1.3.3 第三局部荷载局部集中荷载 N' = 8.85kN ,荷载作用面的宽度 b tx = 150mm , 荷载作用面的宽度 b ty = 300mm ;垫层厚度 s = 0mm荷载作用面中心至板左边的距离 x = 1650mm,最左端至板左边的距离 x1=1575mm,最右端至板右边的距离 x2= 1575mm荷载作用面中心至板下边的距离 y = 2700mm,最下端至板下边的距离 y1=2550mm,最上端至板上边的距离 y2= 450mm1.1.3.4第四局部荷载局部集中荷载 N' = 13.85kN,荷载作用面的宽度 b tx= 150mm,荷载作用面的宽度 b ty= 300mm;垫层厚度 s = 0mm荷载作用面中心至板左边的距离 x = 2700mm,最左端至板左边的距离 x1=2625mm,最右端至板右边的距离 x2= 525mm荷载作用面中心至板下边的距离 y = 1650mm,最下端至板下边的距离 y1=1500mm,最上端至板上边的距离 y2= 1500mm1.2局部荷载换算为局部均布荷载1.2.1第一局部荷载 P = N' / (b tx·b ty) - q k= 13.85/(0.15*0.3)-10 =297.78kN/m21.2.2第二局部荷载 P = N' / (b tx·b ty) - q k= 8.85/(0.15*0.3)-10 =186.67kN/m21.2.3第三局部荷载 P = N' / (b tx·b ty) - q k= 8.85/(0.15*0.3)-10 =186.67kN/m21.2.4第四局部荷载 P = N' / (b tx·b ty) - q k= 13.85/(0.15*0.3)-10 =297.78kN/m21.3第一局部荷载1.3.1荷载作用面的计算宽度1.3.1.1 b cx= b tx + 2s + h = 150+2*0+150 = 300mm1.3.1.2 b cy= b ty + 2s + h = 300+2*0+150 = 450mm1.3.2局部荷载的有效分布宽度1.3.2.1按上下支承考虑时局部荷载的有效分布宽度当 b cy≥ b cx, b cx≤ 0.6L y时,取 b x= b cx+ 0.7L y= 300+0.7*3300 = 2610mm 当 0.5b x> 0.5e x2时,取 b x= 1305 + 0.5e x2= 1305+0.5*1050 = 1830mm 1.3.2.2按左右支承考虑时局部荷载的有效分布宽度当 b cx< b cy, b cy≤ 2.2L x时,取b y= 2b cy / 3 + 0.73L x= 2*450/3+0.73*3300 = 2709mm当 0.5b y> 0.5e y2时,取 b y= 1355 + 0.5e y2= 1355+0.5*1050 = 1880mm 1.3.3绝对最大弯矩1.3.3.1按上下支承考虑时的绝对最大弯矩1.3.3.1.1将局部均布荷载转换为 Y 向线荷载q y= P·b tx= 297.78*0.15 = 44.67kN/m1.3.3.1.2 M maxY= q y·b ty·(L y - y)·[y1 + b ty·(L y - y) / 2L y] / L y。

工业建筑楼面活荷载取值计算

工业建筑楼面活荷载取值计算
2007-5-8 21:59
#3
m8x8m8
工程师
精华0
积分77
帖子38
水位77
技术分0
状态离线
我采用的办法是,一次性输入等效楼面活荷载,然后设置活荷载择减系数。变电为0.7。
计算重力荷载代表值为活荷载组合系数应为0.35。实际测试中应该略大点(主要针对我做的工程),我取0.37。
楼主说得很对,不过应该注意计算重力荷载代表值中的活荷载组合系数,要不然地震力会减小。
构件上活载荷载的折减应根据其上活载传递的途径来确定。传递层次增加
,相应地传到构件的荷载可多折减掉一些。
工业建筑的楼面均布活荷载,它的特点是没有民用建筑楼面活荷载的折减系数,活荷载在传递过程中的折减,是以楼面均布活荷载在板、次梁、主梁的不同标准值中直接表达出来的。例如2006版的《建筑结构荷载规范》GB50009-2002中表C.0.1,以序号1的一类金工车间为例(板跨≥1.2m、次梁间距≥1.2m),楼面均布活荷载有三个标准值,即板22.0 kN/m2,次梁14.0 kN/m2,主梁9.0 kN/m2。这就是说,计算板、次梁、主梁时所用的楼面活荷载是不一样的,不能只用一个板的楼面活荷载22.0 kN/m2一算到底,这将导致很大的浪费。但一般的民用建筑的结构电算程序一次只能输入一个活荷载,因此,正确的做法应该是分三次输入楼面活荷载值。在本例中,第一次输入22.0 kN/m2,只取结构电算结果中板的有关数据,作为楼板的设计依据,此次电算的次梁和主梁的结果,由于偏大,一律不要。第二次输入14.0 kN/m2,只取结构电算结果中次梁的有关数据作为次梁的设计依据,其余板和主梁的电算结果,对于板来说不够安全,对于主梁仍偏大,因此两者都不要。同理,第三次输入9.0 kN/m2,只取结构电算结果中主梁、柱(墙)、基础的有关数据作为主梁、柱(墙)、基础的设计依据,而此次电算的板和次梁的结果都偏小,不能取用。

