【配套K12】2018-2019学年高中物理 第一章 静电场 习题课 带电粒子在电场中的运动练习 新
学年高中物理第一章静电场专题带电粒子在电场中的运动课时同步试题新人教版选修.doc

第9节带电粒子在电场中的运动1.如图所示,竖直平行金属板分别与电源正、负极相接,一带电颗粒沿图中直线从A向B 运动,则该带电颗粒A.动能减小B.电势能减小C.机械能减小D.可能带负电【答案】B2.(2018·高考物理精准押题卷)ABCD区域内存在电场强度为E的匀强电场,一带正电为q的带电小球用长为l轻质细绳系于O点且绳子不可伸长,小球所受电场力为重力的5倍,如图所示在距O点为0.8l处有一个钉子,此时绳与竖直方向夹角为30°,小球离开电场时绳子恰好断裂,则下列说法正确的是A.小球摆动过程中机械能守恒B.碰到钉子时小球的速度为C.小球离开电场能上升的最大高度为D.小球飞出电场时所受绳子的最大拉力为【答案】C3.(2018·四川省成都市高三下学期高考模拟)在竖直平面内有水平向右、场强为E=1×104 N/C的匀强电场。
在场中有一根长L=2 m的绝缘细线,一端固定在O点,另一端系质量为0.04 kg的带电小球,它静止时细线与竖直方向成37°角。
如图所示,给小球一个初速度让小球恰能绕O点在竖直平面内做圆周运动,取小球在静止时的位置为电势能和重力势能的零点,下列说法正确的是(cos37°=0.8,g=10 m/s2)A.小球所带电量为q=3.5×10-5 C xk.wB.小球恰能做圆周运动动能最小值是0.96 JC.小球恰能做圆周运动的机械能最小值是1.54 JD.小球恰能做圆周运动的机械能最小值是0.5 J【答案】C【解析】对小球进行受力分析如图所示:根据平衡条件得:,解得:,故A错误;由于重力和电场力都是恒力,所以它们的合力也是恒力,由C运动到A,,所以C点的机械能为,即机械能的最小值为1.54 J,故C正确,D错误。
【点睛】根据小球在平衡位置合力为0,可以求出小球所受的电场力从而得出小球的带电荷量;根据小球恰好在竖直面内做圆周运动这一临界条件,知,在平衡位置处合外力提供圆周运动的向心力从而求出小球动能的最小值。
【配套K12】[学习]2018-2019学年高中物理 第一章 静电场 7 静电现象的应用课时作业 新
![【配套K12】[学习]2018-2019学年高中物理 第一章 静电场 7 静电现象的应用课时作业 新](https://img.taocdn.com/s3/m/17820d017375a417866f8fe4.png)
7 静电现象的应用[课时作业][A组基础巩固]一、单项选择题1.关于避雷针能够避免建筑物被雷击的原因,下列分析不正确的是( )A.云层中带的电荷被避雷针通过导线导入大地B.避雷针的尖端向云层放电,中和了云层中的电荷C.云层与避雷针发生摩擦,避雷针上产生的电荷被导入大地D.避雷针由尖锐的导体做成,利用的是尖端放电现象解析:带电荷的云层在避雷针尖端感应出与云层相反的静电,达到一定程度就会发生尖端放电,中和云层中的电荷,同时将云层中的电荷导入大地,避免了雷击现象,A、B、D对,C 错.答案:C2.某农村小塑料场的高频热合机产生的电磁波频率和电视信号频率接近,由于该村尚未接通有线电视信号,空中的信号常常受到干扰,在电视荧屏上出现网状条纹,影响正常收看.为了使电视机不受干扰,可采取的办法是( )A.将电视机用一金属笼子罩起来B.将电视机用一金属笼子罩起来,并将金属笼子接地C.将高频热合机用一金属笼子罩起来D.将高频热合机用一金属笼子罩起来,并将金属笼子接地解析:为了使电视机能接收电磁波信号,但又不接收高频热合机产生的电磁波,应将高频热合机产生的电磁波信号屏蔽,而接地金属笼子具有屏蔽内电场的作用,故选项D正确.答案:D3.下列说法正确的是( )A.处于静电平衡的导体,由于导体内的电场强度为零,所以导体内的电势也为零B.处于外电场中的静电平衡的导体,由于附加电场的出现,导体内的原电场变为零C.处于外电场中的静电平衡的导体,由于附加电场和原电场相互抵消,导体内的电场变为零,但导体表面的电场不为零,且与表面垂直D.处于静电平衡的导体,导体表面的电势一定与导体内部的电势不相等解析:处于静电平衡的导体内部电场强度处处为零,整个导体是一个等势体,导体内部与表面电势相等,但电势不一定等于零,A、D错;处于外电场中的静电平衡的导体,其内部某点由于静电感应产生的附加电场的场强与原场强等大、反向,相互抵消,合场强为零,原场强不变,B错;由于净电荷或感应电荷都分布在等势体的表面,故导体表面的电场强度不为零,导体表面是等势面,电场方向垂直导体表面,C对.4.(2018·广东汕头高二检测)如图所示,带正电的导体球A置于原来不带电的空腔导体球B内,a、c分别为导体A、B内的点,b为导体A和B之间的一点,下列说法正确的是( )A.a、b、c三点的电势都相等B.a点的场强为零,但电势最高C.b点的场强为零,但电势大于零D.a、b、c三点的场强都为零解析:A球带正电,不带电的空腔B可以理解为导体的静电平衡,故E a=E c=0,空腔内壁感应电荷为负,外壁感应电荷为正.空腔内的电场线分布为由A指向B,所以φa>φb>φc,E b≠0,B项正确.答案:B5.人造飞船返回地球经过大气层时,返回舱表面附近形成一个温度高达几千摄氏度的高温区.高温区内的气体和返回舱表面材料的分子被分解和电离,这时返回舱与外界的联系会中断,出现这种现象的原因是( )A.返回舱受到的万有引力消失B.返回舱为了安全而暂时关闭通信系统C.返回舱周围高温气体被电离成等离子体,从而对飞船起屏蔽作用D.返回舱表面温度太高,如同火球,使得航天员看不见外面,外面也看不见返回舱里面解析:由于高温区内的气体和返回舱表面材料的分子被分解和电离,对返回舱起到静电屏蔽作用,所以返回舱与外界信号中断,故A、B、D错误,C正确.答案:C二、多项选择题6.如图所示,B是带有绝缘支架的空腔带电金属球壳,A是验电器,A、B相距较远,导线C的一端接验电器的金属球,下列现象正确的是( )A.将C的另一端与B的外壳接触,验电器的金属箔张开B.将C的另一端与B的内表面接触,验电器的金属箔张开C.将C的另一端与B的外壳接触,验电器的金属箔不张开D.将C的另一端与B的内表面接触,验电器的金属箔不张开解析:假设B带正电,则正电荷应分布在B的外表面上,不管C接B的外壳还是内表面,验电器的金属球导电杆和金属箔通过导线C与B就构成一个整体,因平衡状态下带电体电荷只分布在外表面上,由于验电器在B的外部,也就成了这个整体的外表面的一部分.因此,无论C的另一端与B什么地方接触,验电器一定带电,故A、B正确.7.如图所示,水平放置的金属板正上方放有一固定的正点电荷Q,一表面绝缘的带正电小球(可视为质点且不影响Q的电场),从左端以初速度v0滑上金属板,沿光滑的上表面向右运动到右端,在该运动过程中( )A.小球做匀速直线运动B.小球先做减速运动,后做加速运动C.小球的电势能保持不变D.静电力对小球所做的功为零解析:由于金属板处于点电荷Q形成的电场中,达到静电平衡后,金属板的上表面是一个等势面,表面上电场线是竖直向下的,所以小球受到重力、支持力、向下的电场力,合力为零,故小球做匀速直线运动.电场力对小球不做功.答案:ACD8.如图所示,A、B为两个带等量异种电荷的金属球,将两根不带电的金属棒C、D放在两球之间,则下列叙述正确的是( )A.C棒的电势一定高于D棒的电势B.若用导线将C棒的x端与D端的y端连接起来的瞬间,将有从y流向x的电子流C.若将B球接地,B所带的负电荷全部流入大地D.若将B球接地,B所带的负电荷还将保留一部分解析:由如图所示的电场线方向可知A、B、C、D的电势高低为φA>φC>φD>φB.当用导线将C棒的x端与D棒的y端连接的瞬间,将有自由电子从电势低的D棒流向电势高的C棒,这时C与D已通过导线连接为一个导体了,静电平衡后,它们的电势相等,C的x端仍带负电,D的y端仍带正电,而C的右端及D的左端均不带电.当将B球接地时,一部分自由电子从低于大地电势的B球上流向大地,而一部分电子受到D棒y端正电荷的吸引而保留在靠近y端的近端处,如果把带正电的A球移走,接地的B球上的负电荷才全部流入大地.故A、B、D正确.答案:ABD三、非选择题9.