(完整版)正比例和反比例练习题及答案
数学正比例和反比例试题答案及解析

数学正比例和反比例试题答案及解析1.在对圆柱体的认识中,有侧面积、体积公式推导、体积公式,大家一起想一想其中有没有成比例关系的量.圆锥体呢?【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为 ch=圆柱的侧面积(一定),底面周长和高成反比例;圆柱的体积 V=sh(或πr2h),当体积一定时,底面积和高成反比例;圆锥的体积V=πr2h=sh,当体积一定时,底面积和高成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.判断题中的两种量是不是成比例,成什么比例,并说明理由.如果 m:6=8:n,那么m 和 n.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为m:6=8:n,则mn=6×8=48(一定),是乘积一定,那么m和n成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.判断两个量是否成正比例或反比例,说明理由:房间的面积一定,铺地砖的块数与每块地砖的面积.【答案】成反比例.【解析】判断铺地砖的块数与每块地砖的面积是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:每块地砖的面积×块数=房间的总面积(一定),也就是每块地砖的面积和块数的乘积一定,符合反比例的意义,所以每块地砖的面积和块数成反比例.点评:两种相关联的量,一种量变化,另一种量随着变化,如果这两种量相对应的积一定,这两种量叫做成反比例的量,它们的关系叫成反比例的关系,用字母表示为yx=k(一定).4.判断变化的量是否成正比例,说明理由.圆的面积和半径.【答案】不成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.判断题中两种量是否成比例:每袋面粉的质量一定,面粉的总质量和袋数.理由:.【答案】正比例,面粉的总质量÷面粉的袋数=每袋面粉的质量(一定).【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为面粉的总质量÷面粉的袋数=每袋面粉的质量(一定),符合正比例的意义,所以每袋面粉的质量一定,面粉的总质量和袋数成正比例,点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.判断变化的量是否成正比例,说明理由.一个因数一定,积和另一个数因数.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为积:另一个因数=一个因数(一定),是积和另一个因数对应的比值一定,所以积和另一个因数成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.判断两种量成什么比例,并说明理由:x=8y,x与y.【答案】成正比【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:成正比例;因为x=8y,x÷y=8(一定),x与y成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.8.先观察下表,再判断正方形周长和边长成正比例吗?为什么?正方形面积和边长成正比例吗?为什么?【答案】成正比例;不成正比例【解析】(1)判断正方形的周长和边长是否成正比例,就看它们是不是比值一定,若比值一定,则成,否则,就不成;(2)判断正方形的面积和边长是否成正比例,就看它们是不是比值一定,若比值一定,则成,否则,就不成.解:(1)因为===…==4(一定),是正方形的周长和边长相对应的两个数的比值一定,符合成正比例的意义,所以正方形的周长和边长成正比例;(2)≠…(不一定);是正方形的面积和边长相对应的两个数的比值不一定,不符合成正比例的意义,所以正方形的面积和边长不成正比例.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.9.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?【答案】单价不变,数量与总价之间成正比例,需要13.5元.【解析】①每本的价格是1.5元,由此可以完成上表,从而完成统计图;②根据数量和总价之间的变化关系得出数量与总价成正比例的特点;③代入数据即可计算得出.解:(1)根据题意可得,每本的价格为1.5元,由此可完成下表:根据表格中数据可在右图中描点连线,得出统计图如右图:(2)单价没有变,数量与总价之间成正比例.(3)9×1.5=13.5(元),答:单价不变,数量与总价之间成正比例,如果买9本笔记本,需要13.5元.点评:此题考查了绘制折线统计图的方法,以及成正比例关系的量的特点.10.一辆汽车每时行90千米.(1)填下表:时间/时123456(3)时间和路成什么比例?为什么?(4)利用图象估计一下,2.5时行多少千米?行400千米大约需要多长时间?成正比例;225千米.4.5小时.【解析】(1)根据速度×时间=路程,列式计算;(2)根据统计表中的数据,先在图中描出时间和路程所对应的点,再把它们按顺序连起来即可;(3)因为汽车在公路上行驶的速度一定,是路程和时间的比值一定,所以时间和路程成正比例;(4)图象是一条经过原点的直线,从图象中可看出汽车2.5小时行(180+45)千米;行驶400千米用(4+0.5)小时.解:(1)90×2=180(千米),90×3=270(千米),90×4=360(千米),90×5=450(千米),90×6=540(千米);(2)根据数据边线后如下图:(3)时间和路程成正比例;因为汽车在公路上行驶的速度一定,是路程和时间的比值一定,所以时间和路程成正比例.(4)看图象可知,2.5小时行的千米数:180+90÷2,=180+45,=225(千米);行400千米的时间:4+1÷2,=4+0.5,=4.5(小时);答:2.5小时行驶225千米.行400千米大约需要4.5小时.点评:此题考查根据统计表中的信息,绘制成正比例关系的两种量的图象,再根据观察图象得出汽车4.5小时行的千米数和行驶440千米用的时间.11.题中的两个量成不成比例?成什么比例?每块地砖的面积一定,地砖的块数和铺地的面积..