七年级数学核心题目赏析

合集下载

初一数学经典题型解析

初一数学经典题型解析

初一数学经典题型分析1、如图,将一个含30°角的三角板的直角极点放在直尺的一边上,假如∠ 1=115°,那么∠ 2 的度数是〔〕A。

95°B。

85°C。

75°D。

65°考点:平行线的性质;三角形的外角性质.专题:计算题.剖析:依据题画出图形,由直尺的两对边AB 与 CD 平行,利用两直线平行,同位角相等可得∠1=∠ 3,由∠ 1 的度数得出∠ 3 的度数,又∠ 3 为三角形EFG的外角,依据外角性质:三角形的外角等于与它不相邻的两内角之和获得∠3=∠ E+∠ 2,把∠ 3 和∠ E 的度数代入即可求出∠ 2 的度数.解答:: AB∥ CD,∠ 1=115°,∠ E=30°,求:∠ 2 的度数?解:∵ AB ∥ CD 〔〕,且∠1=115°,∴∠ 3=∠ 1=115°〔两直线平行,同位角相等〕,又∠ 3 为△ EFG 的外角,且∠E=30°,∴∠ 3=∠ 2+∠ E,那么∠ 2=∠ 3﹣∠ E=115°﹣ 30°=85°.应选 B.评论:本题考察了平行线的性质,以及三角形的外角性质,利用了转变的数学思想,此中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,娴熟掌握性质是解本题的重点.2 、如图, AB∥ CD ,DE 交 AB 于点 F ,且 CF⊥ DE 于点 F ,假定∠ EFB=125°,那么∠ C=35°.考点:平行线的性质.专题:计算题剖析:依据对顶角相等,得出∠AFD= ∠ EFB ,由∠ EFB 的度数求出∠AFD 的度数,再依据垂直的定义获得∠ CFD=90°,利用∠ AFD ﹣∠ CFD 得出∠ AFC 的度数,最后由两直线平行内错角相等,即可获得所求的角的度数.解答:解:∵∠ EFB=125°〔〕,∴∠ AFD= ∠EFB=125°〔对顶角相等〕,又∵ CF⊥ DE 〔〕,∴∠ CFD=90°〔垂直定义〕,∴∠ AFC= ∠ AFD ﹣∠ CFD=125° ﹣ 90°=35°,∵ AB ∥ CD 〔〕,∴∠ C=∠AFC=35°〔两直线平行内错角相等〕.故答案为: 35评论:本题考察了平行线的性质,垂直定义,以及对顶角的性质,利用了转变的数学思想,此中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,娴熟掌握平行线的性质是解本题的重点.3、假如对于 x 不等式组值范围是 24 < b≤32.的整数解仅为1,2,3,那么a 的取值范围是0< a≤9,b的取考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.剖析:求出不等式的解集,找出不等式组的解集,依据和不等式组的解集得出 0 <≤1,3<≤4,求出即可.解答:解:,由①得: x ≥,由②得: x <,∴不等式组的解集是≤x<,∵不等式组的整数解是1,2 ,3.∴0<≤1, 3<≤4,解得: 0 < a≤9,24 < b≤32,故答案为: 0 < a≤9, 24 < b≤32.评论:本题考察了对不等式的性质,解一元一次不等式〔组〕,一元一次不等式组的整数解等知识点的理解和掌握,重点是依据不等式组的解集和得出0 < a≤9, 24 < b≤32.4 、: a2 ﹣ 4b ﹣ 4=0,a2+2b2=3,那么的值为〔〕A。