如图所示,一厚度不计的金属圆桶带电荷量为Q=+4×10-6 C.(1)此时,金属圆桶内、外表面带电荷量分别为多少?(2)如果用丝线在金属圆桶内悬挂一带电荷量q=-2×10-6 C的金属小球.①求金属圆桶内、外表面带的电荷量;②若让金属圆桶内金属小球与内表面接触一下,则金属圆桶内、外表面带电荷量分别为多少?③若金属小球悬挂时,先用手接触一下金属圆桶外表面,然后再将小球从金属圆桶中取出,则金属圆桶内、外表面带电荷量又为多少?解析:(1)由静电平衡条件,净电荷分布在导体的外表面,可得金属圆桶内表面带电荷量为0,外表面带电荷量为+4×10-6 C.(2)①带负电金属小球移入金属圆桶内后,由于静电感应,内壁感应出2×10-6C的正电荷,相当于负电荷将等量的正电荷吸引到内壁.由电荷守恒定律可知,外表面还有2×10-6C的正电荷.②当金属小球与金属圆桶内表面接触时,金属小球所带负电荷迅速与内表面正电荷中和,从而内表面不带电,外表面带2×10-6 C的正电荷.③若金属小球悬挂时,先用手接触一下金属圆桶外表面,外表面的正电荷被中和,内表面正电荷受金属小球负电荷束缚,保持不动.此时再将金属小球从金属圆桶中取出,则由于导体在静电平衡时,净电荷只能分布在外表面,内表面2×10-6C的正电荷将在电场力作用下移到外表面.故外表面带2×10-6 C的正电荷,内表面带电荷量为0.答案:见解析[B组能力提升]一、选择题1.如图所示,一导体球A带有正电荷,当只有它存在时,它在空间P点产生的电场强度的大小为E A.在A球球心与P点连线上有一带负电的点电荷B,当只有它存在时,它在空间P点产生的电场强度大小为E B.当A、B同时存在时,根据电场强度叠加原理,P点的电场强度大小应为( ) A.E B B.E A+E BC.|E A-E B| D.以上说法都不对解析:当把点电荷放在B点后,虽然导体球所带的总电荷量未变,但因静电感应,导体球上的电荷将重新分布,直到达到静电平衡.这时,导体球上的电荷在P点产生的电场强度E A′不等于E A.由于点电荷不涉及电荷如何分布的问题,它在P点产生的电场强度与周围是否存在其他电荷无关,所以仍为E B,当点电荷与导体球A同时存在时,P点的电场强度应由E A′与E B叠加而成,而不是由E A与E B叠加.只要对电场强度叠加原理的理解准确了,就能立即断定A、B、C三个选项都是不对的.答案为D.答案:D2.(多选)如图为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在静电力的作用下向集尘极迁移并沉积,以达到除尘目的.下列表述正确的是( )A .到达集尘极的尘埃带正电荷B .电场方向由集尘极指向放电极C .带电尘埃所受静电力的方向与电场方向相同D .同一位置带电荷量越多的尘埃所受静电力越大解析:由题图知,集尘极连电源正极,电势高,所以电场方向由集尘极指向放电极,选项B 正确.带电尘埃向集尘极迁移,带电尘埃所受静电力方向与电场方向相反,带负电,选项A 、C 错误.由F =qE 知,同一位置带电荷量越多的尘埃所受静电力越大,选项D 正确. 答案:BD二、非选择题3.如图所示,带电导体A 处于静电平衡状态,电势为φ=200 V .M 、N 是A表面上的两点,电场强度E M =4E N .今把一电荷量为q =5×10-8C 的正电荷分别由M 点、N 点移到无限远处,求电场力做的功.解析:由静电平衡导体的特点得φM =φN =φ=200 V移到无限远处电场力做功 W M =W N =qU =q (φ-0)=5×10-8×200 J=1.0×10-5 J.答案:均为1.0×10-5J4.长为L 的导体棒原来不带电,现将一电荷量为+q 的点电荷放在距棒左端R 处,如图所示.当棒达到静电平衡后,求棒上感应电荷在棒内中点处产生的场强大小和方向.解析:达到静电平衡后的导体棒,其内部合场强处处为零,此合场强为点电荷q 和导体棒上感应电荷分别在O 处产生的场强的矢量和,因此两场强应大小相等、方向相反.欲知感应电荷在O 处产生的场强大小,只需求q 在O 处的场强,该场强的大小为 E =k qR +L 22,方向水平向右.所以,感应电荷在O 处产生的场强大小E =k q R +L 22,方向与q 在O 处的场强方向相反,即水平向左.答案:k qR +L 22 水平向左。
高中物理第一章静电场9带电粒子在电场中的运动课时作业新人教版选修3-1(2021年整理)

2018-2019学年高中物理第一章静电场9 带电粒子在电场中的运动课时作业新人教版选修3-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中物理第一章静电场9 带电粒子在电场中的运动课时作业新人教版选修3-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中物理第一章静电场9 带电粒子在电场中的运动课时作业新人教版选修3-1的全部内容。
9 带电粒子在电场中的运动[课时作业][A组基础巩固]一、单项选择题1.关于带电粒子(不计重力)在匀强电场中的运动情况,下列说法正确的是()A.一定是匀变速运动B.不可能做匀减速运动C.一定做曲线运动D.可能做匀变速直线运动,不可能做匀变速曲线运动解析:带电粒子在匀强电场中受恒定合力(电场力)作用,一定做匀变速运动,初速度与合力共线时,做直线运动,不共线时做匀变速曲线运动,A对,B、C、D错.答案:A2.一平行板电容器的两个极板水平放置,两极板间有一带电荷量不变的小油滴.油滴在极板间运动时所受空气阻力的大小与其速率成正比.若两极板间电压为零,经一段时间后,油滴以速率v匀速下降;若两极板间的电压为U,经一段时间后,油滴以速率v匀速上升.若两极板间电压为-U,油滴做匀速运动时速度的大小、方向将是( )A.2v、向下B.2v、向上C.3v、向下D.3v、向上解析:由题意知,未加电压时mg=kv①,加电压U时,电场力向上,设为F,则有F=mg+kv②,当加电压(-U)时,电场力向下,匀速运动时有F+mg=kv′③。
联立①②③得v′=3v,方向向下,C正确.答案:C3。
2018版物理选修3-1文档:第一章 静电场 习题课 电场力

习题课:电场力的性质[学习目标] 1.会分析两等量同种电荷和两等量异种电荷的电场分布.2.会由粒子的运动轨迹分析带电粒子的受力方向和所在处的电场方向.3.会解答库仑力作用下带电体的平衡问题和加速问题.一、电场力作用下的平衡1.共点力的平衡条件:物体不受力或所受外力的合力为零.2.处理平衡问题常用的数学知识和方法有直角三角形、相似三角形和正交分解法.3.选取研究对象时,要注意整体法和隔离法的灵活运用.例1 如图1所示,带电荷量分别为+q 和+4q 的两点电荷A 、B ,相距L ,问:图1(1)若A 、B 固定,在何处放置点电荷C ,才能使C 处于平衡状态? (2)在(1)中的情形下,C 的电荷量和电性对C 的平衡有影响吗?(3)若A 、B 不固定,在何处放一个什么性质的点电荷,才可以使三个点电荷都处于平衡状态? 答案 见解析解析 (1)由平衡条件,对C 进行受力分析,C 应在AB 的连线上且在A 、B 之间,设与A 相距r ,则k ·q ·q C r 2=k ·4q ·q C (L -r )2解得:r =L 3 (2)电荷量的大小和电性对平衡无影响,距离A 为L3处,A 、B 的合场强为0.(3)若将C 放在A 、B 电荷两边,A 、B 对C 同为向右(或向左)的力,C 都不能平衡;若将C 放在A 、B 之间,C 为正电荷,则A 、B 都不能平衡,所以C 为负电荷.设放置的点电荷的电荷量为Q ,与A 相距r 1,分别对A 、B 受力分析,根据平衡条件对电荷A :有k ·4q ·q L 2=kQ ·qr 21对电荷B :有k ·4q ·q L 2=kQ ·4q(L -r 1)2联立可得:r 1=L 3,Q =49q (负电荷)即应在AB 连线上且在A 的右边,距A 点电荷L 3处放置一个电荷量为49q 的负电荷.1.同一直线上的三个自由点电荷都处于平衡状态时,每个电荷受到的合力均为零,根据平衡方程可得,电荷间的关系为:“两同夹异”、“两大夹小”、“近小远大”.2对于三个自由电荷的平衡问题,只需对其中两个电荷列平衡方程,不必对第三个电荷列平衡方程.