【答案】正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:用同样大小的地砖铺地,铺地面积÷地砖的块数=每块地砖的面积(一定),即地砖的块数和铺地面积的比值一定,所以地砖的块数和铺地的面积成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.题中的两个量成不成比例?成什么比例?工作时间一定,加工每个零件所用时间和加工零件的个数..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为加工零件的个数×加工一个零件所用的时间=工作时间(一定),符合反比例的意义,所以加工零件的个数和加工一个零件所用的时间成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.汽车行驶的时间和路程如下表.(1)完成表格,路程与时间成比例;(2)在图中描出表示路程和相应时间的点,然后把它们按顺序连起来.并估计一下行驶150km大约要用小时.【答案】(1)180,4,300,6.正比例.(2)2.5小时.【解析】(1)因为=60,=60,60是一定的数,代表速度,速度(一定),所以路程和时间成正比例,设要填的数为x,列出比例,求出x的值即可,同样求出其它要填的数;(2)时间:1小时,路程60千米;时间:2小时,路程120千米;时间:3小时,路程180千米;时间:4小时,路程240千米;时间:5小时,路程300千米;时间:6小时,路程360千米,描出表示路程和相应时间的点,然后把它们按顺序连起来.速度(一定),所以路程和时间成正比例,设行150千米用x小时,列并解比例即可.解:(1)因为=60,=60,因为60是一定的数,代表速度,速度(一定),所以路程和时间成正比例.设要填的数为x,=,x=180;答:3小时行180千米;设要填的数为y,=,60y=240,60y÷60=240÷60,y=4;答:行240千米需要4小时;设要填的数为a,=,a=300;答:5小时行300千米;设要填的数为b,=,60b=360,60b÷60=360÷60,b=6.答:行360千米需要6小时.(2)时间:1小时,路程60千米;时间:2小时,路程120千米;时间:3小时,路程180千米;时间:4小时,路程240千米;时间:5小时,路程300千米;时间:6小时,路程360千米,描出表示路程和相应时间的点,然后把它们按顺序连起来.因为速度一定,路程和时间成正比例,设大约要用x小时,=,60x=150,60x÷60=150÷60,x=2.5.答:大约要用2.5小时.点评:此题考查正比例的意义,即相关联的两个量,如果比值一定,这两个量成正比例关系.14.表中是普通客车硬座票价表.车票价格和所行里程成不成比例?为什么?里程(千米)票价(元)【答案】不成比例.【解析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:根据表格中的数据可以看出:车票价格和所行里程之间,既不是对应的乘积一定,它们的比值也不是定值,所以车票价格和所行里程不成比例.答:车票价格和所行里程不成比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,如果对应的比值和乘积都不一定时,这两个量不成比例.15.(2011•铁山港区模拟)直角三角形的两个锐角大小成反比例..【答案】×.【解析】判断直角三角形的两个锐角大小是否成反比例,就看它们是不是对应的乘积一定,若乘积一定,则成,否则,就不成.解:直角三角形的一个锐角度数+另一个锐角度数=90°(一定),是它们对应的“和”一定,不是乘积一定,所以直角三角形的两个锐角大小不成反比例;点评:本题考查成正、反比例的知识,判断时,就看两种量是对应的比值一定,是对应的乘积一定,还是其他的量一定,再做出解答.16.(2012•邗江区模拟)一辆汽车在高速公路上行驶的路程和时间如下表:(1)根据表中数据,在下图中描出时间和路程所对应的点,再把它们按顺序连起来.(2)是一定的量,时间和路程成比例.(3)根据图象判断5.5小时行千米.(4)甲、乙两地相距1375千米,照此速度需要行小时.【答案】(2)根据正比例的意义,速度一定(即比值一定),时间和路程成正比例;(3)110×5.5=605(千米);(4)1375÷110=12.5(小时);(2)速度、正;(3)605;(4)12.5.【解析】根据题意,速度一定,时间和路程成正比例;然后根据速度、时间、路程之间的关系列式解答.解:点评:此题考查了:折线统计图的绘制方法;成比例的量的判断;及根据时间、速度、路程三者之间的关系,解决实际问题.17.工作时间一定,完成每个零件所用的时间与完成零件的个数成反比例..【答案】正确.【解析】判断完成每个零件所用的时间与完成零件的个数是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.据此进行判断.解:因为完成每个零件所用的时间×完成零件的个数=总工作时间(一定),是对应的乘积一定,所以完成每个零件所用的时间与完成零件的个数成反比例;点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出判断.18.一幅地图的比例尺是,则在这幅地图上和成正比例.【答案】图上距离,实际距离.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:图上距离:实际距离=比例尺(一定),所以图上距离进而实际距离成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.要行的总路程一定,已经走过的路程和剩下的路程比例.【答案】不成.【解析】判断已经走过的路程和剩下的路程是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:已经走过的路程+剩下的路程=总路程(一定),也就是已经走过的路程和剩下的路程的和一定,既不是乘积一定,也不是商一定,不符合正、反比例的意义,所以已经走过的路程和剩下的路程既不成反比例又不成正比例.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量,关键是明确变量与定量之间的等量关系式.20.大米的总质量一定,卖出大米的质量和剩下大米的质量..