初一数学经典题型解析

初一数学经典题型解析

初一数学经典题型解析1、如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2的度数是()A。

95°B。

85° C. 75°D。

65°考点:平行线的性质;三角形的外角性质.专题:计算题.分析:根据题画出图形,由直尺的两对边AB与CD平行,利用两直线平行,同位角相等可得∠1=∠3,由∠1的度数得出∠3的度数,又∠3为三角形EFG的外角,根据外角性质:三角形的外角等于与它不相邻的两内角之和得到∠3=∠E+∠2,把∠3和∠E的度数代入即可求出∠2的度数.解答:已知:AB∥CD,∠1=115°,∠E=30°,求:∠2的度数?解:∵AB∥CD(已知),且∠1=115°,∴∠3=∠1=115°(两直线平行,同位角相等),又∠3为△EFG的外角,且∠E=30°,∴∠3=∠2+∠E,则∠2=∠3﹣∠E=115°﹣30°=85°.故选B.点评:此题考查了平行线的性质,以及三角形的外角性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握性质是解本题的关键.2、如图,AB∥CD,DE交AB于点F,且CF⊥DE于点F,若∠EFB=125°,则∠C=35°.考点:平行线的性质.专题:计算题分析:根据对顶角相等,得出∠AFD=∠EFB,由∠EFB的度数求出∠AFD的度数,再根据垂直的定义得到∠CFD=90°,利用∠AFD﹣∠CFD得出∠AFC的度数,最后由两直线平行内错角相等,即可得到所求的角的度数.解答:解:∵∠EFB=125°(已知),∴∠AFD=∠EFB=125°(对顶角相等),又∵CF⊥DE(已知),∴∠CFD=90°(垂直定义),∴∠AFC=∠AFD﹣∠CFD=125°﹣90°=35°,∵AB∥CD(已知),∴∠C=∠AFC=35°(两直线平行内错角相等).故答案为:35点评:此题考查了平行线的性质,垂直定义,以及对顶角的性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握平行线的性质是解本题的关键.3、如果关于x不等式组的整数解仅为1,2,3,则a的取值范围是0<a≤9,b的取值范围是24<b≤32.考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式的解集,找出不等式组的解集,根据已知和不等式组的解集得出0<≤1,3<≤4,求出即可.解答:解:,由①得:x≥,由②得:x<,∴不等式组的解集是≤x<,∵不等式组的整数解是1,2,3.∴0<≤1,3<≤4,解得:0<a≤9,24<b≤32,故答案为:0<a≤9,24<b≤32.点评:本题考查了对不等式的性质,解一元一次不等式(组),一元一次不等式组的整数解等知识点的理解和掌握,关键是根据不等式组的解集和已知得出0<a≤9,24<b≤32.4、已知:a2﹣4b﹣4=0,a2+2b2=3,则的值为()A。

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。

广东省惠州市惠东县2022-2023学年七年级上学期核心素养评测数学(初评)试题(含解析)

广东省惠州市惠东县2022-2023学年七年级上学期核心素养评测数学(初评)试题(含解析)

23.已知:a 为有理数,,求的值.
参考答案
1.B
【分析】先根据一个负数的绝对值是它的相反数,得出﹣0.5的绝对值是0.5,再根据相反数的表示方法:求一个数的相反数,即在这个数的前面加上一个负号.
【详解】解:∵|﹣0.5|=0.5,0.5的相反数是﹣0.5,
∴﹣0.5的绝对值的相反数是﹣0.5.
故选:B .
【点睛】此题考查绝对值与相反数,掌握绝对值的性质和相反数的概念是解决问题的关键.
2.C
【分析】根据任何数的平方都是非负数,可知平方的最小值是0,举反例排除错误选项,从而得出正确结果.
【详解】解:A 、当时,,选项不符合题意;
B 、当时,,选项不符合题意;
C 、的最小值是1,即的值总是正的,选项符合题意,
D 、当时, ,选项不符合题意.
故选C .
【点睛】本题考查的是非负数的性质,代数式的值,乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数.任何数的平方都是非负数.
3.C 3210a a a +++=23420121+a+a +a +a ++a 1a =-()2
10a +=1a =-()210a -+=21a +21a +0a =211a -+=。