浅谈库房楼面等效均布活荷载的确定方法

浅谈库房楼面等效均布活荷载的确定方法

载最不利的布置位置如图 1 所示,单个设备的重量
取值为 10 kN,设备的平面尺寸为 0.88 m×2.4 m,动
力系数取值为 1.1,设备下不设垫层,楼面板为多跨
双向钢筋混凝土连续板,楼板厚度为 0.2 m,楼板上
无设备区域的操作荷载为 2 kN/m2, 求此情况下的
楼面板的等效均布活荷载。
图 1 楼板平面图 2.1.1 按双向板计算楼面板等效均布活荷载
式中:btx— ——荷载面平行于板跨 的宽度 ;bty— —— 荷载面垂直于板跨的宽度;bcx— ——荷载面平行 于板
跨 的 计 算 宽 度 ;bcy— — — 荷 载 面 垂 直 于 板 跨 的 计 算 宽
2)由 设 备 荷 载 产 生 的 局 部 均 布 面 荷 载 为 (设 备
荷 载 需 乘 以 动 力 系 数 ,并 扣 除 相 应 的 操 作 荷 载 ):q2= (10×1.1-0.88×2.4×2)/(1.08×2.6)=2.41 kN/m2。
3)求 q2 产生的等效均布荷载:已知:
ly lx
=
8Mmax
2
bl0
式 中:l0— ——单 向 板 的 计 算 跨 度 ;b— ——单 向 板 上局部荷载的计算有效分布宽度 ;Mmax — ——简支 楼
板的最大弯矩绝对值。 计算绝对最大弯矩时,设备
荷载应乘以动力系数,并扣去设备所占楼板面积上
由操作荷载引起的楼板弯矩。
4)单向板上,任意位置处的局部荷载的计算有
0 前言
近些年,随着核电项目的大力发展,越来越多
BOP 库房项目需要设计。 同时由于核电站厂区规划
场地范围的限制,BOP 子项用地范 围不够充足 ,大
型库房等建筑物也逐渐向多层化发展。 针对多层的

双向板等效均布荷载计算分析

双向板等效均布荷载计算分析

双向板等效均布荷载计算分析摘要:本文根据《建筑结构荷载规范》(GB50009-2012)第5.1~5.2条及相应条文说明、附录C中对双向板等效荷载计算的介绍,针对工程设计中遇到的板跨小于等于3m×3m时,消防车荷载及飞机牵引车荷载作用下双向板等效均布荷载如何取值进行了计算分析,为类似工程进行受力分析提供了参考。

关键词:双向板板跨等效均布荷载计算分析前言双向板为四边支承的矩形板,其长边和短边长度之比一般不大于2。

双向楼板在房屋建筑中应用非常广泛,在一些构筑物中也普遍使用。

《建筑结构荷载规范》(GB50009-2012)5.1.4条规定,楼面结构上的局部荷载可按附录C得规定,换算为等效均布荷载。

而附录C中仅对局部荷载作用下,如何计算等效均布荷载仅对单向板情况做了详细介绍,等效均布荷载的计算公式也仅适用于单向板的情况。

对双向板等效均布荷载计算,附录C第C.0.6条指出,双向板的等效均布荷载可按与单向板相同的原则,按四边简支板的绝对最大弯矩值来确定。

规范第5.1.1条第8项已经规定板跨不小于3mx3m时相应的消防车(满载总重为300kN)楼面均布活荷载标准值,按等效均布活荷载确定,并已确定相应取值。

本文将分析板跨小于3mx3m时,消防车荷载作用下双向板等效均布荷载如何合理取值;并进一步分析机场工程中经常遇到的板跨小于等于3mx3m电缆井、消防井等构筑物在飞机牵引车荷载作用下等效均布荷载如何合理取值。