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:卖出大米的质量+剩下大米的质量=大米的总质量(一定),是和一定,所以大米的总质量一定,卖出大米的质量和剩下大米的质量不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.21.被减数一定,减数和差成比例.(在横线里写上“正”“反”“不成”)【答案】不成.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:减数+差=被减数(一定),是和一定,不是比值或乘积一定,所以不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.22.互成倒数的两个数..【答案】反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为乘积是1的两个数,叫做互为倒数,即互成倒数的两个数的乘积是1,即乘积一定,所以互成倒数的两个数成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.23.判断是否成比例,成什么比例:长方形的宽一定,它的面积和长..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为长方形的面积=长×宽,所以长方形的面积÷长=宽(一定),即长方形的面积与长的比值一定,符合正比例的意义,所以一个长方形的宽一定,它的面积和长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.三(1)班的出勤率一定,全班人数和出勤人数.÷=因为和的一定,所以和正比例.【答案】正比例,出勤人数,全班人数,出勤率,出勤人数,全班人数,比值,出勤人数,全班人数.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为出勤人数÷全班人数=出勤率(一定),即出勤人数和全班人数的比值一定,所以全班人数和出勤人数成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.25.根据规律判断比例关系,并填空.X与Y.A.成正比例B.成反比例.【答案】B.X与Y成反比例;【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为3×4=5×2.4=12,即y和x的乘积一定,所以x和y成反比例;12÷2=6,12÷12=1,12÷10=1.2;X 2 3 5 1 10 …Y 6 4 2.4 12 1.2 …点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.26.正比例研究的是两种的量,一种量扩大,另一种量也随着;一种量缩小,另一种量也随着.它们扩大、缩小的规律是这两种相关联的量中的两个数的一定.【答案】相关联,扩大,缩小,相对应,比值.【解析】根据课本上给出的正比例的意义直接填出即可.解:正比例的意义是:正比例研究的是两种相关联的量,一种量扩大,另一种量也随着扩大;一种量缩小,另一种量也随着缩小.它们扩大、缩小的规律是这两种相关联的量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.关系式是=k(一定).点评:此题考查正比例的意义.27.根据下表中的数据填空.王师傅加工一批零件的情况如下表:时间(小12345…①表中和是两种相关联的量,随着的变化而变化.②写出任意两组这两种量相对应的两个数的比:(:)和(:).它们的比值是,这两组比的比值.③表中相关联的两种量的关系是=,因为这两种量相对应的两个数的一定,所以它们成比例.【答案】时间,产量,产量,时间;25,1,50,2,相等,25,工作效率;比值,正.【解析】(1)根据表得出:表中时间和产量是两种相关联的量,产量随着时间的变化而变化.(2)写出任意两组这两种量相对应的两个数的比,再求出比值即可;(3)表中相关联的两种量的关系是=工作效率,因为这两种量相对应的两个数的比值一定,所以它们成正比例.解:(1)表中时间和产量是两种相关联的量,产量随着时间的变化而变化.(2)25:1和50:2,比值是25:1=25÷1=25,50:2=50÷2=25;(3)表中相关联的两种量的关系是=工作效率,因为这两种量相对应的两个数的比值一定,所以它们成正比例;点评:本题主要考查了正比例的意义.28.两种相关联的量在变化过程中总是不变的,这两种量就是成反比例的量.【答案】乘积.【解析】据成反比例的意义可得,成反比例的两个量在变化时的规律是它们的积不变,由此即可选择正确答案.解:两种相关联的量在变化过程中乘积总是不变的,这两种量就是成反比例的量;点评:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种就叫做成反比例的量,它们的关系就是反比例关系.29.已知工作效率×工作时间=工作总量①如果工作总量一定,工作效率和工作时间成比例.②如果工作效率一定,工作总量和工作时间成比例.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:①因为工作效率×工作时间=工作总量,如果工作总量一定,工作效率和工作时间成反比例;②因为工作总量÷工作时间=工作效率,如果工作效率一定,工作总量和工作时间成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.30. Y=8÷X,X和Y 成比例关系;圆的周长与直径成比例关系.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为Y=8÷X,则XY=8(一定),所以X和Y成反比例关系;因为圆的周长÷直径=π(一定),所以圆的周长与直径成正比例关系;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.31.在一定的时间里,每分钟生产的零件和生产零件的总个数成正比..(判断对错)【答案】√.【解析】判断生产的总个数和每分钟生产的个数是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解:因为:总个数÷每分钟生产的个数=时间(一定),也就是生产的总个数和每分钟生产的个数的商一定,符合正比例的意义,所以生产的总个数和每分钟生产的个数成正比例.