七年级数学核心题目解析

七年级数学核心题目解析
uzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值【知识梳理】(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简.【考点剖析】 一、用代数式数、图形的规律 一、单选题1.(2021秋·上海·七年级期中)某影院第一排有20个座位,每退一排就多1个座位,则第n 排有座位( ) A .()20n +个 B .()21n +个C .()19n +个D .()18n +个【答案】C【分析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可. 【详解】第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n 排有(n+19)个座位. 故选C .【点睛】本题考查了列代数式,是规律探寻题,比较简单.二、填空题2.(2022秋·上海·七年级专题练习)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.【答案】()21n n −【分析】自己不能跟自己握手,所以需要握手的人数应该是除自己外的(n−1)个人.【详解】每个人都要和另外的n−1个人握一次手,n 个人共握手n×(n−1)次,由于每两人握手,应算作一次,需去掉重复的情况,实际只握了n×(n−1)÷2=()21n n −次.故答案为()21n n −【点睛】本题目考查的是握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:()21n n −解答.【答案】4x +16/164x +【分析】日历中任意框出4个数,设其中最小的数为x ,并用x 分别表示出其他三个数,然后4个数相加即可.【详解】解:最小的数为x ,则其它3个分别是1x +,7x +,8x +, 这4个数之和为178416x x x x x ++++++=+, 故答案为:416x +【点睛】本题考查了代数式的应用,理解日历中任意框出4个数的关系是解题关键.【答案】 32 76 (1)1(1)n n n n +++12=3212-13=761134−=13121145−=2120()()11111+11n n n n n n ++−=++【答案】(4n+1).【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题. 【详解】解:由图可得, 图(1)所得三角形总个数为:1+4=5; 图(2)所得三角形总个数为:1+4×2=9; 图(3)所得三角形总个数为:1+4×3=13; 所以第n 个图中共有(4n+1)个三角形; 故答案为:(4n+1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.6.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,…,当字母C 第()21n −次出现时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).【答案】63n −【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A →B →C →D →C →B →A →B →C →…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n , 当字母C 第()21n −次出现时(n 为正整数),再数3个数为63n −.故答案为:63n −.【点睛】本题考查代数式、数的规律,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(2)a n = (用含n 的代数式表示)(3)按照上述方法,能否得到2019个正方形?如果能,请求出n ;如果不能,请简述理由. 【答案】(1)10,13;(2)3n-2;(3)不能,【分析】根据已知图形可以发现:每次剪开,都会增加3个正方形,所以可以得到此题的规律为:第n 个图形中的正方形个数为:3n-2.【详解】(1)根据已知图形可以发现:每次剪开,都会增加3个正方形, ∴第4个图中为7+3=10个,第5个图中为10+3=13个;(2)根据(1)中的数据规律可知:第n 个图形中的正方形个数为:32n −; (3)不能.∵若能得到2019个正方形,则有322019n −=,则32021n =,但是2021不能被3整除,∴不能得到2019个正方形.【点睛】本题考查了图形的变化类问题,关键是要通过观察图形,分析、归纳发现其中的规律. (2019++2022+++2019+2020+2021=++【答案】(1)12n (n+1)(2)12(n+1)2【分析】(1)根据题目中的方法进行求解即可; (2)仿照题目中的方法进行求解即可. (1)解:由题意得:1+2+3+…+(n-2)+(n-1)+n=12n(n+1);(2)1+3+5+…+(2n+1)=12×12(1+2n+1)(n+1)=12(n+1)2.【点睛】本题主要考查规律型:数字的变化类,列代数式,解答的关键是总结出存在的规律.【答案】(1)-3(2)5;-20;42k−【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知数“2”所在的台阶数为4k﹣2.(1) 解:尝试: (1)()()52193++−+−=−答:前4个台阶上数的和是3−.(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k − (2)解:(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k −.【点睛】本题主要考查了列代数式,解一元一次方程,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环. 二、已知字母的值,求代数值的值 一、单选题1.(2022秋·上海青浦·七年级校考期中)已知()42251A x =+,则当1x =时,3A 的值为( ) A .8000 B .1000C .1000±D .8000±【答案】D【分析】利用乘方的逆运算以及已知条件求出A 的值,然后利用乘法运算法则求出3A 的值即可. 【详解】解:∵()4222[5(51]21)x A x ++=±=,1x =,∴225(1)5(11)20A x =±+=±⨯+=±,∴33(20)8000A =±=±.故选:D .【点睛】本题主要考查了乘法运算、乘方的逆运算以及代数式求值,解题关键是熟练掌握相关运算法则.二、填空题【答案】119/9【分析】直接代入求值即可.【详解】解:当13x =-时,原式2111913⎛⎫=⎪+ =−⎝⎭, 故答案为:119.【答案】8−/0.125−【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而代入得出答案. 【详解】解:∵230.2504a b ⎛⎫−++= ⎪⎝⎭, ∴30.250,04a b −=+=,∴30.25,4a b ==−,∴222233139120.2520.2544168168a ab b ⎛⎫⎛⎫−−=−⨯⨯−−−=+−=−⎪ ⎪⎝⎭⎝⎭.故答案为:18−.【点睛】此题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.【答案】8【分析】直接把12x =代入计算即可. 