高等代数期末卷1及答案
高等代数期末考试复习题及参考答案

高等代数 --复习资料一、单项选择题1、设为任意两个级方阵,则如下等式成立的是A.B.C.D.参考答案: C2、设向量组线性无关,则向量组线性无关的充分必要条件为A.B.C.D.参考答案: A3、若,则( ).A. 30mB. -15mC. 6mD. -6m参考答案: D4、实对称矩阵的特征值都是( )A. 非负整数B. 实数C. 正数参考答案: B5、实对称矩阵A的秩等于r,且它有m个正特征根,则它的符号差为 ( )A. rB. mC. 2m-rD. r-m参考答案: C6、设矩阵和分别是和的矩阵,秩,秩,则秩是A. 1B. 2C. 3D. 4参考答案: B7、是线性空间V上的线性变换,,那么关于V的基的矩阵是 ( )A.B.C.D.参考答案: B8、对于元方程组,下列命题正确的是( ).A. 如果只有零解,则也只有零解B. 如果有非零解,则有无穷多解C. 如果有两个不同的解,则有无穷多解D. 有唯一解的充分条件是参考答案: C9、若矩阵A的不变因子为,则A的全部初等因子为 ( )A.B.C.参考答案: A10、设为3次实系数多项式,则A. 至少有一个有理根B. 至少有一个实根C. 存在一对非实共轭复根D. 有三个实根.参考答案: B11、对于数域P上线性空间V的数乘变换来说 ( )不变子空间A. 只有一个B. 每个子空间都是C. 不存在参考答案: B12、下列运算中正确的是( )A. ;B. ;C. ;D. 。
参考答案: D13、为欧氏空间V上的对称变换,下面正确的是 ( )A.B.C.参考答案: C14、如果把代入实二次型都有,那么是 ( )A. 正定B. 负定C. 未必正定参考答案: C15、设向量组线性无关,线性相关,则( ).A. 一定能由线性表示B. 一定能由线性表示C. 一定不能由线性表示D. 一定不能由线性表示参考答案: B16、下列说法不正确的是( ).A. 任何一个多项式都是零次多项式的因式B. 如果f(x)∣g(x),g(x)∣h(x),则f(x)∣h(x)C. 如是阶矩阵,则D. 如是阶矩阵,则参考答案: A17、设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( )A. 若仅有零解,则有唯一解;B. 若有非零解,则有无穷多个解;C. 若有无穷多个解,则仅有零解;D. 若有无穷多个解,则有非零解;参考答案: D18、是n维复空间V的两个子空间,且,则的维数为 ( )A.B.C.参考答案: C19、阶矩阵A可逆的充分必要条件是( ).A. ∣A∣=0B. r(A)<C. A是满秩矩阵D. A是退化矩阵参考答案: C20、设矩阵的秩为,为阶单位方阵,下述结论中正确的是( )A. 的任意个列向量必线性无关;B. 的任意一个阶子式不等于零;C. 若矩阵满足,则,或非齐次线性方程组,一定有无穷多组解D. 通过初等行变换,必可化为的形式。
高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试《高等代数》试卷(1)1 •设 f (x) = x 4+x ? +4x - 9 ,贝H f (一3) = 69 .. 2•当 t = _2,-2 . 时,f(x)=x 3—3x+t 有重因式。
3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2=23 。
1 1 —-2 0 1x , 2x 2 2x 3 x 4 二 07. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为x( ~'X 2 _'4x 3 ~3x 4 = 0题号-一--二二-三四五六七总分得分、填空(共35分,每题5 分)得分4.行列式1 -35.■’4 10"1 0 3-1、 -1 1 3'9 -2 -1 2 1 0 2」2 0 1< 9 9 11<1 3 4 丿6.z5 0 0 1 -1<0 2 1;0-2 3矩阵的积c 亠5 刘=2x3 X44x3, x4任意取值。
X2 二-2x^ --x4、(10分)令f(x),g(x)是两个多项式。
求证 当且仅当(f(x)g(x), f(x)g(x))=1。
证:必要性.设(f(x)g(x), f (x)g(x)) =1。
(1%令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知p(x)| f (x)或 p(x) |g(x) o (1%)不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。
故 p(x) |1 矛盾。
(2%)充分性.由(f (x)g(x), f (x)g(x)^1知存在多项式u(x), v(x)使u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%)从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%)故(f (x), g(x)) =1 o (1%)ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1有唯一解、没有解、有无穷解?在有解情况下求其解。
高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
高代一期末考试试题及答案