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量,关键是明确变量与定量之间的等量关系式.32.圆柱的高一定,圆柱的侧面积与底面直径成正比例..(判断对错)【答案】√.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆柱的侧面积÷πd=h,则:圆柱的侧面积÷d=πh,因为高一定,所以πh一定,即圆柱的高一定,圆柱的侧面积与底面直径成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.33.,则x和y 成比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为,则x:y=6(一定),所以x和y成正比例;。
六年级《正比例与反比例》(含答案)

【专项复习】六年级《正比例与反比例》1.判断下面的两个量成正比例、反比例还是不成比例.①圆的周长和半径.②圆的面积和半径.③正方形的周长和边长.④圆柱的侧面积一定,圆柱的高和底面的半径.⑤一个自然数和它的倒数.⑥比例尺一定,图上距离和实际距离.2.判断下面各题中的两个量,哪些成正比例?哪些成反比例,哪些不成比例?填入横线内.(1)正方形的周长与边长.(2)小丽步行上学的平均速度与所花时间.(3)一个人的身高和年龄.(4)三角形的面积一定,它的底和高.(5)一捆100米长的电线,用去的长度和剩下的长度..3.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?4.根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.(1)选择正确的答案序号填在( )中.表1中的两种量( ),表2中的两种量( ),表3中的两种量( ).A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用( )张纸,175张纸能装订( ) 本.5.下图中线段OA表示购买饮料应付金额与瓶数的关系,看图回答问题。
(1)购买饮料应付金额与瓶数成正比例吗?为什么?(2)观察图象,买4瓶饮料需要多少钱?45元可以买几瓶饮料?6.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为( ).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?7.文具盒每个售价8元,购买2个,3个,⋯分别需要多少元?(1)填一填.(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花( )元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.8.食堂每天开饭人数与购买蔬菜的数量如表:(1)根据已知的数量关系补充完整上面的表格.(2)根据表中的数在下面图中描出对应的点,再把各个点连接起来.(3)上面的两种量成比例吗?如果成,成什么比例,为什么?9.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)10.某运输队在为灾区抢运120吨救灾物资.如果要一次把所有救灾物资全部运出,车辆的载重量与所需车辆的数量如下表,请把表格填写完整.(1)车辆的载重量和所需车辆的数量成什么比例?为什么?(2)如果用载重量6吨的卡车来运,一共需要多少辆?11.某工程队铺一段路,原计划每天铺9.6千米,15天铺完,实际每天比原计划多铺2.4千米,实际要用多少天铺完?(用比例解答)12.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?13.某工厂四月份(30天)计划生产一批零件,平均每天要生产400个才能完成任务,实际上前6天就生产了3000个.照这样计算,完成原计划任务要用多少天?(分别用正、反比例解)14.一台机器上有一对相互啮合的齿轮,其中大齿轮有400个齿,每分钟转30圈,小齿轮有80个齿,每分钟转多少圈?15.A、B两城相距240千米,四种不同的交通工具从A城到B城的速度和所用的时间情况如下表.(1)请把上表填写完整.(2)不同的交通工具在行驶这段路程的过程中,哪个量没有变?(3)速度和所用时间成什么比例关系?为什么?(4)如果轿车要在25小时行完全程,那么每小时应行驶多少千米?16.一种药水是由药粉和水按照1:200的质量比配制而成的.(1)补充表格.(2)根据表格中的数据在下面的方格纸上描点连线.(3)12克药粉需要加入多少克水?要把2.5千克水配成药水,需要药粉多少克?17.要修一条长12千米的公路,前3天修了1.5千米,照这样计算,修完这条公路还要用多少天?(用比例解)18.修路队修一条公路,前4天修了320米,照这样的速度,又用了10天把路全部修完.这条路全长多少米?(用比例求解)19.一个工程队要修一条长4340米公路,前6个月已修了1860米.照这样的进度,还要几个月才能完成任务?20.自行车中的学问.右图是自行车的前后齿轮示意图,在骑自行车的过程中,蹬一圈,前齿轮就转一圈,后齿轮随之转几圈,后齿轮每转一圈,自行车车轮随之转一圈.请你依据生活经验填写下表.(1)由上表可看出,在骑自行车的过程中,蹬的圈数和车前进的距离成( ) 比例.(2)贝贝每分钟蹬80圈,骑着这辆自行车,每分钟前进多少米?(保留到整数)21.如图是两个互相啮(nie)合的齿轮,它们在同一时间内转动时,大齿轮和小齿轮转过的总齿数是相同的。
苏教版六年级下册数学正比例和反比例 试卷 (含答案)

苏教版六年级下册数学正比例和反比例试卷 (含答案)第6章正比例和反比例单元测试卷一.选择题(共16小题)1.已知,当y一定时,x与z()。
A。
成正比例关系 B。
成反比例关系 C。
不成比例关系2.下面x和y成正比例关系的是()。
A。
y/x = 常数 B。
3x = 4y C。
y = x - 33.如图表示的数量之间的关系是()。
A。
正比例 B。
反比例 C。
不成比例4.正方形的周长和它的边长()。
A。
成正比例 B。
成反比例 C。
不成比例5.汽车从甲地开往乙地,汽车行驶的速度与行驶的时间()。
A。
成正比例 B。
成反比例 C。