【详解】解:当12x =时,()113131922228x x ⎛⎫⨯⨯+ ⎪+⎝⎭==故答案为:98【点睛】本题主要考查了代数式求值,有理数的混合运算法则,在解题时要根据题意代入计算即可. 5.(2022秋·上海嘉定·七年级校考期中)当2x =−,3y =时,代数式22x xy y ++的值是___________. 【答案】7【分析】将x 、y 的值代入计算即可. 【详解】解:当2x =−,3y =时, 22x xy y ++()()222233=−+−⨯+469=−+ 7=.故答案为7.【点睛】考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值,正确进行计算是解题的关键.6.(2022秋·上海静安·七年级校考阶段练习)当2a =−时,代数式3(1)a a +的值等于__________. 【答案】6【分析】根据题意,直接将2a =−代入代数式进行计算即可求解. 【详解】解:当2a =−时,代数式3(1)a a +()()32216=⨯−⨯−+=,故答案为:6.【点睛】本题考查了代数式求值,正确的计算是解题的关键.7.(2023秋·上海静安·七年级新中初级中学校考期末)当a =5,b =-3时,a -b 的值为__________. 【答案】8【分析】根据已知字母的值,直接代入求值即可. 【详解】解:∵a=5,b=-3, ∴a-b=5-(-3)=8; 故答案为:8.【点睛】此题主要考查了代数式求值,掌握代数式求值方法是解题的关键.【答案】2或18/18或2【分析】根据a 与b 都为正整数即可求得. 【详解】解:根据题意得,只有当2b =和18时, 17a =和1,故答案为:2或18.【点睛】本题考查了正整数的定义(大于0的整数),准确的计算是解决本题的关键.【答案】41【分析】把a 、b 、c 的值代入代数式进行计算即可. 【详解】解:把2a =,3b =−,4c =−代入得:()()224342441b ac −=−−⨯⨯−=,故答案为:41.【点睛】本题考查了代数式求值,准确计算是解题的关键.10.(2022秋·上海·七年级校考阶段练习)当1x =,代数式31px qx ++的值为2022,则当=1x −,代数式31px qx ++的值是_______.【答案】2020−【分析】根据“当1x =,代数式31px qx ++的值为2022”可得2021p q +=,再将=1x −代入31px qx ++可得()p q −++1,再整体代入计算即可.【详解】解:∵当1x =,代数式31px qx ++的值是2022.∴把1x =代入31px qx ++得,12022p q ++=∴2021p q +=∴把=1x −代入31px qx ++得,1()1202112020p q p q −−+=−++=−+=−故答案为:2020−.【点睛】本题考查代数式求值,根据题意得出2021p q +=是解决问题的关键.三、解答题【答案】(1)2212x x −+;(2)218m . 【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD =4x 米,则AB =2442x−米,再根据长方形面积计算公式即可得出答案;(2)把x =3代入(1)中关于面积的代数式中即可得出答案.【详解】(1)根据题意得AB=2441222x x −=−,∴S 长方形ABCD ()2122212x x x x =−⋅=−+.(2)当3x =时,221229123x x −+=−⨯+⨯1836=−+218m =.答:长方形ABCD 面积为218m .【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【答案】(1)22ab b −(2)222a ab b −+ (3)7800【分析】(1)根据题意表示出十字路的面积即可;(2)根据题意表示出铺设的草坪的面积即可;(3)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】(1)根据题意可得,()222ab b a b ab ab b ab b +−=+−=− ∴修建的道路是22ab b −平方米;铺设的草坪的面积为()2222a b a ab b −=−+;(3)当20a =,1b =时, 2222201139ab b −=⨯⨯−=(平方米),392007800⨯=(元).∴需要投资7800元修建道路.【点睛】本题考查代数式求值,以及列代数式,整式的混合运算,熟练掌握运算法则是解题的关键. (1)试用含a 的代数式表示(2)当12a =时,比较S 阴影【答案】(1)213182a a −+(2)BGF S S ∆=阴【分析】(1)根据图形,把阴影的面积表示出来ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴,化简即可解得. (2)把当12a =代入求值,即可解得.【详解】(1)解:∵22ABCD ECGF S S a b +=+,212ABD S a ∆=,()()1632BGF S a b a b ∆=⨯+⨯=+, ∴ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴()221332a b a a b =+−−+213182a a =−+;()2131832BGF S S a a a b ∆−=−+−+阴 ()21122a a =−将12a =代入,0BGF S S ∆−=阴, ∴BGF S S ∆=阴.【点睛】此题考查了列代数式求阴影的面积,解题的关键是把阴影部分的面积表示出来. 14.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)已知52345670123456721)x a a x a x a x a x a x a x a x −=+++++++((1)求01234567a a a a a a a a −+−+−+−的值.(2)求0246a a a a +++的值.【答案】(1)243−(2)121−【分析】(1)根据已知条件,=1x −代入即可解得.(2)把1x =代入进行计算,最后再与(1)中所得等式进行相加即可求解.【详解】(1)52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(把=1x −代入,01234567a a a a a a a a −+−+−+−()521=--243=− (2)把1x =代入,52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(,解得:012345671a a a a a a a a +++++++=①,根据第一问可得∶01234567243a a a a a a a a -+-+-+-=-②, ①+②得:()02462242a a a a +++=-∴0246121a a a a +++=- 【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键. (1)求这个无盖长方体纸盒的表面积(用含(2)求这个无盖长方体纸盒的容积(用含【答案】(1)2604a −(2)3243260a a a −+,31.5 【分析】(1)根据题意易知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积;(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高,再将32a =代入即可.【详解】(1)解:由题意可知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积, 221064604S a a =⨯−=−,∴这个无盖长方体纸盒的表面积为2604a −.