例2 如图2所示,真空中两个相同的小球带有等量同种电荷,质量均为m ,分别用绝缘细线悬挂于绝缘天花板上同一点,平衡时,B 球偏离竖直方向θ角,A 球竖直且与墙壁接触,此时A 、B 两球位于同一高度且相距L .求:图2(1)每个小球带的电荷量q ; (2)B 球所受绳的拉力F T ; (3)墙壁对A 球的弹力F N . 答案 (1)Lmg tan θk (2)mgcos θ(3)mg tan θ 解析 (1)对B 球受力分析如图所示:B 球受三个力且处于平衡状态,其中重力与库仑力的合力大小等于绳子拉力的大小,方向与绳子拉力方向相反,由图可知:F 库=mg tan θ=kq 2L2,①解得:q =Lmg tan θk(2)由B 球的受力分析知,F T =mgcos θ.② (3)分析A 球的受力情况知F N =F 库=k q 2L 2③结合①得F N =mg tan θ. 二、两等量点电荷周围的电场1.等量同号点电荷的电场(电场线分布如图3):(1)两点电荷连线上,中点O处场强为零,向两侧场强逐渐增大.(2)两点电荷连线中垂线上由中点O到无限远,场强先变大后变小.2.等量异号点电荷的电场(电场线分布如图4):(1)两点电荷连线上,沿电场线方向场强先变小再变大,中点处场强最小.(2)两点电荷连线的中垂线上电场强度方向都相同,总与中垂线垂直且指向负点电荷一侧.沿中垂线从中点到无限远处,场强一直减小,中点处场强最大.图3图4例3两个带等量正电荷的点电荷,O点为两电荷连线的中点,a点在连线的中垂线上,若在a点由静止释放一个电子,如图5所示,关于电子的运动,下列说法正确的是()图5A.电子在从a点向O点运动的过程中,加速度越来越大,速度越来越大B.电子在从a点向O点运动的过程中,加速度越来越小,速度越来越大C.电子运动到O点时,加速度为零,速度最大D.电子通过O点后,速度越来越小,加速度越来越大,一直到速度为零答案 C解析带等量正电荷的两点电荷连线的中垂线上,中点O处的场强为零,向中垂线的两边先变大,达到一个最大值后,再逐渐减小到零.但a点与最大场强点的位置关系不能确定,当a 点在最大场强点的上方时,电子在从a点向O点运动的过程中,加速度先增大后减小;当a 点在最大场强点的下方时,电子的加速度则一直减小,故A、B错误;但不论a点的位置如何,电子在向O点运动的过程中,都在做加速运动,所以电子的速度一直增加,当达到O点时,加速度为零,速度达到最大值,C正确;通过O点后,电子的运动方向与场强的方向相同,与所受电场力方向相反,故电子做减速运动,由能量守恒定律得,当电子运动到a点关于O点对称的b点时,电子的速度为零.同样因b点与最大场强的位置关系不能确定,故加速度大小的变化不能确定,D 错误.针对训练 如图6所示为两个固定在同一水平面上的点电荷,距离为d ,电荷量分别为+Q 和-Q .在它们的水平中垂线上固定一根长为L 、内壁光滑的绝缘细管,有一电荷量为+q 的小球以初速度v 0从管口射入,则小球( )图6A.速度先增大后减小B.受到的库仑力先做负功后做正功C.受到的库仑力最大值为8kQqd 2D.管壁对小球的弹力最大值为4kQqd 2答案 C解析 由等量的异种电荷形成的电场特点,根据小球的受力情况可知在细管内运动时,合力为重力,小球速度一直增大,A 错误;库仑力水平向右,不做功,B 错误;在连线中点处库仑力最大,F =kqQ ⎝⎛⎭⎫d 22+kqQ ⎝⎛⎭⎫d 22=8kqQd 2,C 正确;管壁对小球的弹力与库仑力是平衡力,所以最大值为8kqQd2,D 错误.三、电场线与带电粒子运动轨迹的综合分析例4 如图7所示,实线为不知方向的三条电场线,从电场中M 点以相同速度垂直于电场线方向飞出a 、b 两个带电粒子,仅在电场力作用下的运动轨迹如图中虚线所示.则( )图7A.a 一定带正电,b 一定带负电B.a 的速度将减小,b 的速度将增加C.a 的加速度将减小,b 的加速度将增加D.两个粒子的动能,一个增加一个减小 答案 C解析 带电粒子做曲线运动,所受力的方向指向轨迹的内侧,由于电场线的方向未知,所以粒子带电性质不确定,故A 错误;从图中轨迹变化来看,速度与力方向的夹角小于90°,所以电场力都做正功,动能都增大,速度都增大,故B 、D 错误.电场线密的地方电场强度大,电场线疏的地方电场强度小,所以a 受力减小,加速度减小,b 受力增大,加速度增大,故C 正确.1.合力方向与速度方向:合力指向轨迹曲线的内侧,速度方向沿轨迹的切线方向.2.分析方法:由轨迹的弯曲情况结合电场线确定电场力的方向;由电场力和电场线的方向可判断电荷的正负;由电场线的疏密程度可确定电场力的大小,再根据牛顿第二定律F =ma 可判断电荷加速度的大小. 四、电场中的动力学问题例5 如图8所示,光滑斜面(足够长)倾角为37°,一带正电的小物块质量为m ,电荷量为q ,置于斜面上,当沿水平方向加如图所示的匀强电场时,带电小物块恰好静止在斜面上,从某时刻开始,电场强度变化为原来的12,(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)求:图8(1)原来的电场强度; (2)小物块运动的加速度;(3)小物块2 s 末的速度和2 s 内的位移.答案 (1)3mg4q(2)3 m /s 2,方向沿斜面向下 (3)6 m/s 6 m解析 (1)对小物块受力分析如图所示,小物块静止于斜面上,则mg sin 37°=qE cos 37°,E =mg tan 37°q =3mg4q.(2)当场强变为原来的12时,小物块受到的合外力F 合=mg sin 37°-12qE cos 37°=0.3mg ,又F 合=ma ,所以a =3 m/s 2,方向沿斜面向下. (3)由运动学公式v =at =3×2 m /s =6 m/s x =12at 2=12×3×22 m =6 m.1.(多选)如图9所示,质量分别为m 1、m 2,电荷量分别为q 1、q 2的两小球,分别用绝缘轻丝线悬挂起来,两丝线与竖直方向的夹角分别为α和β(α>β),两小球恰在同一水平线上,那么( )图9A.两球一定带异种电荷B.q 1一定大于q 2C.m 1一定小于m 2D.m 1所受的库仑力一定大于m 2所受的库仑力 答案 AC解析 由于两带电小球相互吸引,所以一定带异种电荷,选项A 正确.设轻丝线与竖直方向的夹角为θ,根据平衡条件可得两球之间的库仑力F =mg tan θ,因此m 1g <m 2g ,即m 1<m 2,选项C 正确.2.如图10所示,光滑绝缘水平面上有三个带电小球A 、B 、C (可视为点电荷),三小球在一条直线上均处于静止状态,则以下判断正确的是( )图10A.A 对B 的电场力一定是引力B.A 对B 的电场力可能是斥力C.A 的电荷量可能比B 少D.C的电荷量一定比B少答案 A解析三小球在一条直线上处于静止状态,则A、C一定是同种电荷,A、B一定是异种电荷,即“两同夹异”,另外,A和C的电荷量一定大于B的电荷量,即“两大夹小”,选项A正确.3.(多选)如图11所示,带箭头的线表示某一电场中的电场线的分布情况.一带电粒子在电场中运动的轨迹如图中虚线所示.若不考虑其他力,则下列判断中正确的是()图11A.若粒子是从A运动到B,则粒子带正电;若粒子是从B运动到A,则粒子带负电B.不论粒子是从A运动到B,还是从B运动到A,粒子必带负电C.若粒子是从B运动到A,则其加速度减小D.若粒子是从B运动到A,则其速度减小答案BC解析根据做曲线运动的物体所受合外力指向曲线内侧可知粒子所受电场力与电场线的方向相反,所以不论粒子是从A运动到B,还是从B运动到A,粒子必带负电,故A错误,B正确;电场线密的地方电场强度大,所以粒子在B点受到的电场力大,在B点时的加速度较大.若粒子是从B运动到A,则其加速度减小,故C正确;从B到A过程中电场力与速度方向成锐角,即做正功,动能增大,速度增大,故D错误.故选B、C.一、选择题(1~5题为单选题,6~9题为多选题)1.两个等量点电荷P、Q在真空中产生的电场线(方向未画出)如图1所示,一电子在A、B两点所受的电场力分别为F A和F B,则它们的大小关系为()A.F A=F BB.F A>F BC.F A<F BD.