不成比例6.下列各种关系中,反比例关系的是()。
A。
平行四边形的面积一定,它的底与高B。
三角形的高不变,它的底和面积C。
圆的面积固定,它的半径与圆周率7.XXX从家到学校,她每小时所走的路程与所用时间()。
A。
成正比例 B。
成反比例 C。
不成比例 D。
无法确定8.圆的周长和它的直径()。
A。
成正比例 B。
成反比例 C。
不成比例 D。
无法判断9.下面各选项中的两种量,成正比例关系的是()。
A。
当xy = 8时,x和y B。
购买物品的总价和数量C。
正方形的周长和它的边长 D。
圆锥的高一定,体积和底面半径10.XXX从家里去学校,所需时间与所行速度()。
11.下面几句话中,正确的有()。
①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例。
A。
①和② B。
①和③ C。
①和④ D。
③和④12.下面各题中,()成反比例关系。
A。
一本书看过的页数和剩余的页数B。
圆的周长和直径C。
长方形的面积一定,它的长和宽D。
行驶时间一定,速度和路程13.一本书,已经看的页数与剩余的页数如下表,它们()。
已看的页数剩余的页数10 9020 8030 7014.比例尺一定,图上距离与实际距离()。
A。
成正比例 B。
成反比例 C。
可成正比例也可成反比例D。
正反比例练习题及答案

正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。
如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。
如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。
如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。
如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。
7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。
8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。
9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。
10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。
答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。
(完整版)正反比例练习题

正反比例练习题(1)一、判断下面两种相关联的量成不成比例,如果成比例,成什么比例。
11、分数的大小一定,它的分子和分母()比例。
12、全班人数一定,出勤人数和出勤率()比例。
13、正方体一个面的面积和它的表面积()比例。
14、在一定的时间里,做一个零件所用的时间和做零件的个数()比例。
15、圆的半径和面积()比例。
16、圆锥体的高一定,圆锥的底面半径和它的体积()比例。
17、4X=8Y,X和Y()比例。
18、车轮的直径一定,所行的路程和车轮的转数()比例。
19、圆柱的底面半径一定,圆柱的高和圆柱的体积()比例。
20、分数值一定,分子和分母()比例。
21、正方形的边长和面积()比例。
22、小麦的总重量一定,出粉率和面粉的重量()比例。
23、三角形的面积一定,底和高()比例。
24、要行一段路程,已行的和未行的路程()比例。
25、长方形的长一定,宽和周长()比例。
26、圆的半径和周长()比例。
27、总产量一定,单产量和数量()比例。
28、在同一时间里,杆高和影长()比例。
29、做一项工程,工作效率和工作时间()比例。
30、汽车从甲地到乙地,行车时间和速度()比例。
二、判断题,对的打√,错的打ⅹ。
1、速度和时间成反比例。
()2、圆的半径一定,圆的面积和兀不成比例()3、三角形的底一定,它的面积和高不成比例。
()4、正方形的边长和面积成正比例。
()5、出盐率一定,盐的重量和海水的重量成正比例。
()正反比例练习题(2)一、判断。
1、方砖的边长一定,要铺地面积和用砖块数成正比例()2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。
()5、梯形的面积一定,高和上下底的和成反比例()6、圆的半径一定,圆的面积和兀不成比例()7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()8、南京到北京,所行驶的路程和速度不成比例()9、出盐率一定,盐的重量和海水重量成正比例。
(完整版)正比例反比例

知识要点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例(正比例好脾气,同缩同扩好兄弟,比值永远不变异)1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:yx=k(一定)。
2.判断两种量是否成正比例:(1)两种量相关联。
(2)它们的比值一定。
备注:可以将两个量的关系写成yx=k(一定)的形式,再进行判断。
三、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。
2.判断两个量是不是成反比例:(1)两种量相关联。
(2)它们的乘积一定。
经典例题1例题1 判断两种量是否成正比例的方法判断下面各题中的两种量是否成正比例比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽一定,长方形的周长与长。
解答:(1)每袋大米的质量一定,大米的总质量和袋数成正比例。
理由:大米的总质量随袋数的变化而变化,它们是相关联的量。
大米的总质量/袋数=每袋大米的质量(一定),所以它们成正比例。
(2)一个人的身高和年龄不成正比例。
理由:一个人的身高随年龄的增长而增高,但身高在不同年龄段增长幅度不同,且到了一定年龄后便不再增长,即两种量的比值不固定,所以它们不成正比例。
(3)宽一定,长方形的周长与长不成正比例,理由:宽一定,长方形的周长随着长的增减变化而变化,但长方形的周长是由两个长和两个宽组成的,即周长=(长十宽)×2,则周长/2-长=宽(一定),周长和长之间是加减关系,所以它们不成正比例。
