粉末注射成型技术介绍

合集下载

粉末注塑和粉末冶金工艺介绍

粉末注塑和粉末冶金工艺介绍

粉末注塑和粉末冶金工艺介绍
粉末冶金工艺是一种利用金属粉末或者金属合金粉末作为原料,通过成型和烧结等工艺制备金属零部件的方法。

而粉末注塑则是粉
末冶金工艺的一种分支,它利用注射成型技术将金属粉末或者金属
合金粉末注入模具中,经过高压成型后再进行烧结,最终得到成型
的零部件。

粉末冶金工艺具有以下几个特点:
1. 可以制备复杂形状的零部件,粉末冶金工艺可以制备形状复杂、内部结构精细的零部件,因为粉末可以充分填充模具的所有空隙,从而制备出复杂的形状。

2. 原料利用率高,粉末冶金工艺可以充分利用原料,减少浪费,因为制备零部件时几乎不需要进行切削加工,减少了原料的浪费。

3. 可以制备高性能材料,通过粉末冶金工艺可以制备出高性能
的金属材料,比如高强度、高耐磨、高温等特性的材料,满足不同
工程领域的需求。

粉末注塑作为粉末冶金工艺的一种应用,具有以下特点:
1. 成本低,相比传统的金属加工工艺,粉末注塑可以减少原材
料浪费和加工成本,从而降低零部件的制造成本。

2. 生产效率高,粉末注塑可以批量生产零部件,提高生产效率,适用于大规模生产。

3. 可以制备复杂形状的零部件,粉末注塑技术可以制备出复杂
形状的零部件,满足不同工程领域对零部件形状的需求。

总的来说,粉末冶金工艺和粉末注塑技术在制备金属零部件方
面具有独特的优势,可以满足不同领域对于零部件性能和形状的需求,有着广泛的应用前景。

金属粉末的注射成型

金属粉末的注射成型
纳米金属粉末
具有极高的表面积和活性,能够提高 材料的力学性能和电磁性能,为金属 粉末注射成型的发展提供了新的方向 。
材料性能与成型工艺的关系
1 2 3
流动性
金属粉末的流动性直接影响注射成型的充模能力 和制件质量,流动性好的粉末有利于提高制件的 光洁度和尺寸精度。
压缩性
金属粉末的压缩性决定了其在模具内的填充密度 和制件的致密度,压缩性好的粉末能够提高制件 的机械性能。
医疗器械领域
制造个性化医疗器械和植入物,满足医疗行业对个性化、高性能 和高安全性的需求。
感谢您的观看
THANKS
注射成型操作
将混合料加热至流动状态,注入 模具中,在压力和温度的作用下, 混合料填充模具并硬化定型。
后处理
脱脂
烧结
通过加热或化学方法将粘结剂从金属粉末 中分解、去除,以获得纯净的金属制品。
将脱脂后的金属粉末制品在高温下进行烧 结,使金属粉末颗粒之间形成冶金结合, 提高制品的强度和性能。
热处理
表面处理
度和复杂度。
新型粘结剂的开发
02
研究新型粘结剂,以提高金属粉末的粘结效果,降低成型难度
和成本。
连续注射成型技术
03
开发连续注射成型技术,实现金属粉末的连续加工,提高生产
效率和降低能耗。
新材料的应用与开发
高性能金属粉末
研究开发高性能金属粉末,如钛合金、镍基高温 合金等,以满足高端制造业的需求。
复合材料的应用
详细描述
粉末流动性问题通常表现为注射压力不足、填充不均匀、成 型时间延长等。为了解决这一问题,可以采用改善粉末粒度 分布、降低粉末含水量和加入润滑剂等方法,以提高粉末的 流动性。
成型精度问题