无法确定答案 B解析从电场线的疏密判断,A点的电场强度比B点的电场强度大,故E A>E B.根据电场力F =qE知,F A>F B,故B正确,A、C、D错误.2.如图2所示的电场中,虚线为某带电粒子只在电场力作用下的运动轨迹,a、b、c是轨迹上的三个点,则()图2A.粒子一定带负电B.粒子一定是从a点运动到b点C.粒子在c点的加速度一定大于在b点的加速度D.粒子在电场中c点的速度一定大于在a点的速度答案 C解析做曲线运动的物体,合力指向运动轨迹的内侧,由此可知,带电粒子受到的电场力的方向为沿着电场线向左,所以粒子带正电,A错;粒子不一定是从a点沿轨迹运动到b点,也可能从b点沿轨迹运动到a点,B错误;由电场线的分布可知,电场线在c点的受力较大,加速度一定大于在b点的加速度,C正确;粒子从c到a的过程,电场力与速度成锐角,所以粒子做加速运动,在c点的速度一定小于在a点的速度,D错误;故选C.3.如图3所示,光滑绝缘的水平面上的P点固定一个带正电的点电荷,在它的右侧N点由静止开始释放一个也带正电的小球(可视为质点),以向右为正方向,下列选项中能反映小球运动速度随时间变化规律的是()答案 B解析 N 点的小球释放后,受到向右的库仑力作用,开始向右运动,根据库仑定律F =k q 1q 2r 2可得,随着两者之间的距离的增大,小球受到的库仑力在减小,根据牛顿第二定律a =Fm 可得,小球做加速度减小的加速直线运动,故选项B 正确.4.相距为L 的点电荷A 、B 带电荷量分别为+4q 和-q ,如图4所示,今引入第三个点电荷C ,使三个点电荷都处于平衡状态,则C 的电荷量和放置的位置是( )图4A.-q ,在A 左侧距A 为L 处B.-2q ,在A 左侧距A 为L 2处C.+4q ,在B 右侧距B 为L 处D.+2q ,在B 右侧距B 为3L2处答案 C解析 A 、B 、C 三个电荷要平衡,必须三个电荷在一条直线上,外侧二个电荷相互排斥,中间电荷吸引外侧两个电荷,所以外侧两个电荷距离大,要平衡中间电荷的引力,必须外侧电荷电量大,中间电荷电量小,所以C 必须带正电,在B 的右侧.设C 所在位置与B 的距离为r ,则C 所在位置与A 的距离为L +r ,要能处于平衡状态,所以A 对C 的电场力大小等于B 对C 的电场力大小,设C 的电量为Q .则有:k 4q ·Q (L +r )2=k Qqr 2,解得r =L .对点电荷A ,其受力也平衡,则:k 4q ·Q (L +r )2=k 4q ·q L 2,解得:Q =4q ,即C 带正电,电荷量为4q ,在B 的右侧距B 为L 处.5.直角坐标系xOy 中,M 、N 两点位于x 轴上,G 、H 两点坐标如图5.M 、N 两点各固定一负点电荷,一电荷量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为( )图5A.3kQ4a 2,沿y 轴正向 B.3kQ4a 2,沿y 轴负向 C.5kQ4a 2,沿y 轴正向 D.5kQ4a2,沿y 轴负向 答案 B解析 因正电荷Q 在O 点时,G 点的场强为零,则可知两负电荷在G 点形成的电场的合场强与正电荷Q 在G 点产生的场强等大反向,大小为E 合=k Qa 2;若将正电荷移到G 点,则正电荷在H 点的场强为E 1=k Q (2a )2=kQ4a 2,因两负电荷在G 点的合场强与在H 点的合场强等大反向,则H 点的合场强为E =E 合-E 1=3kQ4a2,方向沿y 轴负向,故选B.6.如图6所示,金属板带电荷量为+Q ,质量为m 的金属小球带电荷量为+q ,当小球静止后,悬挂小球的绝缘细线与竖直方向间的夹角为α,小球与金属板中心O 恰好在同一条水平线上,且距离为L .下列说法正确的是( )图6A.+Q 在小球处产生的场强为E 1=kQL 2B.+Q 在小球处产生的场强为E 1=mg tan αqC.+q 在O 点产生的场强为E 2=kqL 2D.+q 在O 点产生的场强为E 2=mg tan αQ答案 BC解析 金属板不能看作点电荷,在小球处产生的场强不能用E =kQr 2计算,故A 错误;根据小球受力平衡得小球受电场力F =mg tan α,由E =F q 得:E 1=mg tan αq ,B 正确;小球可看作点电荷,在O 点产生的场强E 2=kqL 2,C 正确;根据牛顿第三定律知金属板受到小球的电场力大小为F =mg tan α,但金属板不能看作试探电荷,故不能用E =Fq 求场强,D 错误.故选B 、C.7.如图7所示,在真空中等量异种点电荷形成的电场中:O 是电荷连线的中点,C 、D 是连线中垂线上关于O 对称的两点,A 、B 是连线延长线上的两点,且到正、负电荷的距离均等于两电荷间距的一半.则以下结论正确的是( )图7A.B 、C 两点场强方向相反B.A 、B 两点场强相同C.C 、O 、D 三点比较,O 点场强最弱D.A 、O 、B 三点比较,O 点场强最弱 答案 AB8.如图8所示,a 、b 两点处分别固定有等量异种点电荷+Q 和-Q ,c 是线段ab 的中点,d 是ac 的中点,e 是ab 的垂直平分线上的一点,将一个正点电荷先后放在d 、c 、e 点,它所受的电场力分别为F d 、F c 、F e ,则下列说法中正确的是( )图8A.F d 、F c 、F e 的方向都是水平向右B.F d 、F c 的方向水平向右,F e 的方向竖直向上C.F d =F c >F eD.F d >F c >F e 答案 AD解析 根据场强叠加原理,等量异种点电荷连线及中垂线上的电场线分布如图所示,d 、c 、e三点场强方向都是水平向右,正点电荷在各点受电场力方向与场强方向相同,故A正确,B 错误;连线上场强由a到b先减小后增大,中垂线上场强由O到无穷远处逐渐减小,因此O 点场强是连线上最小的(但不为0),是中垂线上最大的,故F d>F c>F e,故C错误,D正确.9.如图9所示,A、B两点固定两个等量正点电荷,在A、B连线的中点C处放一点电荷(不计重力).若给该点电荷一个初速度,方向与AB连线垂直,则该点电荷可能的运动情况为()图9A.往复直线运动B.匀变速直线运动C.加速度不断减小,速度不断增大的直线运动D.加速度先增大后减小,速度不断增大的直线运动答案AD解析若该点电荷为正电荷,给它初速度,将沿两电荷的中轴线运动,向上运动的过程中,受到电场力的合力先增大后减小,合力方向沿中轴线向上,所以该电荷向上做加速度先增大后减小,速度不断增大的直线运动.若该电荷为负电荷,受到电场力的合力沿轴线向下,向上做减速运动,当速度为0后,又返回做加速运动,在两点电荷连线以下做减速运动,减到速度为零,又返回做加速运动,所以电荷做往复直线运动.故A、D正确,B、C错误.二、非选择题10.如图10所示,用一条绝缘轻绳悬挂一个带电小球,小球质量为1.0×10-2 kg,所带电荷量为+2.0×10-8 C.现加一水平方向的匀强电场,平衡时绝缘绳与竖直线成30°角,绳长L=0.2 m,求:(重力加速度g的大小取10 m/s2)图10(1)这个匀强电场的电场强度大小.(2)突然剪断轻绳,小球做什么运动?加速度大小和方向如何? 答案 (1)36×107 N/C (2)做初速度为0的匀加速直线运动 2033m/s 2 与绳子拉力方向相反解析 (1)根据共点力平衡得,qE =mg tan 30° 解得E =36×107 N/C. (2)突然剪断轻绳,小球受重力和电场力,初速度为零,做匀加速直线运动.F 合=mgcos 30°=maa =2033m/s 2加速度方向与绳子拉力方向相反.11.如图11所示,把一个倾角为θ的绝缘斜面固定在匀强电场中,电场方向水平向右,电场强度大小为E ,有一质量为m 、带电荷量为+q 的物体,以初速度v 0从A 端滑上斜面恰好能沿斜面匀速运动,求物体与斜面间的动摩擦因数.图11答案qE cos θ-mg sin θmg cos θ+qE sin θ解析 物体受力情况如图所示,将各力沿斜面和垂直斜面两个方向进行正交分解,则沿斜面方向上: F f +mg sin θ=qE cos θ ①垂直斜面方向上: mg cos θ+qE sin θ=F N ② 其中F f =μF N③由①②③解得:μ=qE cos θ-mg sin θmg cos θ+qE sin θ.12.