对单向板等效均布荷载取值问题,本文不再进行讨论。

1消防车荷载作用下双向板等效均布荷载取值(板跨小于等于3mx3m)消防车荷载计算参数和《建筑结构荷载规范》(GB50009-2012)相同,不考虑覆土厚度影响。

消防车全车总重300kN,前轴重为60kN,后轴重为2×120kN,有两个前轮和四个后轮,轮压作用尺寸均为0.2m×0.6m。

由于板跨小于3m×3m,板上只能放置一辆消防车,当消防车后轮某个轮压位于双向板中心位置时,局部荷载作用引起的绝对弯矩值最大。

双向板楼等效活荷载的计算

双向板楼等效活荷载的计算

浅谈双向板等效均布活荷载的计算摘要:本文根据《建筑结构荷载规范》(GB50009-2001)(2006版)附录B中对双向板等效荷载计算的概述,介绍了工程设计中双向板上等效均布活荷载的计算方法,为后续使用电算软件对结构整体进行受力分析提供了计算数据。

关键词:双向板等效均布活荷载计算0 前言双向楼板由于其经济、美观等优势而被广泛应用于建筑中。

本人在设计某污水处理厂脱水机房时,遇到了设备搁置于二层楼面的情况,由于脱水机房内设备较多以及工艺的要求,无法将所有设备布置于梁上,需要将布置于楼板上的设备重量进行等效均布活荷载的换算。

根据《建筑结构荷载规范》(GB50009-2001)(2006版)第4.1.3条规定,楼面板上的局部线荷载、面荷载等可按附录B的规定,换算为等效均布活荷载。

而附录B中仅对局部荷载作用下,如何计算等效均布荷载做了粗略的规定,所提供的计算公式也仅适用于单向板情况。

对于双向板的等效均布活荷载计算,本文基于对规范的规定理解提出一种计算方法。

《建筑结构荷载规范》(GB50009-2001)(2006版)第B.0.1条指出:楼面(板、次梁及主梁)的等效均布活荷载应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形裂缝的等值要求来确定在一般情况下,可仅按内力的等值来确定;第B.0.6条指出,双向板的等效均布荷载可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。

这里通过一块楼板及其上部的设备荷载来介绍一下《建筑结构荷载规范》(GB50009-2001)第B.0.6条所述的双向板(这里所指的双向板一般指长边与短边长度之比小于或等于2.0的板,长边与短边长度之比大于2.0的板可按沿短边受力的单向板考虑)如何按四边简支的绝对最大弯矩等值确定其等效均布荷载。