正比例反比例经典题型

正比例反比例经典题型一、选择题(每题3分,共30分)1. 下面两种相关联的量,不成正比例关系的是()。
A. 一个人的年龄和体重。
B. 正方形的周长和边长。
C. 路程和时间(速度一定时)。
D. 圆柱的底面积一定,体积和高。
答案:A。
解析:一个人的年龄和体重不是成比例关系,年龄增长体重不一定按照固定比例变化;而正方形周长÷边长 = 4(一定),是正比例关系;路程÷时间=速度(一定),是正比例关系;圆柱体积÷高 = 底面积(一定),是正比例关系。
2. 当()时,x和y成反比例关系。
A. x+y = 5B. xy = 5C. x÷y = 5D. y = 5x答案:B。
解析:如果xy = k(k为常数且k≠0),那么x和y 成反比例关系,这里xy = 5符合反比例关系的定义;x + y=5不是比例关系;x÷y = 5即x = 5y是正比例关系;y = 5x也是正比例关系。
3. 长方形的面积一定,长和宽()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:B。
解析:因为长方形面积 = 长×宽,面积一定,也就是长和宽的乘积是固定值,所以长和宽成反比例关系。
4. 下面成正比例关系的是()。
A. 圆的面积和半径B. 圆的周长和半径C. 圆锥的体积和高(底面积一定时)。
D. B和C答案:D。
解析:圆的面积÷半径的平方=π(一定),但圆的面积和半径不成正比例;圆的周长÷半径= 2π(一定),是正比例关系;圆锥体积÷高= 1/3×底面积(底面积一定时),是正比例关系,所以圆的周长和半径、圆锥的体积和高(底面积一定时)成正比例关系。
5. 已知y = 8x,x和y()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:A。
解析:y÷x = 8(一定),所以x和y成正比例关系。
6. 一本书的总页数一定,已经看的页数和未看的页数()。
小学数学正比例与反比例典型难题练习题带答案

小学数学正比例反比例练习题一.选择题(共30小题)1.110克盐水中含盐10克,盐与水的质量比是()A.1:11B.1:10C.1:92.和一定,加数和另一个加数()A.成反比例B.成正比例C.不成比例3.甲比乙多2倍,乙比丙多,且甲、乙、丙都不为零,则甲:乙:丙=()A.3:1:2B.2:1:3C.3:1:6D.9:3:24.一个圆柱和一个圆锥的体积相等,圆柱的底面半径是圆锥的2倍,圆柱与圆锥高的比是()A.1:6B.1:12C.12:1D.6:15.做一批零件用的时间一定,每个零件所需时间和零件的个数是()A.正比例B.反比例C.不成比例6.甲、乙两人各走一段路,他们走的时间比是6:7,速度比是3:2.甲与乙的路程比是()A.7:4B.9:7C.7:97.胡楼小学组织秋季学生运动会,参加比赛的男生人数和女生人数的比是3:4,参加比赛的人数可能是()人.A.160B.161C.165D.1708.如果=y,那么x和y()A.成正比例B.成反比例C.不成比例9.从甲地到乙地,客车需要小时,货车需要小时.客车和货车的速度比是()A.:B.5:6C.6:510.m、n、y三种量的关系是y=(m≠0),如果m一定时,n和y两种量的关系是()A.成正比例B.成反比例C.不成比例11.某班女生人数比男生人数多,那么男生人数与全班人数的比是()A.11:21B.10:21C.10:1112.如果=3y,那么x和y()A.成反比例B.成正比例13.王伟要做15道数学题,已做的题数和没做的题数()A.不成比例B.成正比例C.成反比例14.大圆与小圆的直径比是4:3,它们的面积比是()A.4:3B.16:9C.3:415.某一时刻,树影的长度与树的高度成()比例关系.A.成正比例关系B.成反比例关系C.不成比例关系16.长方体体积一定,它的高和()成反比例.A.长B.宽C.底面积17.考试人数、及格人数、及格率三个量中,当()一定时,其他两种量成反比例.A.考试人数B.及格人数C.及格率D.无法确定18.给一个房间铺地砖,所需砖的块数与每块砖的()成反比例.A.边长B.面积C.体积D.周长19.有甲、乙两筐苹果,甲筐卖出35%,乙筐卖出,两筐苹果卖出的质量正好相等,甲、乙两筐苹果原来的质量比是()A.7:5B.5:7C.3:420.下面四杯糖水中,最甜的一杯是()A.糖和水的质量比是1:9 B.20g糖配成200g糖水C.200g水中加入20g糖D.含糖率为11%21.一个圆柱的体积是一个圆锥体积的,它们的底面积相等,则圆柱的高与圆锥高的比是()A.1:3B.1:1C.1:9D.9:122.女生人数是男生的,女生与全班人数的比是()A.7:8B.8:15C.7:1523.甲数比乙数少40%,甲数与乙数的比是()A.1:4B.2:5C.3:524.甲数的等于乙数的,甲数和乙数的比是()A.:B.:C.7:4D.4:725.一杯纯牛奶,小明先喝了后,再加满水又喝了,再加满水,最后全部喝完.小明喝的纯牛奶与水的比是()A.1:1B.3:2C.5:6D.6:526.下列哪个图象是正比例图象()A.B.C.D.27.方强的爸爸到火车站,去时走了4分钟,跑了5分钟,回来走了6分钟,跑了4分钟20秒,则方强的爸爸走与跑的速度比是()A.1:2B.1:3C.1:4D.2:328.在比例尺是1:8的图纸上,甲乙两个圆的直径之比为2:3,那么,甲乙两个圆的实际直径比是()A.1:8B.2:3C.4:929.如图,空白部分与阴影部分面积的比是()A.1:2B.1:4C.1:3D.无法确定30.如果把甲桶中水的倒入乙桶后,甲、乙两桶中的水质量比是1:2,则甲、乙两桶原有水的质量比是()A.2:3B.4:5C.3:4D.5:4二.填空题(共5小题)31.甲:乙=4:5,乙:丙=3:7,那么甲:乙:丙=.32.如图,在一个梯形内有两个三角形的面积分别为:10平方厘米和12平方厘米,已知梯形上、下底的比是2:3,那么阴影部分的面积是平方厘米.33.修一段路,已经修的与未修的..(判断成什么比例关系)34.如图中两个正方形中阴影部分的面积比是2:1,空白部分甲和乙的面积比是.如果空白部分甲的面积是2.4dm2,那么两个正方形的面积之和是dm2.35.某班男生人数是女生人数的,男生人数与女生人数的比是,女生人数占全班人数的%,男生人数比女生人数少%.三.应用题(共2小题)36.