(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高()()321026243260a a a a a a=−⨯−⨯=−+, 将32a =代入,得:323334326031.5222⎛⎫⎛⎫⎛⎫⨯−⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答:容积为31.5.【点睛】本题考查了列代数式,解题的关键是正确表示纸盒的长,宽,高.三、已知式子的值,求代数式的值一、单选题1.(2023秋·上海静安·七年级新中初级中学校考期末)已知x − 2y = 2,则2x — 4y 的值是( )A .5B .2C .4D .7【答案】C 【分析】先根据x−2y =2,再变形,最后代入求出即可.【详解】解:∵x−2y =2,∴2x−4y =2(x−2y )=2×2=4,故选:C .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.二、填空题2.(2023秋·上海嘉定·七年级上海市育才中学校考期末)如果34a b −=,那么261a b −−的值是________.【答案】7【分析】用整体代入法求解即可.【详解】解:∵34a b −=,∴()261231817a b a b −−=−−=−=.故答案为:7.【点睛】此题考查了代数式求值,代数式中字母的值没有明确告知,而是隐含在已知条件中,首先应从条件“整体代入法”求代数式的值. 3.(2023秋·上海浦东新·七年级校考期中)已知3x =时,代数式38ax bx ++的值是12;那么当3x =−时,代数式35ax bx +−的值为__________.【答案】9−【分析】将3x =代入38ax bx ++,求出273a b +值,将3x =−,以及273a b +值,代入35ax bx +−进行求值即可.【详解】解:∵3x =时,代数式38ax bx ++的值是12,即:273812a b ++=,∴2734a b +=;当3x =−时:()3527352735459ax bx a b a b +−=−−−=−+−=−−=−.故答案为:9−.【点睛】本题考查代数式求值.解题的关键是利用整体思想,代入求值. 4.(2022秋·上海·七年级校考期末)已知231x y +=,那么代数式()()72345x y x y +−−−的值是___________.【答案】7【分析】去括号,合并同类项,再代入求值即可.【详解】解:()()72345x y x y +−−−72345x y x y =+−++465x y =++()2235x y =++231x y += 原式215=⨯+7= 故答案为:7.【点睛】本题考查了整式的化简和整体代入法求值;解题的关键是去括号,根据已知构造相同整式.【答案】5/0.8【分析】由题意易得2x y =,然后代入求解即可.【详解】解:由2x y =可知2x y =,∴2224365x y y y x y y y ++==−−; 故答案为45.【点睛】本题主要考查代数式的值,解题的关键是得到2x y =.6.(2022秋·上海·七年级校考期中)已知210a a −−=,则代数式326a a −+=_____.【答案】7【分析】根据已知条件得到2a a −=1,再把原式变形,代入即可求解.【详解】解:∵210a a −−=,∴2a a −=1,326a a −+32226a a a a −+−+=()2226a a a a a −+−+=226a a a +−+=26a a −+= 16+=7=.故答案为:7.【点睛】此题主要考查代数式求值以及利用提取公因式求式子的值,将式子转化为32226a a a a −+−+,以及利用()322a a a a a −−=是解题的关键.【答案】36−【分析】由相伴数的定义分别计算[]a ,[]b 的值,再计算3b a −=−,最后利用整体思想解题.【详解】根据题意得,111a b −=++,则3b a −=−,()()()3333327936b a a b b a b a −−+=−+−=−−=−.故答案为:36−.【点睛】本题考查新定义计算、已知式子的值,求代数式的值,理解题意是解题关键.【答案】5或11−/11−或5【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以得到0a b +=,1cd =,2m =±,然后代入所求式子计算即可.【详解】解:依题意0a b +=,1cd =,||2m =,2m ∴=±,当2m =时,22043423152121a bm cd m m ++−=+⨯−⨯=++;当2m =−时,()20434231112121a bm cd m m ++−=+⨯−−⨯=−++;故答案为:5或11−.【点睛】本题考查代数式求值,绝对值,相反数和倒数的性质,解答本题的关键是求出0a b +=,1cd =,2m =±.三、解答题【答案】(1)b −(2)-2,2(3)-9【分析】(1)根据每行、每列的3个代数式的和相等,可得a 与b 的关系;(2)根据第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值;(3)根据“等和格”的定义可得方程,分别进行整理代入可求出b 的值.【详解】(1)解:如图2,根据题意得232−+=+a a b a ,33a b ∴−=,解得a b =−,故答案为:b −;(2)解:如图3,可得2322283a a b a a a b b −+=+⎧⎨−+=−+⎩,解得22a b =−⎧⎨=⎩,故答案为:2,2−;(3)解:如图4,可得2222223a a a a a a a ++−=++−,∴23a a +=,又22223322a a a b a a a a ++−=++++,2223b a a ∴=−−−,∴22()32339b a a =−+−=−⨯−=−,故答案为:9−.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等”,得出等式求解.10.(2022秋·上海·七年级专题练习)在某班小组学习的过程中,同学们碰到了这样的问题:“已知【答案】(1)7 (2)34【分析】(1)由已知115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,可得111111536a b b c c a +++++=++,即可得出答案;(2)由已知216m m +=,可得16m m +=,m 4+1m 2=m 2+1m 2=(m +1m)2−2,即可得出答案.【解答】解:(1)115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,∴111111536a b b c c a +++++=++, ∴22214a b c ++=,∴1a+1b+1c=ab+bc+ca abc=7;(2)216m m +=,∴16m m +=,422211m m m m +=+,∴m 2+1m 2=(m +1m)2−2=62−2=34.∴42134m m +=.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.11.(2022秋·上海·七年级专题练习)已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位. (1)根据题意,m =________.【答案】(1)2或-2;(2)5.