而对于单向板上局部荷载的等效,《建筑结构荷载规范》(GB50009-2001)第B.0.4条、第B.0.5条已有详细说明,这里不再进行讨论。

楼板等效均布活荷载

楼板等效均布活荷载

垫层 平行 垂直 平行板跨 垂直板跨 板厚 厚度 板跨 板跨 计算宽度 计算宽度 0.05 0.05 0.05 0.05 0.12 3.75 0.12 3 0.15 3.75 0.12 3.9 1 1 1 0.4 3.97 1.22 3.22 1.22 4 1.25 4.12 0.62 长边与板跨垂直 bcx(m) bcy(m)
长边与板跨平行 Q(kN) q2 (kN/m) L(m) s(m) h(m) btx(m bty( ) m) bcx(m) bcy(m)
16 21
设备乘以 动力系数 设备总重 并扣除操 作荷载 10 0.66 10.5 1.58 39 9.36 24 6.38
板跨 3.7Leabharlann 3.3 3.75 3.9边与板跨平行 (J4≥K4,K4≤ 0.6*E4,J4≤ E4),K4+0.7*E4 (J4≥K4,0.6*E4< K4≤,F4≤J4) q1(kN/m) 0.6*K4+0.94*E4 Mmax qe
备注
板上荷载有效分布 板上荷载有效分布 无设备区操 宽度 宽度 作荷载 3.85 3.53 3.88 3.75 4.26 3.83 4.28 4.04 9.61 8.83 9.69 9.38
Q(kN)
q2 (kN/m)
L(m)
s(m) h(m)
btx(m bty( ) m)
1 2 3
设备乘以 动力系数 设备总重 并扣除操 作荷载 10 5.31 24 13.50 15.5 11.08 24 19.43
板跨 3.75 3 4 3.75
垫层 平行 垂直 平行板跨 垂直板跨 板厚 厚度 板跨 板跨 计算宽度 计算宽度 0.05 0.05 0.05 0.05 0.12 0.995 2.23 0.12 1.2 4.2 0.12 0.8 4.87 0.15 1 3.75 1.215 1.42 1.02 1.25 2.45 4.42 5.09 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l0=3.6 mm
44
设备的长边平行于板跨计算宽度
江苏建筑
2011 年第 6 期 ( 总第 145 期 )
RB=13.21 kN 3.42XB+(XB-1.126 )×8.57=13.21 XB=1.907 m Mmax =13.21 ×1.907 -0.5 ×3.42 ×1.9072 -0.5 ×8.57 × (1.907 · m 1.126 )2=16.36 kN 则均布荷载 qe1=
42
江苏建筑
2011 年第 6 期 ( 总第 145 期 )
变电工程中楼板等效均布活荷载的计算
施圣东
( 南京供电公司 , 江苏南京
210009)
[摘
要]
文章介绍了变电工程结构设计中的特殊性 , 为了找到一种经济合理的计算方法 , 先总 结楼面等效均布活荷载的
计算原则 , 结合具体工程实际情况 , 计算一个复杂楼面均布活荷载的等效计算 。 按照建筑荷载规范 ( 附录 B 楼面等效均布活 荷载的确定方法 ) 方法计算是确实可行的 。
2 2 b +0.73l= ×1.92+0.73×3.6=3.9 m 3 cy 3 b e 3.9 0.9+2.43+0.436 + + + =3.83 m 2 2 2 2
由于靠近电池较近 , 有效分布宽度折减 。
b′=
操作荷载 q1=3.83 kN/m 设备区域扣除设备在板跨内所占面积上操 作 荷 载后 产 生沿板跨均布线荷载
荷 载 作 用 面 平 行 于 板 跨 的 计 算 宽 度 bcx =btx +h =0.45+
图 3 为电气设备 10 组成部分计算简图 。
0.12=0.57 m
荷 载 作 用 面 垂 直 于 板 跨 的 计 算 宽 度 bcy =bty +h =3.53+
0.12=3.65 m
符合 bcx<bcy,bcy≤2.2l0,bcx≤l 因 此 板 上 荷 载 的 有 效 分 布 宽 度 b=
SHI Sheng-dong (Jiangsu Nanjing Power Supply Company , Nanjing Jiangsu 210009 China)
Abstract :This paper introduces the particularity of the practical engineering structure design in the substation project. In order to find an economic and reasonable calculation method, at first, we summarize the calculation principle of the slab equivalent uniform live load. Then we calculate a complex equivalent calculation of the slab uniform live load in a specific engineering practice. The method according to Load code for the design of building structures (The Appendix B The confirmability method of the equivalent uniform live load calculation on the slab) is feasible. Key words : substation project; calculation principle; equivalent; live load
1