甲、乙两人的钱数之比是3:1,如果甲给乙0.6元,则两人的钱数的比变为2:1;两人共有多少钱?37.有两根长短粗细不同的蜡烛,短的一根可燃8小时,长蜡烛可燃时间是短蜡的,同时点燃两根蜡烛,经过3小时后,它们剩下的长度相等.求未点燃之前,短蜡烛与长蜡烛的长度之比是多少?四.操作题(共1小题)38.如图表示一辆汽车行驶的路程与时间的关系,看图回答下面的问题.(1)从图象中可以看出这辆汽车行驶的路程和时间成比例.(2)根据图象判断这辆汽车行800千米要小时.(3)根据图象判断这辆汽车4小时能行千米.五.解答题(共2小题)39.根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.装订的本数12345…纸的张数255075100125…表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.用了的张数10002000300040005000…剩下的张数90008000700060005000…表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.装订的本数900750600450360…纸的张数1012152025…(1)选择正确的答案序号填在横线中.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.40.农贸公司的香蕉占水果重量的,桔子占总重量的,其余的是苹果.(1)写出香蕉、苹果重量的最简比.(2)如果苹果是35千克,那么香蕉各有多少千克?参考答案与试题解析一.选择题(共30小题)1.【解答】解:10:(110﹣10),=10:100,=1:10;故选:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例和反比例练习题及答案一、对号入座。
1、35:=20÷16==%=2、因为X=2Y,所以X:Y=:,X和Y成比例。
3、一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是。
4、向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少% 四年级比三年级多%5、甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是,甲乙两个正方形的面积比是。
6、一个比例由两个比值是2的比组成,又知比例的外项分别是1.2和5,这个比例是。
7、已知被减数与差的比是5:3,减数是100,被减数是。
8、在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是千米;这幅地图的比例尺是。
9、从2:8、1.6:和:这三个比中,选两个比组成的比例是。
10、一块铜锌合金重180克,铜与锌的比是2:3,锌重克。
如果再熔入30克锌,这时铜与锌的比是。
二、明辨是非。
1、一项工程,甲队40天可以完成,乙队50天可以完成。
甲乙两队的工作效率比是4:5。
2、圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。
3、甲数与乙数的比是3:4,甲数就是乙数的。
4、比的前项和后项同时乘以同一个数,比值不变。
5、总价一定,单价和数量成反比例。
6、实际距离一定,图上距离与比例尺成正比例。
7、正方体体积一定,底面积和高成反比例。
8、订阅《今日泰兴》的总钱数和份数成正比例。
三、选择题。
1、把一个直径4毫米的手表零件,画在图纸上直径是8厘米,这幅图纸的比例尺是。
A、1:B、2:1C、1:20D、20:12、已知=1.2、=1.2,所以X和Y比较。
A、X大B、YC、一样大3、如果A×2=B÷3,那么A:B=。
A、2:B、3:C、1:D:14、一个三角形的三个内角的度数比是2:3:4,这个三角形是。
A、锐角三角形B、直角三角形C、钝角三角形5、体积和高都相等的圆柱体和圆锥体,它们底面积的比是。
A、1:B、3:1C、1:D、6:16、配置一种淡盐水,盐占盐水的5%,盐与水的比是。
A、1:20B、1:21C、1:19四、破解密码。
:=X:3=五、解决问题。
1、修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?2、一块直角三角形钢板用1:200的比例尺画在图上,两条直角边共长5.4厘米,它们的比是5:4.这块钢板的实际面积是多少?3、学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占,科技书与故事书的比是2:3,故事书有多少本?4、小明读一本书,已经读了全书的页数的比是:3,这本书有多少页?,如果再读15页,则读过的页数与未读的5、每条男领带20元,每支女胸花10元,某个体商店进领带与胸花件数比是3∶2,共值4000元。
领带与胸花各多少?一、对号入座1、35:=20÷1= =%=2、因为X=2Y,所以X:Y=:,X和Y成比例。
3、一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是。
4、向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少% 四年级比三年级多%5、甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是,甲乙两个正方形的面积比是。
6、一个比例由两个比值是2的比组成,又知比例的外项分别是1.2和5,这个比例是。
7、已知被减数与差的比是5:3,减数是100,被减数是。
8、在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是千米;这幅地图的比例尺是。
9、从2:8、1.6:和:这三个比中,选两个比组成的比例是。
10、一块铜锌合金重180克,铜与锌的比是2:3,锌重克。
如果再熔入30克锌,这时铜与锌的比是。
二、明辨是非。
1、一项工程,甲队40天可以完成,乙队50天可以完成。
甲乙两队的工作效率比是4:5。