如图12所示,有一水平向左的匀强电场,场强为E =1.25×104 N /C ,一根长L =1.5 m 、与水平方向的夹角θ=37°的光滑绝缘细直杆MN 固定在电场中,杆的下端M 固定一个带电小球A ,电荷量Q =+4.5×10-6 C ;另一带电小球B 穿在杆上可自由滑动,电荷量q =+1.0×10-6C ,质量m =1.0×10-2 kg.将小球B 从杆的上端N 静止释放,小球B 开始运动.(静电力常量k =9.0×109 N·m 2/C 2,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图12(1)小球B 开始运动时的加速度为多大?(2)小球B 的速度最大时,与M 端的距离r 为多大? 答案 (1)3.2 m/s 2 (2)0.9 m解析 (1)如图所示,开始运动时小球B 受重力、库仑力、杆的弹力和电场力,沿杆方向运动,由牛顿第二定律得mg sin θ-kQq L 2-qE cos θ=ma .解得:a =g sin θ-kQq L 2m -qE cos θm,代入数据解得:a =3.2 m/s 2.(2)小球B 速度最大时合力为零,即mg sin θ-kQqr 2-qE cos θ=0解得:r =kQqmg sin θ-qE cos θ,代入数据解得:r =0.9 m.。
2018年高中物理第1章静电场1.12带电粒子在电场中的加速习题新人教版.doc

2018年高中物理第1章静电场1.12带电粒子在电场中的加速习题新人教版带电粒子在电场中的加速(答题时间30分钟)1. 在电场强度大小为E的匀强电场中,将一个质量为m、电荷量为q的带电小球由静止开始释放,带电小球沿与竖直方向成θ角的方向做直线运动. 关于带电小球的电势能ε和机械能W的判断,不正确的是()A. 若sinθ,则ε一定减小,W 一定增加 B. 若sinθ=,则ε、W一定不变 C. 若sinθ,则ε一定增加,W一定减小 D. 若tanθ=,则ε可能增加,W一定增加 2. 如图所示,带等量异号电荷的两平行金属板在真空中竖直放置,M、N为板间同一电场线上的两点。
一带电粒子(不计重力)以速度vM经过M点沿电场线方向向右运动,且未与右侧金属板接触,一段时间后,粒子以速度vN向左经过N点。
则下列说法正确的是()A. 电场中M点的电势一定高于N点的电势 B. 粒子受到的电场力一定由M点指向N点C. 粒子在M点的速度一定比在N点的速度大D. 粒子在M 点的电势能一定比在N点的电势能大3. 沿电场中某条直线电场线方向建立x轴,该电场线上各点电场强度E随x的变化规律如图所示,坐标点0、x1、x2和x3分别与x轴上O、A、B、C四点相对应,相邻两点间距相等。
一个带正电的粒子从O点附近由静止释放,运动到A点处的动能为Ek,仅考虑电场力作用。
则下列说法正确的是()A. 从O点到C点,电势先升高后降低 B. 粒子先做匀加速运动,后做变加速运动 C. 粒子在AB段电势能变化量大于BC段的 D. 粒子运动到C点时动能小于3Ek 4. 空间存在某电场,一带负电的粒子仅在电场力作用下从x1处沿x轴负方向运动。
粒子质量为m,初速度大小为v0,其电势能Ep随坐标x 变化的关系如图所示,图线关于纵轴左右对称,以无穷远处为零电势能点,粒子在原点0处电势能为E0,在x1处电势能为E1,则下列说法中正确的是() A. 坐标原点0处两侧电场方向相反 B. 粒子经过x1、-x1处速度相同 C. 由x1运动到0过程电场力做正功D. 若粒子能够沿x轴负方向运动越过0点,一定有v0> 5. AB是电场中的一条电场线,若将一负电荷从A点处自由释放,负电荷沿电场线从A到B 运动过程中的速度图线如图所示,则A、B两点的电势高低和场强的大小关系是() A. A>B ,EA>EB B. A>B ,EA<EB C. A<B ,EA>EB D. A<B ,EA<EB 6. 如图所示,两个带等量正电荷的相同小球,固定在绝缘、粗糙的水平面上A、B两点,O是AB的中点。
高中物理第一章静电场习题课带电粒子在电场中的运动练习新人教版选修3-1(2021年整理)

2018-2019学年高中物理第一章静电场习题课带电粒子在电场中的运动练习新人教版选修3-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中物理第一章静电场习题课带电粒子在电场中的运动练习新人教版选修3-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中物理第一章静电场习题课带电粒子在电场中的运动练习新人教版选修3-1的全部内容。
习题课:带电粒子在电场中的运动知识点一带电粒子在电场中的加速和偏转1。
(多选)如图LX2-1所示,一个质量为m、电荷量为q的粒子从两带电平行板的正中间沿与场强垂直的方向射入,不计粒子所受的重力。
当粒子的入射速度为v时,它恰能穿过这一电场区域而不碰到金属板上。
现要使质量为m、入射速度为的粒子也能恰好穿过这一电场区域而不碰到金属板,若只能改变一个物理量,下列做法可行的是()图LX2—1A。
使粒子所带的电荷量减小为原来的B.使两极板间的电势差减小为原来的一半C。
使两板间的距离增加为原来的2倍D。
使两极板的长度减小为原来的一半2。
如图LX2—2所示,两极板与电源相连接,电子从负极板边缘沿垂直于电场方向射入匀强电场,且恰好从正极板的边缘飞出,现在使电子的入射速度变为原来的两倍,使电子仍从原位置射入,若电子仍从正极板的边缘飞出,则两极板的间距应变为原来的()A.2倍 B。
4倍C.D。
图LX2-23。
氕、氘、氚原子核的初速度为零,经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,如图LX2-3所示.下列说法正确的是()A.经过加速电场的过程中,静电力对氚核做的功最多B。
2018-2019版物理新设计同步教科版选修3-1讲义:第一章
习题课三带电粒子在电场中的运动带电粒子在电场中的直线运动[要点归纳]1.关于带电粒子在电场中的重力(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外,此类粒子一般不考虑重力(但并不忽略质量)。
(2)带电微粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力。
2.加速问题处理的方法和思路(1)根据带电粒子所受的力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度、位移等。
(2)一般应用动能定理来处理问题,若带电粒子只受电场力作用:①若带电粒子的初速度为零,则qU=12mv2,末速度v=2qUm。
②若粒子的初速度为v0,则qU=12mv2-12mv2,末速度v=v20+2qUm。
[精典示例][例1] 一个电子(质量为9.1×10-31kg,电荷量为1.6×10-19C)以v0=4.0×118 m/s 的初速度沿着匀强电场的电场线方向飞入匀强电场,已知电场强度大小E=2.0×118 N/C,不计重力,求:(1)电子在电场中运动的加速度大小;(2)电子进入电场的最大距离;(3)电子进入电场最大距离的一半时的动能。
解析(1)电子沿电场线的方向飞入,仅受电场力作用,做匀减速运动,由牛顿第二定律得:qE=ma,得a=qEm=3.5×1016 m/s2。
(2)电子做匀减速直线运动,由运动学公式得:v 20=2ax 所以x =v 202a =2.28×10-2 m 。
(3)电子进入电场最大距离的一半时的动能为E k ,根据动能定理得-eE ·12x =E k -12mv 20,代入数据得E k =3.6×10-16 J 。
答案 (1)3.5×1016 m/s 2 (2)2.28×10-2 m (3)3.6×10-16 J1.带电粒子在电场中做直线运动(1)匀速直线运动:此时带电粒子受到的合外力一定等于零,即所受到的电场力与其他力平衡。
2018年高中物理第1章静电场1.10深入理解电容器的电容习题新人教版.doc