【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可. 【详解】解:(1)∵m 到原点距离2个单位, ∴m=2或-2, 故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2, 当m=2时,()202022a b m xy +++−=22+0+(-1)2020=4+1=5; 当m=-2时,()202022a b m xy +++−=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++−的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 四、程序流程图与代数式的值 一、单选题【答案】C【分析】输入4,计算234x x −=,判断40>,输出4,输入2,计算232x x −=−,判断20−<,输出12,最后计算142+的和即可.【详解】解:输入4,计算22343416124x x −=−⨯=−=,40>∴输出4;输入2,计算223232462x x −=−⨯=−=−,20−<计算112x = ∴输出12;19422∴+=故选:C .【点睛】本题考查已知字母的值,求整式的值,是基础考点,掌握相关知识是解题关键.2.(2020秋·上海·七年级上海市进才中学北校校考阶段练习)如图,是一个运算程序的示意图,如果开始输入的x 的值为81,那么第2020次输出的结果为( )A .3B .27C .81D .1【答案】Dx ,输出27;输入27,输出9;输入9,输出3;输入3,输出1;输入1,输出3L 直至出现循环规律,分奇数次与偶数次输入,据此解题.【详解】根据题意,第1次输入x 的值为81,1x ≠,计算11=81=2733x ⨯,输出27,第2次输入x 的值为27,1x ≠,计算11=27=933x ⨯,输出9, 第3次输入x 的值为9,1x ≠,计算11=9=333x ⨯,输出3, 第4次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第5次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,第6次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第7次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,L从第3次开始,第奇数次输出的结果为3,第偶数次输出的结果为1,2020>3且为偶数,第2020次输出的结果为1,故选:D.【点睛】本题考查代数式求值,是重要考点,难度较易,掌握相关知识是解题关键.3.(2019秋·上海杨浦·七年级校考阶段练习)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【答案】D【详解】A.把x=4代入得:42=2,把x=2代入得:22=1,本选项不合题意;B.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项不合题意;C.把x=1代入得:3+1=4,把x=4代入得:42=2,本选项不合题意;D.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项符合题意,故选:D.【过关检测】一.选择题(共6小题)1.(2020秋•虹口区校级期末)当x=3,y=2时,代数式的值是()A.B.2C.0D.3【分析】当x=3,y=2时,直接代入代数式即可得到结果.【解答】解:==.故选:A.【点评】此题较简单,代入时细心即可.2.(2020秋•浦东新区校级月考)如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3B.27C.9D.1【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.【解答】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020﹣2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.3.(2022秋•闵行区期中)当x=2时,整式ax3+bx﹣1的值等于﹣19,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.19B.﹣19C.17D.﹣17【分析】将x=2代入整式,使其值为﹣19,列出关系式,把x=﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x=2时,整式ax3+bx﹣1的值为﹣19,∴8a+2b﹣1=﹣19,即8a+2b=﹣18,则当x=﹣2时,原式=﹣8a﹣2b﹣1=18﹣1=17.故选:C.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键.4.(2019秋•浦东新区期末)已知:(2x+1)3=ax3+bx2+cx+d,那么代数式﹣a+b﹣c+d的值是()A.﹣1B.1C.27D.﹣27【分析】在(2x+1)3=ax3+bx2+cx+d中,令x=﹣1,求出代数式﹣a+b﹣c+d的值是多少即可.【解答】解:当x=﹣1时,﹣a+b﹣c+d=(﹣2+1)3=﹣1故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.(2019秋•乐亭县期末)当x=﹣1时,3x2+9x﹣1的值为()A.0B.﹣7C.﹣9D.3【分析】把x=﹣1代入3x2+9x﹣1,转化为有理数的混合运算,计算求值即可.【解答】解:把x=﹣1代入3x2+9x﹣1得:原式=3×(﹣1)2+9×(﹣1)﹣1=3﹣9﹣1=﹣7,故选:B.【点评】本题考查了代数式求值,正确掌握代入法和有理数的混合运算是解题的关键.6.(2019秋•浦东新区期中)如果﹣x=1,那么3x2﹣3x﹣2的值是()A.1B.﹣1C.2D.﹣2【分析】把x2﹣x=1整体代入原式=3(x2﹣x)﹣2,计算可得.【解答】解:∵x2﹣x=1,∴3x2﹣3x﹣2=3(x2﹣x)﹣2=3×1﹣2=1.故选:A.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.二.填空题(共12小题)7.(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于.【分析】直接把a=﹣2代入代数式中进行计算即可.【解答】解:原式=3×(﹣2)×(﹣2+1)=﹣6×(﹣1)=6.故答案为:6.【点评】本题考查了代数式求值:把字母的值代入代数式进行计算得到对应的代数式的值.8.(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是.【分析】把x=﹣代入原式计算即可.【解答】解:当x=﹣时,原式=+1=1,故答案为:1.【点评】本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.9.(2022•闵行区校级开学)已知x﹣5=y+4=z+1,代数式(y﹣x)2+(z﹣x)2+(y﹣z)2的值为.【分析】先加减法求出z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,进而代入解答即可.【解答】解:∵x﹣5=y+4=z+1,∴z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,把z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3代入(y﹣x)2+(z﹣x)2+(y﹣z)2=81+36+9=126,故答案为:126.