正比例和反比例习题一、判断.1.一个因数不变,积与另一个因数成正比例.2.长方形的长一定,宽和面积成正比例.3.大米的总量一定,吃掉的和剩下的成反比例.4.圆的半径和周长成正比例. 5.分数的分子一定,分数值和分母成反比例.6.铺地面积一定,方砖的边长和所需块数成反比例.7.铺地面积一定,方砖面积和所需块数成反比例.8.除数一定,被除数和商成正比例.二、选择.1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.A.成正比例 B.成反比例 C.不成比例2.和一定,加数和另一个加数.A.成正比例 B.成反比例 C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是.A.汽车每次运货吨数一定,运货次数和运货总吨数. B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.三、填空.1.两种的量,一种量变化,另一种量,如果这两种量中一定,这两种量就叫做成正比例的量,它们的关系叫做. 2.两种的量,一种量变化,另一种量,如果这两种量中一定,这两种量就叫做成反比例的量,它们的关系叫做. 3.一房间铺地面积和用砖数如下表,根据要求填空.铺地面积12345用砖块数 0100 1251,),),)))表中和是相关联的量,随着的变化而变化.表中第三组这两种量相对应的两个数的比是,比值是;第五组这两种量相对应的两个数的比是,比值是.上面所求出的比值所表示的的意义是,铺地面积和砖的块数的是一定的,所以铺地面积和砖的块数.4.练习本总价和练习本本数的比值是.当一定时,成比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.2.被除数一定,商和除数.3.小明的年龄和他的体重. 4.天数一定,生产零件的总个数和每天生产零件的个数.三、思考.、、三种量的关系是:× = 1.如果一定,那么和成比例;2.如果一定,那么和成比例;3.如果一定,那么和成比例.正比例反比例练习一、判断题:1、圆的面积和圆的半径成正比例。
、圆的面积和圆的半径的平方成正比例。
、圆的面积和圆的周长的平方成正比例。
、正方形的面积和边长成正比例。
、正方形的周长和边长成正比例。
、长方形的面积一定时,长和宽成反比例。
、长方形的周长一定时,长和宽成反比例。
、三角形的面积一定时,底和高成反比例。
9、梯形的面积一定时,上底和下底的和与高成反比例。
10、圆的周长和圆的半径成正比例。
二.选择题2)根据表格判断数量间的比例关系。
时间与路程。
A.成正比例B.成反比例C.不成比例圆柱体底面积与高。
A.年龄与身高。
A.成正比例B.成反比例 C.不成比例三.看图表填空根据规律判断比例关系,并填空。
X与Y。
A. 成正比例B. 成反比例2)X与Y长方形的_________________,它的长和面积成正比例。
A.周长一定B.宽一定C.面积一定圆柱体体积一定,________________和高成反比例。
A.底面半径 B.底面积C.表面积选择填空,判断数量间的比例关系。
比例尺一定,图上距离与实际距离____________。
圆的面积一定,直径与圆周率_______________。
比的前项一定,比的后项与比值_________________。
时间一定,速度与路程____________。
被减数一定,减数与差______________。
圆锥体体积一定,底面积与高_____________。
A、成正比例B、成反比例C、不成比例二.选择填空。
ab=c,当c一定时a和b;当a一定时b和c;当b一定时a和c正方体的表面积与体积成正比例。
一堆煤的总量不变,每天烧去的数量与烧的天数成反比例。
长方体底面积一定,体积和高成正比例。
三角形的面积不变,它的底与高成反比例。
四、下列各题中的两种量是不是成比例,成什么比例,。
买相同的电脑,购买的电脑台数与总价每捆练习本的本数相同,练习本的总本数与捆数总路程一定,已行的路程与未行的路程分数值一定,分数的分子与分母4。
)正比例和反比例的意义1根据你的经验,判断下面各题中的两个量是否成正比例,是的打“√”,不是的打“×”。
汽车行驶的路程和时间。
?ahref=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说哪炅浜蜕砀摺? ) 1x与y的比值是x与y。
5被除数一定,除数和商。
做一项工程,工作效率与完成的时间。
2根据下面的关系式,说出哪种量一定,哪两种量成正比例。
总价=单价×数量。
一定,和成正比例。
长方形面积=底×高。
一定,和成正比例。
xy=z。
一定,和成正比例。
铺地面积=方砖面积×方砖块数。
一定,和成正比例。
路程=速度×时间。
一定,和成正比例。
3根据表中两种量相对应的比值,判断它们是不是成正比例,并说明理由。
4小英和妈妈的年龄变化情况如下,把表填写完整。
5已知ab=c,a、b都不为0。
先写两个正比例关系式,再填空。
______一定,和成正比例。
______一定,和成正比例。
填空:每公顷的施肥量一定,施肥总量与公顷数成比例。
要修的路程一定,每天修的路程与天数成比例。
肥料总数一定,每平方米施肥量和平方米成比例。
钱的总数一定,铅笔数量和单价成比例。
制造一批零件的个数一定,制造一个零件的时间和需要的总时间成速度×时间=路程。
速度一定,和成比例。
时间一定,和成比例。
路程一定,和成比例。
单价×数量=总价。
) 比例。
单价一定,和成比例。
数量一定,和成比例。
总价一定,和成比例。
选择正确答案的字母填入括号内。
A.成正比例 B.成反比例 C.不成比例平行四边形的底一定,高和面积。
积一定,一个因数与另一个数。
一本书的页数一定,已看的页数和没看的页数。
工作效率一定,工作总量和工作时间。
9糖果厂包装一批糖果,每袋糖果的粒数和装的袋数如下表:10判断下面的两种量成不成比例?成正比例画“○”,成反比例画“△”,不成比例画“×”。
每小时织布米数一定,织布的总时间和总米数。
一个人的年龄和他的体重。
生产总量一定,每天的生产量和生产天数。
正方形的边长和面积。
分母一定,分子和分数值。
11填空:物品的总价一定,它的单价和数量成比例。
每公顷的施肥量一定,施肥的公顷数和施肥总量成比例。
要走的路程一定,已行路程与未行的路程比例。
比的后项一定,前项和比值成比例。
甲数是乙数的80%,甲数和乙数成比例。
圆的半径和它的周长成比例。
12填一填。
已知 x和y成正比例关系,请完成下列表格。
已知x和y13如果a=1,那么,当a一定时,b和c成比例;b·c当b一定时,a和c成比例;当c一定时,a和b成比例。