金属粉末的注射成型课件

金属粉末的注射成型课件

金属粉末的注射成型课件金属粉末注射成型(Metal Powder Injection Molding,简称MIM)是一种用于生产精密金属部件的先进制造技术。

它将金属粉末与聚合物结合,经过注射成型、脱蜡、烧结等多个工序,最终得到具有复杂形状和精确尺寸的金属零件。

以下是针对MIM的课件,详细介绍了其工艺流程、材料选择、应用领域等相关内容。

一、MIM工艺流程1.原料配比:根据零件的要求和性能指标,选取合适的金属粉末和粘结剂进行混合。

2.注射成型:将混合物注入金属注射机中,通过高压注射技术将混合物注入模具中,形成绿体。

3.脱蜡:将绿体在特定温度下进行脱蜡处理,去除粘结剂,得到蜡模复制体。

4.烧结:将蜡模复制体放入高温炉中进行烧结,使金属粉末颗粒结合,形成致密的金属零件。

5.后处理:包括去除余蜡、表面处理、热处理等工序,以提高零件的强度和耐磨性。

6.检测和质量控制:对成品进行尺寸、力学性能、表面质量等方面的检测,确保产品质量。

二、MIM材料选择1.金属粉末:常见的金属粉末有不锈钢、低合金钢、铜合金、钛合金等。

根据零件的应用环境和要求,选择合适的金属材料。

2.粘结剂:粘结剂在成型过程中起到连接金属粉末的作用,通常选择热融性较好的有机聚合物作为粘结剂。

常用的粘结剂有石蜡、聚苯乙烯、聚乙烯等。

3.添加剂:为了改善金属粉末的流动性、可压性和烧结性能,常在原料中添加一定量的添加剂,如润滑剂、增塑剂等。

三、MIM应用领域1.电子通讯领域:MIM技术可制造微型模块、连接器和天线等小型结构件,提高电子产品的性能和可靠性。

2.汽车工业:MIM技术可制造汽车部件,如汽车发动机的传感器、变速器的齿轮、刹车系统的活塞等,提高汽车的性能和安全性。

3.医疗器械领域:MIM技术可制造医疗器械部件,如植入式人工关节、牙科器械等,具有高精度、复杂形状和生物相容性的特点。

4.工具制造领域:MIM技术可制造锥度齿轮、刀具、模具等精密工具,应用于航空航天、模具制造等领域。

CIM陶瓷粉末注射成型技术ppt课件

CIM陶瓷粉末注射成型技术ppt课件

脱脂工艺
• 脱脂是通过加热及其它物理方法将成型体内的有机 物排除并产生少量烧结的过程。与配料、成型、烧 结及陶瓷部件的后加工过程相比,脱脂是注射成型 中最困难和最重要的因素。脱脂过程不正确的工艺 方式和参数使产品收缩不一致,导致变形、开裂、 应力和夹杂。脱脂对其后烧结也很重要,在脱脂过 程中产生的裂纹和变形不能通过烧结来弥补。粘结 剂和脱脂是联系在一起的,粘结剂决定脱脂方式。 目前的脱脂工艺除了传统的热脱脂、溶剂脱脂外, 还有最近几年发展起来的催化脱脂以及水基萃取脱 脂.
陶瓷粉末注射成型技术应用
随着CIM技术的快速发展,其已在一些方面得到了应用 • 瑞士三分之一的手表表壳采用CIM技术生产,材料是称永不磨损的
陶瓷材料氧化锆 • 日本已将内孔直径为0.015mm的氧化锆光纤接头实现产业化,每年
垄断了全球数亿美元的市场 • 美国已实现氧化锆理发推剪的生产和发动机中氮化硅零部件的应用
CIM中几种常见的粘结剂组成
近年来国际上各种陶瓷粉末注射成型中经常用到的较典型的粘结剂,从表中可以
看出,CIM中用粘结剂体系还主要属于热塑性多组分体系。
CIM混料制备
• 混料是粉末和粘结剂的混合物。在整个注射成型的工艺中,粉末和 聚合物粘结剂混合物的制备是最重要的步骤之一。工艺要求混料具 有良好的均匀性、良好的流变特性,以及好的脱脂特征。只有这三 个方面都照顾到的粉末注射系统才是一个成功的体系。
• 粉末注射成型源于20世纪20年代的一种热压铸成型技术,当时已用于生产汽车 火花塞等产品。
• 20世纪50年代,用环氧树脂作粘结剂试制了大量的硬质合金、难熔金属、陶瓷 等,预示着此技术在应用中的地位。但因理论欠缺,加之制粉、成型和烧结等 技术存在一系列不足,离应用的距离还比较远。