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.10.(2022秋•嘉定区校级期末)如果a﹣3b=4,那么2a﹣6b﹣1的值是.【分析】首先把2a﹣6b﹣1化成2(a﹣3b)﹣1,然后把a﹣3b=4代入化简后的算式计算即可.【解答】解:∵a﹣3b=4,∴2a﹣6b﹣1=2(a﹣3b)﹣1=2×4﹣1=8﹣1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.(2022秋•宝山区期末)当a=3时,代数式﹣2a2+a的值是.【分析】未知数的值已给出,直接代入求解.【解答】解:根据题意,直接将a=3代入,得(﹣2)×32+3=﹣18+3=﹣15.故答案为:﹣15.【点评】本题考查了用代入法求解,掌握代入法求解的方法是关键.12.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.【分析】先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.【解答】解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.【点评】本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.13.(2022•闵行区校级开学)当x时代数式ax2+bx﹣3的值为5,当x=1时代数式(2ax2+bx﹣5)4的值为.【分析】直接把x=2代入进而得出4a+2b=8,再把x=1代入求出答案.【解答】解:∵当x=2时,代数式ax2+bx﹣3的值为5,∴4a+2b=8,∴2a+b=4,∴当x=1时,代数式(2ax2+bx﹣5)4=(4﹣5)4=1.故答案为:1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.14.(2022秋•宝山区校级月考)当a=﹣2时,﹣a2﹣2a+1=.【分析】把a的值代入代数式进行计算即可得解.【解答】解:当a=﹣2时,﹣a2﹣2a+1=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.故答案为:1.【点评】本题考查了代数式求值,比较简单,把a的值代入代数式进行计算即可.15.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例=,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.【分析】根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.【解答】解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.【点评】本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.16.(2022秋•长宁区校级期中)当x=3时,代数式2x3+3x2﹣x+3的值是.【分析】将x=3代入运算即可.【解答】解:当x=3时,原式=2×33+3×32﹣3+3=2×27+3×9﹣3+3=54+27=81,故答案为:81.【点评】本题主要考查了求代数式的值,正确利用有理数的混合运算的法则运算是解题的关键.17.(2022秋•青浦区校级期中)当x=﹣2时,代数式的值为.【分析】将x=﹣2代入代数式,按照代数式要求的运算顺序和运算法则计算可得.【解答】解:当x=﹣2时,==3,故答案为:3.【点评】本题考查了代数式的求值,属于基础题,只要将已知条件代入求值即可.18.(2022秋•闵行区期中)如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三.解答题(共8小题)19.(2021秋•松江区期中)如图所示,已知正方形的边长为2a.(1)用含有a的代数式表示阴影部分的面积;(2)当a=2时,求阴影部分的面积.(保留π)【分析】(1)先表示出半圆的面积,再表示出大三角形的面积,最后用正方形的面积减去半圆和大三角形的面积即可得出阴影部分的面积;(2)把a=2代入(1)中的结论,即可得出答案.【解答】解:(1)由题意得,半圆的面积为=,大三角形的面积为=a2,∵正方形的面积为2a×2a=4a2,∴阴影部分的面积为==(3﹣)a2;(2)当a=2时,(3﹣)a2=(3﹣)×22=12﹣2π,∴阴影部分的面积为12﹣2π.【点评】本题主要考查的是列代数式求值的问题,关键是要牢记圆,三角形和正方形的面积公式.20.(2021秋•浦东新区期中)某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.(1)请用含x的式子表示空白部分长方形的面积;(要化简)(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.【分析】(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.得空白部分长方形的面积;(2)通过有理数的混合运算得结果与400进行比较.【解答】解:(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.白部分长方形的面积:(30﹣2x)(20﹣x)=2x2﹣70x+600.(2)答:超过.∵2×22﹣70×2+600=468(m2),∵468>400,∴空白部分长方形面积能超过400 m2.【点评】本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.21.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知=5,=3,=6,求的值”.根据已知条件中式子的特点,同学们会想起+=,于是问题可转化为:“已知=+=5,=+=3,=+=6,求=++的值”,这样解答就方便了.(1)通过阅读,试求的值;(2)利用上述解题思路请你解决以下问题:已知=6,求的值.【分析】(1)由已知=+=5,=+=3,=+=6,可得+++++=5+3+6,即可得出答案;(2)由已知=6,可得m+=6,=(m+)2﹣2,即可得出答案.【解答】解:(1)∵=+=5,=+=3,=+=6,∴+++++=5+3+6,∴,∴++==7;(2)∵=6,∴,,∴m2+=(m)2﹣2=62﹣2=34.∴.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.22.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a=5,b=2时,求图中的阴影部分面积.【分析】(1)用正方形ABCD的面积减去正方形BEFG的面积再减去直角三角形AGD与在直角三角形DCE的和即可得出结论;(2)将a=5,b=2代入(1)中的代数式计算即可.【解答】解:S阴影=S正方形ABCD﹣S正方形BEFG﹣(S△ADG+S△DEC)==ab﹣b2.(2)当a=5,b=2时,ab﹣b2=5×2﹣4=6.【点评】本题主要考查了列代数式,求代数式的值,正确使用图形的面积公式是解题的关键.23.(2021秋•黄浦区期中)老王想靠着一面足够长的旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱。