楼面等效均布活荷载的计算原则 (1 ) 楼 ቤተ መጻሕፍቲ ባይዱ 板 的 等 效 均 布 荷 载 , 应 在 其 设 计 控 制 部 位 上 ,
1.05~1.1 。 笔者认为 , 综合考虑设备的活荷载 , 操作荷载可以
适量减小 , 取 1.0 kN/m2 较为合适 。
根 据 需 要 ,按 内 力 、变 形 、裂 缝 的 等 值 来 确 定 ,在 一 般 情 况 下 , 可仅按内力的等值确定 。 (2 ) 由于生产 、 检修 、 安装工艺以 及 结构 布 置 的不 同 , 楼 面活荷载差异较大的 , 应划分区域分别确定等效均布 活 荷 载。 (3 ) 计算简图的假定 : 计算等效 均 布活 荷 载 时统 一 假 定 结构的支承条件都为简支 , 并按弹性阶段分析内力 。 (4 ) 计算板面等效均布荷载时 , 必 须明 确 板 面局 部 荷 载 实际作用面尺寸 。 作用面一般按矩形考虑 , 从而可确定荷载 传递 到 板 轴心 面 处 的 计 算 宽 度 , 假 定 荷 载 按 45° 扩 散 线 传 递。
19.66×0.57+4.73×1.01+4.73× (3.6-0.44-0.57-XB)=17.46 XB=10.77 kN
· Mmax=10.77×2.29-0.5×4.73×2.292=12.26 kN m 则均布荷载 qe1=
8Mmax 8×12.26 = =1.60 kN/m2 b′l2 4.73×3.62
江苏建筑 2011 年第 6 期 ( 总第 145 期 ) 1 , 单体重量 (kg ):120 。 设备 4 , 设 备 4 尺寸 ( 宽 × 深 × 高 ):1914×436×610 , 数 量 :
43
2 , 单体重量 (kg ):956 。
设备 7 , 设 备 7 尺寸 ( 宽 × 深 × 高 ):600×450×2000 , 数 量 :
q1=1×3.42=3.42 kN/m
设备区域扣除设备在板跨内所占面积上操作 荷 载后 产 生沿板跨均布线荷载
组 成部 分 的 区域 等 效 均 布 活 荷 载 为 2.95 kN/m2。 如 果 这 两 个 区 域 在 同 一 个 楼 板 ,考 虑 次 梁 分 隔 作 用 ,可 以 分 别 取 值 。 但在两者相差不大的情况下 , 考虑到安全角度 , 可以 整 个 房 间取大值 2.95 kN/m2。 通过算例可以知道 , 分布不均匀的楼面活荷 载 , 只 要可 以提供准确的设备荷载 , 经过详细的计算可以达 到比 较 理 想的等效均布活荷载值 。 综合全文分析计算 , 我们可以看出 : 按照 建筑 荷 载 规范 ( 附 录 B 楼面 等 效 均布 活 荷 载的 确 定 方 法 ) 方 法 计 算 等 效 均布活荷载是切实可行的 。 参考文献
[ 关键词]
变电工程 ; 计算原则 ; 等效 ; 活荷载
[ 中图分类号 ]TU312.1
[ 文献标识码 ]A
[ 文章编号 ]1005-6270(2011)06-0042-03
Calculation of the Slab Equivalent Uniform Live Load in the Substation Project
(2 ) 电气设备 10 组成部分产生的等效均布活荷载 qe2
l0=3.6 mm
设备垂直于板跨计算宽度
bcx=btx+h=0.6+0.12=0.72 m bcy=bty+h=1.8+0.12=1.92 m
附合 bcx<bcy,bcy≤2.2l0,bcx≤l0 图1 电气设备平面布置图
b=
该设 备 房 间长 向 轴 线尺 寸 为 7 500 mm , 短 向 轴 线 尺 寸 为 3 600 mm , 按 照 楼 板 弹 性 理 论 , 楼 板 长 宽 比 为 2.083 >2 , 为单向板 。 计算等效均布活荷载的关键是计算简支 单 向 板 的绝对最大弯矩 , 按设备的最不利布置情况确定 。
电力工业是国民经济的基础产业 , 是 电 子设 备 正 常运 行的基础 。 安全 、 稳定和充足的电力供应 , 是国民经 济 健 康 稳定持续快速发展的重要前提条件 , 是关系到国计 民 生 的 大事 。 因为设备订货时间晚等客观原因 , 变电工程中结构设 计往往比较被动 。 结构楼板等效均布活荷载的准确计 算 在 结构设计计算中显得至关重要 。 等效均布活荷载的取 值 大 小直接影响到楼板及梁柱甚至结构整体计算的准确度 。 (5 ) 在 局 部 荷 载 作 用 下 , 板 内 分 布 弯 矩 的 计 算 比 较 复 杂 , 单向板内分布弯矩沿板宽方向不再是均匀分布 , 而 是 在 局部荷载处具有最大值 , 并逐渐向宽度两侧减小 , 形成 一 个 分 布 宽 度 ,现 以 均 布 荷 载 代 替 ,为 使 板 内 分 布 弯 矩 等 效 ,可 相应确定板的有效分布宽度 。 (6 ) 工 业 建 筑 的 操 作 荷 载 ( 即 临 时 性 荷 载 , 指 楼 面 上 偶 尔出现的短期荷载 , 如聚集的人群 , 维修时工具和 材料 的 堆 积 、 搬 运 设 备 等 ), 对 板 面 一 般 取 2 kN/m2, 设 备 动 力 系 数 取
1 , 单体重量 (kg ):250 。
设备 3 , 设 备 3 尺寸 ( 宽 × 深 × 高 ):520×400×1972 , 数 量 :
[收稿日期 ]2011-05-03 [作者简介 ] 施圣东 , 男 (1983- ), 南京供电公司 , 硕士 , 工程师 , 主要
从事电力工程土建设计工作 。
2 2 b +0.73l = × 3 cy 3
图3
电气设备 10 组成部分计算简图
∑MA=0 3.6RB=0.72×9.4× (2.44+0.36 ) RB=5.06 kN
(XB-0.44 )×9.04=5.06
3.65+0.73×3.6=5.06 m d=3.663 m , 有 b′= b 3.53 0.436×2 + + =4.73 m 2 2 2
无设备区域操作荷载在有效分布宽度内沿板 跨 均布 线 荷载
相关文档
最新文档