2018年高中物理第1章静电场1.10深入理解电容器的电容习题新人教版深入理解电容器的电容(答题时间30分钟)1. 如图所示,一个质量为m、带电量为q的粒子从两带电平行金属板的正中间沿与匀强电场垂直的方向射入,不计粒子所受的重力,当粒子的入射速度为v时,它恰能穿过一电场区域而不碰到金属板上,现欲使质量为m、入射速度为v/2的粒子也能恰好穿过这一电场区域而不碰到金属板,在以下的仅改变某一物理量的方案中,不可行的是() A. 使粒子的带电量减少为原来的1/4 B. 使两板间所接电源的电压减小到原来的一半C. 使两板间的距离增加到原来的2倍D. 使两极板的长度减小为原来的一半 2. 已知一平行金属板电容器带电量为210-3C,两板间的电势差为2V,若使电容器的带电量增至410-3C,则电容器的电容为()A. 1103F B. 110-3F C. 210-3F D. 2103F 3. 如下图所示,两块完全相同的金属板A、B,金属板A与静电计相连,用一根与丝绸摩擦过的有机玻璃棒接触金属板A,静电计指针有一偏角,现让金属板B靠近金属板A,则静电计指针的偏角()A. 变大B. 变小C. 不变 D. 上述三种情况都有可能 4. 如图,A、B为水平放置的平行金属板,两板间距离为d,分别与电源两极相连。
两板的中央各有一小孔M和N,今有一带电质点,自A板上方间距离为d的P点由静止开始自由下落(P、M、N 在同一竖直线上),空气阻力和金属板的厚度不计,到达N 孔时速度恰好为零,然后沿原路径返回。
若保持两极板间电压不变,则()A. 若把A板向下平移一小段距离,质点自P点自由下落后仍能返回 B. 若把A 板向上平移一小段距离,质点自P点自由下落后仍能返回 C. 若把B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落 D. 若把B板向上平移一小段距离,质点自P点自由下落后将穿过N孔继续下落5. 如图所示,两平行金属板水平放置并接到电源上,一个带电微粒P位于两板间恰好平衡,现用外力将P固定住,然后使两板各绕其中点转过α角,如图中虚线所示,再撤去外力,则带电微粒P在两板间()A. 保持静止 B. 向左做直线运动C. 电势能不变D. 电势能将变小6. 如图,一平行板电容器的两极板与一电压恒定的电源相连,极板水平放置,极板间距为d,在下极板上叠放一厚度为l的金属板,其上部空间有一带电粒子P 静止在电容器中,当把金属板从电容器中快速抽出后,粒子P开始运动,重力加速度为g。
教科版高中物理必修第三册精品课件 第一章 静电场 习题课 带电粒子在电场中运动的四种题型
解得
ℎ
h1= 。
2
(4)点电荷 D 从 A 点下落到 B 点的过程中,由动能定理得
mg(4h-0.25h)+qUAB=0
可得
15
UAB=
4ℎ
C 处点电荷带正电,电场线由 C 点到 A 点,则 A 点的电势低于 B 点的电势。
针对训练1
(2022广东深圳期末)如图所示,两带电金属板间的电场可视为匀强电场,金
的速度为零,所以 6 s 时合速度为 1 m/s。
知识归纳
带电粒子在交变电场中运动问题的分析方法
(1)分段分析:按照时间的先后,分阶段分析粒子在不同电场中的受力情况
和运动情况,然后选择牛顿运动定律、运动学规律或功能关系求解相关问
题。
(2)v-t图像辅助:带电粒子在交变电场中运动情况一般比较复杂,常规的分
ΔEp=mg·2
=
1
mgd。
2
1
(4)从微粒进入金属板间到离开,根据动能定理: mgd+W
2
电
=0,得 W
1
电=- mgd。
2
知识归纳
分析带电体在重力、静电力作用下的类平抛运动的方法
带电体在重力、静电力作用下做类平抛运动,涉及带电粒子在电场中加速
和偏转的运动规律,利用运动的合成与分解把匀变速曲线运动转换为直线
。
=
0
2
=
60
,
,
4
=
,
2
2
(2)由此得1 =
2
2 =
kmax
故
kmin
0
=
20
2
2
0
【高中物理】2018-2019学年高中物理第一章静电场习题课电场的性质练习新人教版选修3-1.doc
习题课:电场的性质知识点一静电场中的物理量1.下列公式中,F、q、E、U、k、r和d分别表示静电力、电荷量、场强、电势差、静电力常量以及距离.①F=k,②E=k,③E=,④U=Ed.下列说法正确的是()A.它们都只对点电荷或点电荷的电场才成立B.①②③只对点电荷或点电荷的电场成立,④只对匀强电场成立C.①②只对点电荷成立,③对任何电场都成立,④只对匀强电场才成立D.①②只对点电荷成立,③④对任何电场都成立2.下列各物理量中,与试探电荷有关的量是()A.电场强度EB.电势φC.电势差UD.电场力做的功W知识点二电场线的理解与应用3.[2017·浙江湖州期中]空间分布一电场,如图LX1-1所示为其中一条电场线,A、B、C为电场线上的三点,箭头方向为各点的切线方向,则下列说法正确的是()A.A点的场强可能小于C点的场强B.A、B、C三点的切线方向为试探电荷在该位置的受力方向C.正点电荷从A点沿电场线运动到C点,电势能增减无法判断D.正点电荷在仅受电场力作用下从A处由静止释放后可能沿该电场线运动图LX1-14.如图LX1-2所示,实线表示电场线,虚线表示带电粒子运动的轨迹.带电粒子只受静电力的作用,运动过程中电势能逐渐减小,则能正确表示它运动到b处时的运动方向与受力方向的是()图LX1-2知识点三电场中的力电综合问题5.如图LX1-3所示,甲、乙两带电小球的质量均为m,所带电荷量分别为+q和-q,两球间用绝缘细线连接,甲球由绝缘细线悬挂在天花板上,在两球所在的空间有方向向左的匀强电场,电场强度为E,平衡时细线都被拉紧,则平衡时的位置可能是()图LX1-36.(多选)在光滑绝缘的水平桌面上,存在着方向水平向右的匀强电场,电场线如图LX1-4中实线所示.一初速度不为零的带电小球从桌面上的A点开始运动,到C点时,突然受到一个外加的水平恒力F作用而继续运动到B点,其运动轨迹如图中虚线所示,v表示小球经过C点时的速度.则()A.小球带正电B.恒力F的方向可能水平向左C.恒力F的方向可能与v方向相反D.在A、B两点小球的速率不可能相等图LX1-47.如图LX1-5所示,光滑绝缘的水平面上有带异种电荷的小球A、B,它们在水平向右的匀强电场中保持相对静止并共同向右做匀加速直线运动.设A、B的电荷量的绝对值依次为Q A、Q B,则下列判断正确的是()A.小球A带正电,小球B带负电,且Q A>Q BB.小球A带正电,小球B带负电,且Q A<Q BC.小球A带负电,小球B带正电,且Q A>Q B 图LX1-5D.小球A带负电,小球B带正电,且Q A<Q B8.(多选)如图LX1-6所示,在光滑绝缘的水平桌面上方固定着电荷量大小相等的两个点电荷q1、q2,一个带电小球(可视为点电荷)恰好围绕O点在桌面上做匀速圆周运动.已知O、q1、q2在同一竖直线上,下列判断正确的是()A.圆轨道上的电势处处相等B.圆轨道上的电场强度处处相等C.点电荷q1对小球的库仑力是吸引力D.q1、q2可能为异种电荷图LX1-69.(多选)如图LX1-7所示,虚线框的真空区域内存在着沿纸面方向的匀强电场(具体方向未画出),一质子从bc边上的M点以速度v0垂直于bc边射入电场,从cd边上的Q点飞出电场,不计重力.下列说法正确的是()图LX1-7A.质子到Q点时的速度方向可能与cd边垂直B.不管电场方向如何,若知道a、b、c三点的电势,一定能确定d点的电势C.静电力一定对电荷做了正功D.M点的电势一定高于Q点的电势10.如图LX1-8所示,在光滑绝缘水平面上有三个孤立的点电荷Q1、Q、Q2,Q恰好静止,Q1、Q围绕Q做匀速圆周运动,在运动过程中三个点电荷始终保持共线.已知Q1、Q2分别与Q相2距r1、r2,不计点电荷间的万有引力,下列说法正确的是()图LX1-8A.Q1、Q2的电荷量之比为B.Q1、Q2的电荷量之比为C.Q1、Q2的质量之比为D.Q1、Q2的质量之比为11.[2017·铜陵一中期中]如图LX1-9所示,一质量为m、带电荷量为q的小球用绝缘细线悬挂在水平向右的匀强电场中,静止时悬线向左与竖直方向成θ角,重力加速度为g.(1)判断小球带何种电荷;(2)求电场强度E的大小;(3)若在某时刻将细线突然剪断,求经过t时间小球的速度大小v.