金属粉末注射成型技术在轻武器制造上的应用

金属粉末注射成型技术在轻武器制造上的应用

金属粉末注射成型技术在轻武器制造上的应用摘要:本文通过对金属粉末注射成型技术进行介绍并以此实施作为基础,对比过去传统的加工方式,在加工经济性以及生产效率等各方面的差异,并通过对金属粉末注射成型技术在轻武器制造方面的成功应用案例进行分析,体现该技术在轻武器以及各类精细复杂结构零件方面所不可比拟的重要优势,也借此提出金属粉末注射成型技术在具体应用过程中需要注意并且尚未解决的问题,为将来更加深远的发展奠定基础。

关键词:金属粉末注射成型技术;轻武器制造一、金属粉末注射成型技术概述金属粉末注射成型技术和陶瓷粉末注射成型技术组成了粉末注射成型技术,主要是运用模具成型的原理,将现代塑料注射成型技术融入到粉末冶金领域而形成的一种新型粉末冶金技术。

主要特征是将金属粉末或者陶瓷粉末通过注释使得成型,通过一系列的加工处理之后形成具体型状。

金属粉末注射成型技术的主要工艺是将固体的粉末和有机粘结剂进行充分混合,在一定的条件下进行加热塑化过后注射入具体的模型内使其成型固化,该项技术作为一种可以用于制造各种精密零件的技术被广泛运用于各类航天航空以及具有精密零件制造需求的行业之中。

二、金属粉末注射成型技术的优势金属粉末注射成型技术作为一种可以制造各种精密零件的技术,具有传统加工方法所无法比拟的巨大优势,主要有以下几种。

第可以制造各种常规粉末冶金技术难以制造的各种精密,并且形状怪异的零件,各种螺纹,锥形等等都可以高质量的制作。

第二,利用金属粉末注射成型技术所制造的相关零件,大多数零件都不需要进行二次加工,大幅度提高了材料的利用效率。

第三,对于某些具有特殊要求极其精密的零件,能够尽可能的减少误差,使其更加符合制作要求,并且零件表面较为光滑。

第四,零件制造较为稳定,并且使用性能高能够反复利用,对于各类化学材料的处理等等都不会产生太大影响。

第五,金属粉末注射成型技术应用广泛并且原材料的利用效率较高,尽可能的缩短了工艺的流程提高了制造效率。

MIN金属粉末成型介绍

MIN金属粉末成型介绍

金属粉末注射成形MIM制品
பைடு நூலகம்
笔记本电脑铰链转角
MIM工艺手机类产品
锁配件(锁头.锁舌.按键.复杂异形部件
MIM金属注射成型产品
工艺特点
金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末 冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可 注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形 状的结构零件,能够快速准确地将设计思想物化为具有一定结构、 功能特性的制品,并可直接批量生产出零件,是制造技术行业一 次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无 切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工 艺制品、材质不均匀、机械性能低、不易成型薄壁、复杂结构件 的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的 金属零件。工艺流程金属粉末+粘结剂→混炼→注射成形→脱脂 →烧结→后处理 MIM工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论 上讲,颗粒越细,比表面积也越大,易于成型和烧结。而传统的 粉末冶金工艺则采用大于40μm的较粗的粉末。 有机胶粘剂作用是粘接金属粉末颗粒,使混合料在注射机料 筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。 因此,粘接剂的选择是整个粉末注射成型的关键。对有机粘接剂 要求: 1.用量少,用较少的粘接剂能使混合料产生较好的流变性; 2.不反应,在去除粘结剂的过程中与金属粉末不起任何化学 反应; 3.易去除,在制品内不残留。
分类
热处理 调湿处理
(1)热处理
热处理的实质:迫使冻结的分子链松弛,凝固的大 分子链段转向无规位置,消除部分内应力,提高结晶度, 稳定结晶结构,提高弹性模量,降低断裂延伸率。
(2)调湿处理
将刚脱模的制品放入水中,与空气隔绝、防止氧化。 调湿条件:90~110℃ 4h