初中数学题目解析范文

初中数学题目解析范文

初中数学题目解析范文一、综述数学是一门重要的学科,它不仅培养了学生的逻辑思维能力,还具有实用性。

解析数学题目是学习的关键之一,本文将通过解析几道初中数学题目,帮助读者更好地理解数学知识。

二、题目解析1. 题目:已知直线l与圆O相交于点A、B,且角AOB为45°,若AB=4√2 cm,求圆的半径。

解析:根据题目可知角AOB为45°,即直角三角形AOB为等腰直角三角形。

由等腰直角三角形的性质可知,AB的长度等于圆的半径。

所以,圆的半径为4√2 cm。

2. 题目:已知函数y = 2x - 3,求当x = 4时,函数的值。

解析:将x = 4代入函数中,得到y = 2(4) - 3,即y = 5。

所以,当x = 4时,函数的值为5。

3. 题目:一个三位数的个位数是5,百位数是8,将其个位数字上的5提前一位得到一个新的三位数,求这个新的三位数。

解析:题目中已经给出了个位数是5,百位数是8。

将个位数上的5提前一位得到的新的三位数是58x,其中x表示十位数。

所以,这个新的三位数为580。

4. 题目:已知三角形ABC中,AB = AC,∠B = 30°,∠A = 70°,求∠C的度数。

解析:根据题目可知,三角形ABC是一个等腰三角形,即AB = AC。

又∠A = 70°,∠B = 30°,根据三角形内角和定理可得∠C = 180°- ∠A - ∠B,代入数值计算得∠C = 80°。

所以,∠C的度数为80°。

5. 题目:已知平行四边形ABCD中,AB = 8 cm,AD = 4 cm,角A 的度数为120°,求BC的长度。

解析:平行四边形ABCD中,对角线等长且相互平分,所以AC = BD。

又已知角A的度数为120°,所以角D的度数也为120°。

根据余弦定理,可以得到BC的长度,即BC = √(AD² + AC² - 2 × AD × AC ×cos(D))。

七年级数学教材核心母题

七年级数学教材核心母题

七年级数学教材核心母题
七年级数学教材核心母题可能包括但不限于以下内容:
1. 数的运算:包括整数、有理数、实数等的加、减、乘、除等基本运算,以及运算律的应用。

2. 代数式与方程:包括代数式的简化、因式分解、分式化简等,以及一元一次方程的解法。

3. 函数与图像:包括函数的概念、函数的表示方法、函数的性质等,以及直角坐标系的建立和点的坐标的确定。

4. 三角形与全等:包括三角形的边、角、高等基本元素,以及全等三角形的判定和性质。

5. 图形与变换:包括图形的平移、旋转、对称等基本变换,以及图形的相似和比例。

6. 统计与概率:包括数据的收集、整理、描述和分析,以及概率的基本概念和应用。

这些内容是七年级数学教材中的核心知识点,也是考试的重点内容。

通过练习与掌握这些核心母题,可以更好地理解和应用数学知识,提高数学能力和成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档