图LX1-912.如图LX1-10所示,高为h的光滑绝缘直杆AD竖直放置,在D处有一固定的正点电荷,电荷量为Q.现有一质量为m的带电小球套在杆上,从A点由静止释放,运动到B点时速度达到最大值,到C点时速度正好又变为零,B、C和D相距分别为h、h,静电力常量为k,重力加速度为g,求:(1)小球的电荷量q和在C点处的加速度;(2)C、A两点间的电势差.图LX1-1013.[2018·湖北松滋一中期中]反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.已知静电场的方向平行于x轴,其电势φ随x的分布如图LX1-11所示,一质量m=1.0×10-20kg、电荷量q=1.0×10-9C的带负电的粒子从点(-1cm,0)由静止开始,仅在静电力作用下在x轴上往返运动.忽略粒子的重力等因素,求:(1)x轴左侧电场强度E1和右侧电场强度E2的大小之比;(2)该粒子运动的最大动能E km;(3)该粒子运动的周期T.图LX1-111.C [解析]F=k和E=k对点电荷成立,定义式E=对任何电场都成立,U=Ed对匀强电场才成立,选项C正确.2.D [解析]电场强度E、电势φ和电势差U反映电场的性质,与试探电荷无关,而电场力做的功W=qU,与q有关,选项D正确.3.A [解析]不知电场线分布的疏密程度,无法比较场强大小,选项A正确;A、B、C三点的切线方向为电场强度的方向,与正的试探电荷在该位置的受力方向相同,选项B错误;正点电荷从A点沿电场线运动到C点,电场力做正功,电势能减小,选项C错误;正点电荷在仅受电场力作用下从A处由静止释放后不可能沿该电场线运动,选项D错误.4.D [解析]根据曲线运动力与轨迹的关系,合力指向轨迹弯曲的内侧,选项A错误;带电粒子只受静电力作用,故力与电场线共线,选项C错误;根据运动过程中粒子的电势能逐渐减小,可知静电力做正功,则静电力与速度方向的夹角应为锐角,选项B错误,选项D正确.5.A [解析]以甲、乙为整体,悬线1的拉力竖直向上,与重力平衡;对小球乙,重力和匀强电场的静电力的合力指向右下方,则悬线2的拉力和库仑引力的合力指向左上方,选项A 正确.6.AB [解析]由小球从A到C的轨迹可得,小球所受静电力向右,带正电,选项A正确;小球从C到B,合力指向轨迹凹侧,当水平恒力F水平向左时合力可能向左,符合要求,当恒力F 的方向与v方向相反时,合力背离凹侧,不符合要求,选项B正确,选项C错误;小球从A到B,由动能定理,当静电力与恒力F做功代数和为0时,在A、B两点小球的速率相等,选项D 错误.7.D [解析]A、B小球向右做匀加速直线运动,整体的加速度水平向右,对B,A对它的库仑力是引力,则匀强电场的静电力水平向右,即B带正电,A带负电,由牛顿第二定律,有EQB-k=mBa,k-EQA=mAa,联立可得,QA<QB,选项D正确.8.ACD [解析]带电小球做匀速圆周运动,合力指向O点,大小一定,则小球受重力、q1的库仑引力和q2的库仑力(可能是引力,也可能是斥力),且q1和q2两电荷对小球作用力的合力大小一定,圆轨道上的场强大小一定,方向不同,选项B错误,选项C、D正确;小球运动过程中静电力不做功,电势能不变,圆轨道上的电势处处相等,选项A正确.9.AB [解析]若质子沿ba方向减速运动的同时,沿bc方向加速运动,到达Q点时可能沿ba方向的速度恰好减小为零,则其速度方向与cd垂直,A正确;根据电势差和场强的关系式U=Ed,有φa-φb=φd-φc,B正确;由于电场方向不确定,故无法判断M、Q两点的电势高低,也无法判断静电力做功的正负,C、D错误.10.C [解析]由于Q静止,有=,所以=,选项A、B错误;对Q1,有-=m1ω2r1,对Q2,有-=m2ω2r2,得m1r1=m2r2,故=,选项C正确.11.(1)负电荷(2)(3)[解析](1)对小球受力分析,小球受到重力、静电力和悬线的拉力,静电力向左,与场强方向相反,故小球带负电荷.(2)根据共点力平衡条件,有qE=mgtanθ故E=.(3)剪断细线后,小球受到重力和静电力,合力恒定,故做初速度为零的匀加速直线运动.根据牛顿第二定律,有F合=ma其中F合=根据运动学公式,有v=at联立解得v=.12.(1)g,方向竖直向上(2)[解析](1)小球运动到C点时速度又变为零,可判断出小球带正电.小球在B点时速度达到最大值,有mg=解得q=在C点,由牛顿第二定律得-mg=ma解得a=g,方向竖直向上.(2)从A到C过程,由动能定理得mg+qUAC=0可得UCA=-UAC=.13.(1)1∶2 (2)2.0×10-8J (3)3.0×10-8s[解析](1)由图可知,左侧电场强度E1=V/m=2.0×103V/m右侧电场强度E2=V/m=4.0×103V/m所以=.(2)粒子运动到原点时速度最大,根据动能定理有qE1x=Ekm其中x=1.0×10-2m解得Ekm=2.0×10-8J.(3)设粒子半个周期内在原点左、右两侧运动的时间分别为t1、t2,在原点时的速度为vm,由运动学公式有vm=t1vm=t2Ekm=mT=2(t1+t2)联立解得T=3.0×10-8s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题课:带电粒子在电场中的运动知识点一带电粒子在电场中的加速和偏转1.(多选)如图LX2-1所示,一个质量为m、电荷量为q的粒子从两带电平行板的正中间沿与场强垂直的方向射入,不计粒子所受的重力.当粒子的入射速度为v时,它恰能穿过这一电场区域而不碰到金属板上.现要使质量为m、入射速度为的粒子也能恰好穿过这一电场区域而不碰到金属板,若只能改变一个物理量,下列做法可行的是()图LX2-1A.使粒子所带的电荷量减小为原来的B.使两极板间的电势差减小为原来的一半C.使两板间的距离增加为原来的2倍D.使两极板的长度减小为原来的一半2.如图LX2-2所示,两极板与电源相连接,电子从负极板边缘沿垂直于电场方向射入匀强电场,且恰好从正极板的边缘飞出,现在使电子的入射速度变为原来的两倍,使电子仍从原位置射入,若电子仍从正极板的边缘飞出,则两极板的间距应变为原来的()A.2倍B.4倍C.D.图LX2-23.氕、氘、氚原子核的初速度为零,经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,如图LX2-3所示.下列说法正确的是()A.经过加速电场的过程中,静电力对氚核做的功最多B.经过偏转电场的过程中,静电力对氚核做的功最多C.三种原子核打在屏上的速度一样大D.三种原子核都打在屏的同一位置上图LX2-3知识点二带电粒子在周期性变化的电场中的运动4.(多选)如图LX2-4甲所示,在A、B两极板间加上如图乙所示的交变电压.A板的电势为0,一质量为m、电荷量为q的电子在t=时刻进入两极板,仅在静电力作用下,由静止开始运动,恰好能到达B板,则()图LX2-4A.A、B两板间的距离为B.电子在两板间的最大速度为C.电子在两板间做匀加速直线运动D.若电子在t=时刻进入两极板,它将时而向B板运动,时而向A板运动,最终打在B板上5.(多选)如图LX2-5甲所示,电子静止在两平行金属板A、B间的a点,从t=0时刻开始A、B 板间电势差按如图乙所示规律变化,则下列说法中正确的是 ()图LX2-5A.电子可能在极板间做往复运动B.若t1时刻电子还未从小孔P飞出,则t1时刻电子具有最大动能C.电子能从小孔P飞出,且飞出时的动能不大于eU0D.电子不可能在t2~t3时间内从小孔P飞出知识点三电场与重力场的综合6.如图LX2-6所示,在方向水平向右的匀强电场中,细线一端固定,另一端拴一带正电小球,使球在竖直面内绕固定端O做圆周运动.不计空气阻力,静电力和重力的大小刚好相等,细线长为r.当小球运动到图中位置A时,细线在水平位置,拉力F T=3mg.重力加速度大小为g,则小球速度的最小值为()A.B.2C.D.图LX2-67.(多选)如图LX2-7所示,M、N是竖直放置的两平行金属板,分别带等量异种电荷,两板间产生一个水平向右的匀强电场,场强为E,一质量为m、电荷量为+q的微粒以初速度v0沿竖直向上方向从与两板等距的A点射入匀强电场中,在静电力的作用下垂直打到N板上的C点,已知AB=BC.