粉末注射成型

粉末注射成型

粉末注射成型
粉末注射成型(Powder Injection Moulding,简称PIM)是一种将金属或陶瓷粉末通过加工制造成零件的技术。


个过程类似于传统的塑料注射成型,但使用的是金属或陶
瓷粉末。

整个过程包括以下步骤:
1. 材料准备:选择合适的金属或陶瓷粉末,并按照特定的
配方制备成所需的粉末混合物。

2. 注射成型:将粉末混合物装入注射机中,并通过高压将
粉末推入模具中。

模具通常是具有所需形状的两个半球体。

3. 球芯去除:等到粉末充填到模具后,球芯会自动脱落并
迅速冷却固化。

4. 焙烧:固化的零件需要经过焙烧过程,以去除残留的有
机物,并增加材料的密度和强度。

5. 精加工:将焙烧后的零件进行必要的后续加工,例如打磨、抛光等。

6. 检测和质量控制:对成品进行检测,确保其符合规定的
尺寸和质量标准。

粉末注射成型技术具有许多优点,例如可以生产形状复杂的零件,材料利用率高,生产效率高等。

它被广泛应用于汽车、医疗器械、工具等领域的零部件制造。

《金属粉末注射成型》课件

《金属粉末注射成型》课件
压缩性
金属粉末的压缩性对注射成型的充模过程和制件 质量有重要影响,压缩性好的粉末能够减小注射 压力和注射时间,提高生产效率。
松装密度与流动性关系
松装密度较高的粉末具有较好的流动性,有利于 提高制件的致密度和减小内应力。
热物理性能
金属粉末的热物理性能如熔点、热导率、热膨胀 系数等对注射成型的加热、冷却和制件性能有较 大影响,选择合适的热物理性能有助于优化注射 成型工艺和提高制件性能。
随着市场需求的多样化,金属粉末注射成 型技术将更加注重定制化和个性化生产, 满足不同客户的需求。
05
金属粉末注射成型工 艺优化
工艺参数优化
温度控制
优化温度参数,确保金属粉末在熔融和冷却过程中的 温度分布均匀,提高成型质量。
压力调整
合理设置注射和压制压力,以获得更好的密度和强度 。
注射速度与时间
优化注射速度和时间,确保金属粉末均匀填充模具并 减少内部缺陷。
科植入物等。
其他
金属粉末注射成型还可应用于 电子产品、珠宝等领域,生产
小型、复杂的金属零件。
02
金属粉末注射成型原 理
粉末制备
01
02
03
原材料选择
根据产品需求选择合适的 金属粉末,如不锈钢、钛 合金、镍基合金等。
粉末制备方法
通过化学或物理方法将原 材料细化成微米级粉末, 确保粉末的纯度、粒度和 流动性。
烧结与后处理
烧结
在保护气氛下将注射成型的金属零件 进行烧结,使金属粉末颗粒间形成冶 金结合,提高零件的强度和致密度。
后处理
根据需要,对烧结后的零件进行热处 理、机加工、表面处理等后处理操作 ,以满足产品性能和使用要求。
03
金属粉末注射成型材 料
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粉末注射成型技术介绍
粉末注射成形概述:
粉末注射成形(Powder Injection Molding,PIM)由金属粉末注射成形(Metal Injection Molding,MIM)与陶瓷粉末注射成形(Ceramics Injection Molding,CIM)两部分组成,它是一种新的金属、陶瓷零部件制备技术,它是将塑料注射成形技术引入到粉末冶金领域而形成的一种全新的零部件加工技术。

MIM的基本工艺步骤是:首先选取符合MIM要求的金属粉末和黏结剂,然后在一定温度下采用适当的方法将粉末和黏结剂混合成均匀的喂料,经制粒后再注射成形,获得成形坯(Green Part),再经过脱脂处理后烧结致密化成为最终成品(White Part)。