不计空气阻力,则可知()A.微粒在电场中做曲线运动B.微粒打到C点时的速率与射入电场时的速率相等C.M、N板间的电势差为D.M、N板间的电势差为图LX2-78.(多选)如图LX2-8所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左,不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小图LX2-89.如图LX2-9所示,平行金属板A、B水平正对放置,分别带等量异号的电荷.一带电微粒沿水平方向射入板间,在重力和静电力共同作用下运动,其运动轨迹如图中虚线所示,那么 ()A.若微粒带正电荷,则A板一定带正电荷B.微粒从M点运动到N点,其电势能一定增加C.微粒从M点运动到N点,其动能一定增加D.微粒从M点运动到N点,其机械能一定增加图LX2-910.如图LX2-10所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,一带负电的小球从高为h的A处由静止开始下滑,沿轨道ABC运动后进入圆环内做圆周运动.已知小球所受静电力是其重力的,圆环半径为R,斜面倾角为θ=53°,轨道水平段BC长度s BC=2R.若使小球在圆环内恰好能做完整的圆周运动,则高度h为() 图LX2-1011.A.2R B.4R C.10R D.17R11.如图LX2-11所示,静止的电子在加速电压U1的作用下从O经加速从P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子射出电场的位置不发生变化,应该 ()A.使U2变为原来的2倍B.使U2变为原来的4倍C.使U2变为原来的倍D.使U2变为原来的图LX2-1112.(多选)两个共轴的半圆柱形电极间的缝隙中存在一沿半径方向的电场,如图LX2-12所示.带正电的粒子流由电场区域边缘的M点射入电场,沿图中所示的半圆形轨道通过电场并从另一边缘的N点射出,由此可知()A.若入射粒子的电荷量相等,则出射粒子的质量一定相等B.若入射粒子的电荷量相等,则出射粒子的动能一定相等图LX2-12C.若入射粒子的比荷相等,则出射粒子的速率一定相等D.若入射粒子的比荷相等,则出射粒子的动能一定相等13.如图LX2-13所示,半径为r的绝缘细圆环的环面固定在水平面上,场强为E的匀强电场与环面平行.一电荷量为+q、质量为m的小球穿在环上,可沿环做无摩擦的圆周运动,若小球经过A点时,速度v A的方向恰与电场方向垂直,且圆环与小球间沿水平方向无力的作用,求:(1)速度v A的大小;(2)小球运动到与A点对称的B点时对环在水平方向的作用力的大小.图LX2-1314.[2017·广东高州中学期中]如图LX2-14所示,在真空中,沿水平方向和竖直方向建立直角坐标系xOy,在x轴上方有一沿x轴正方向的匀强电场E(电场强度E的大小未知).有一质量为m、带电荷量为+q的小球从坐标原点O由静止开始自由下落,当小球运动到P(0,-h)点时,在x轴下方突然加一竖直向上的匀强电场,其电场强度与x轴上方的电场强度大小相等.若小球从P返回到O点与从O点下落到P点所用的时间相等,重力加速度为g,试求:(1)小球返回O点时的速度大小;(2)匀强电场的电场强度E的大小;(3)小球运动到最高点时的位置坐标.图LX2-141.ACD [解析]设金属板长为L,两极板间的距离为d,两极板间的电势差为U,依题意有··=,即mv2d2=qUL2,要使粒子恰好穿过电场区域,必须满足上式,因此可使q或U减小为原来的,选项A正确,选项B错误;也可使d增大为原来的2倍,选项C 正确;还可使L减小到原来的,选项D正确.2.C [解析]电子在两极板间做类平抛运动,若电子仍从正极板的边缘飞出,则水平方向有l=v0t,所以t=,竖直方向有d=at2=t2=,故d2=,即d∝,C正确.3.D [解析]三种原子核带电荷量相同,故在同一加速电场中,静电力对它们做的功都相同,A 错误;由于质量不同,所以三种原子核打在屏上的速度不同,C错误;根据偏转距离公式y=或偏转角公式tanθ=,可知偏转距离或偏转角与带电粒子无关,在同一偏转电场中,静电力对它们做的功也相同,故B错误,D正确.4.AB [解析]电子在静电力作用下,加速度大小不变,方向变化,选项C错误;电子在t=时刻进入两极板,先加速后减速,在t=时刻到达B板,设A、B两板的间距为d,则·=,解得d=,选项A正确;在t=时速度最大,则vm=·=,选项B正确;若电子在t=时刻进入两极板,在~内电子做匀加速运动,位移x=·=>d,说明电子会一直向B板运动并打在B板上,不会向A板运动,选项D错误.5.BC [解析]若电子在电场中运动的时间大于电势差变化的一个周期,则电子在0~t1时间内向B板加速,在t1~t2时间内电子减速,在t2时刻速度恰好为零,之后电子会重复上述运动,所以电子一直向B板运动,直到从小孔P穿出,A错误;若t1时刻电子还未从小孔P飞出,则t1时刻电子具有最大动能,B正确;电子穿出小孔P的时刻不确定,但穿出时的动能不大于eU0,C正确,D错误.6.C [解析]小球在A点,FT+Eq=m,Eq=mg,则速度vA=2,由A到小球做圆周运动的等效最高点,由动能定理得Eqr(1-cos45°)-mgrsin45°=m-m,解得vmin=,选项C正确.7.AB [解析]由题意可知,微粒受水平向右的静电力qE和竖直向下的重力mg作用,合力与v0不共线,所以微粒做曲线运动,A正确;因AB=BC,即·t=·t,故vC=v0,B正确;由q·=m,得U==,C错误;由mg=qE,得q=,代入U=,得U=,D错误.8.BC [解析]对小球受力分析,小球受重力、静电力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,选项A错误,选项B正确;在运动的过程中,合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,选项C正确,D错误.9.C [解析]由于不知道重力和静电力大小关系,所以不能确定静电力方向,不能确定微粒电性,也不能确定静电力对微粒做功的正负,选项A、B、D错误;根据微粒偏转方向可知微粒所受合外力一定竖直向下,则合外力对微粒做正功,由动能定理知微粒的动能一定增加,选项C 正确.10.C[解析]小球所受的重力和静电力均为恒力,故两力可等效为一个力F==mg,方向与竖直方向的夹角为37°偏左下.若使小球在圆环内恰好能做完整的圆周运动,即通过等效最高点D时小球与圆环间的弹力恰好为0,由圆周运动知识可得mg=m;由A到D的过程由动能定理得mg(h-R-Rcos37°)-mg(htan37°+2R+Rsin37°)=m,解得h=10R,故选项C正确,选项A、B、D错误.11.A [解析]电子加速过程,有qU1=m,电子偏转过程,有y=·,联立解得y=,选项A正确.12.BC [解析]由图可知,粒子在电场中做匀速圆周运动,静电力提供向心力,qE=m,得R=,R、E为定值,若q相等,则mv2一定相等;若相等,则速率v一定相等,但动能不一定相等,故B、C正确.13.(1)(2)6qE[解析](1)在A点,小球在水平方向只受静电力作用,根据牛顿第二定律得qE=m所以小球在A点的速度vA=.(2)在小球从A到B的过程中,根据动能定理,静电力做的正功等于小球动能的增加量,即2qEr=m-m小球在B点时,根据牛顿第二定律,在水平方向有FB-qE=m解以上两式得小球在B点受到环的水平作用力FB=6qE由牛顿第三定律知,球对环在水平方向的作用力大小FB'=6qE.14.(1)2(2)(3)(4h,16h)[解析](1)设小球从O点运动到P点所用时间为t,在P点的速度为v1,返回O点时的速度为v2,则h=gt2解得t=v1=gt=由运动学公式得h=t解得v2=2.(2)由牛顿第二定律得F-mg=ma其中a==3g则E==.(3)在竖直方向,有y0==4h设小球进入x轴上方运动到最高点所用时间为t2,则t2==2由牛顿第二定律得ax===4g则x0=ax=16h所以小球运动到最高点时的位置坐标为(4h,16h).。