粉末注射成形技术的特点:
粉末注射成形能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷零部件。

该工艺技术利用注射方法,保证物料充满模具型腔,也就保证了零件高复杂结构的实现。

以往在传统加工技术中,对于复杂的零件,通常是先分别制作出单个零件,然后再组装;而在使用PIM技术时,可以考虑整合成完整的单一零件,这样大大减少了生产步骤,简化了加工程序。

1、与传统的机械加工、精密铸造相比,制品内部组织结构更均匀;与传统粉末冶金压制∕烧结相比,产品性能更优异,产品尺寸精度高,表面光洁度好,不必进行再加工或只需少量精加工。

金属注射成形工艺可直接成形薄壁结构件,制品形状已能接近或达到最终产品要求,零件尺寸公差一般保持在±0.10%~±0.30%水平,特别对于降低难以进行机械加工的硬质合金的加工成本、减少贵重金属的加工损失尤其具有重要意义。

2、零部件几何形状的自由度高,制件各部分密度均匀、尺寸精度高,适于制造几何形状复杂、精度密高及具有特殊要求的小型零件(0.2~200g)。

3、合金化灵活性好,对于过硬、过脆、难以切削的材料或原料铸造时有偏析或污染的零件,可降低制造成本。

4、产品质量稳定、性能可靠,制品的相对密度可达95%~100%,可进行渗碳、淬火、回火等热处理。

5、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可连续大批量规模化生产。

生产过程无污染,为清洁工艺生产。

MIM技术使用的模具,其寿命与塑料注射成形模具相似。

由于使用金属模具,MIM适于零件的大批量生产;由于利用注射机成形产品毛坯,极大地提高了生产效率,降低了成本,而且注射成形产品一致性好、重复性好,从而为大批量和规模化工业生产提供了保证,再者一模多腔可进一步提高效率和降低毛坯的成形成本。

6、制品微观组织均匀,密度高,产品强度、硬度、伸长率等力学性能高,耐磨性好,耐疲劳,组织均匀,性能好。

在粉末冶金压制过程中,由于模壁与粉末以及粉末与粉末之间的摩擦力,使得压制压力分布不均匀,也就导致了压制毛坯在微观组织的不均匀、材料致密性差、密度低,严重影响了产品的力学性能;而MIM是一种流体成形工艺,粘结剂的存在保证了粉末均匀排布,从而可消除毛坯微观组织的不均匀,进而使烧结制品密度接近材料的理论密度,从而使强度增加、韧性加强,延展性、导电性、导热性得到改善,综合性能提高。

能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷等零部件,产品成本低,光洁度好,表面粗糙度可达到Ra 0.80~1.6μm,精度高,一般无需后续加工。

MIM技术的特色:
与传统工艺相比,MIM技术具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。

下图1与下表1、表2所示为MIM和其他金属加工方法的比较,其中图1表明了各种加工方法与零部件产量和复杂程度的关系。

材料选择粉末注射成型零件通常不需要进行再次性机械加工。

对于机械加工越难的材料,粉末注射成型工艺越有优势。

对不锈钢,软磁合金,铁镍材料,钨合金,硬质保金还有工具钢,特殊用途合金均能应用。

粉末注射成型零件也可以进行硬化处理,如镀镍,镀硬铬等的所有表面处理工艺都能采用。

工艺介绍首先将固体金属或陶瓷粉末与有机粘结剂均匀混练后得到喂料,经制粒后在加热塑化状态下(约150℃)用注塑成形机把喂料注入模腔内固化成形得到注射成形坯,然后用化学或热分解的方法将注射坯中的粘结剂脱除,最后经真空炉或气氛炉将产品烧结致密化,对部分需要后处理的产品再进行后工序处理,得到最终形状和性能的产品。

工艺流程
粉末
混炼制粒注射成形脱脂烧结后处理产品
粘结剂
工艺说明:
使用的原料粉末通常在1--20微米;
低的注射压力,一般不大于1000psi;
低的模注射温度,大约150C;
从注射胚到烧结胚尺寸收缩达到约20%;
最终产品密度达到理论密度的95%-100%;。

相关文档
最新文档