高代一期末考试试题及答案一、选择题1. 设A和B都是n阶方阵,下列哪个条件可以推断出A与B一定可交换?A. AB = BAB. AB = 0C. det(A) = 0D. AB = I (单位矩阵)正确答案:A2. 设A是n阶方阵且可逆,则A^-1的列向量组是否一定线性无关?A. 是B. 否正确答案:A3. 设A是n阶对称矩阵,则A肯定满足的性质是:A. A的特征值为实数B. A的特征向量构成一组正交基C. A一定可以对角化D. A的秩等于n正确答案:A4. 设A是n阶可逆矩阵,下列哪个等式成立?A. (A^-1)^T = AB. (A^T)^-1 = AC. (A^-1)^T = (A^T)^-1D. (A^T)^-1 = (A^-1)^T正确答案:D5. 设A是n阶方阵,则A可能是可逆矩阵的充分必要条件是:A. 行列式det(A)不等于0B. 矩阵A的秩等于nC. 矩阵A有n个互不相同的特征值D. 矩阵A的伴随矩阵可逆正确答案:A二、计算题(请写出详细过程并附上最后计算结果)1. 计算矩阵相乘:A = [1 2 3; 4 5 6],B = [1 -1; 2 -2; 3 -3]解答:A *B = [1*1 + 2*2 + 3*3 1*(-1) + 2*(-2) + 3*(-3);4*1 + 5*2 + 6*3 4*(-1) + 5*(-2) + 6*(-3)]= [14 -14;32 -32]2. 计算矩阵的逆:设A = [1 2; 3 4]解答:计算A的行列式:det(A) = 1*4 - 2*3 = -2计算伴随矩阵:adj(A) = [4 -2;-3 1]计算A的逆:A^-1 = (1/det(A)) * adj(A) = (1/-2) * [4 -2;-3 1]= [-2 1;1.5 -0.5]三、证明题证明:若A是n阶对称矩阵,则A一定可以对角化。
解答:要证明A一定可以对角化,需要证明存在一个可逆矩阵P,使得P^(-1) * A * P = D,其中D是一个对角矩阵。
北京大学数学科学学院《高等代数I》期末试题及答案【完整版】

北京大学数学科学学院期末试题考试科目 高等代数I 考试时间 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001.1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010 . 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0I rQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010*********, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
厦门大学参考答案--08-09学年第一学期《高等代数》期末考试卷

厦门⼤学参考答案--08-09学年第⼀学期《⾼等代数》期末考试卷特别说明:答案写在答题纸上⼀、单选题(32分. 共8题, 每题4分)1.下列说法错误的是A) 若向量组123,,ααα线性⽆关,则其中任意两个向量线性⽆关; B) 若向量组123,,ααα中任意两个向量线性⽆关,则123,,ααα线性⽆关; C) 向量组122331,,αααααα---线性相关;D) 若向量组123,,ααα线性⽆关,则112123,,αααααα+++线性⽆关.2. 设n 维列向量12,,...,m ααα()m n <线性⽆关, 则n 维列向量12,,...,m βββ线性⽆关的充要条件是A) 向量组12,,...,m ααα可由向量组12,,...,m βββ线性表⽰; B) 向量组12,,...,m βββ可由向量组12,,...,m ααα线性表⽰; C) 向量组12,,...,m ααα与向量组12,,...,m βββ等价; D) 矩阵12(,,...,)m A ααα=与矩阵12(,,...,)m B βββ=相抵.3.设线性⽅程组0Ax =的解都是线性⽅程组0Bx =的解,则A) ()()r A r B <; B) ()()r A r B >; C) ()()r A r B ≥;D) ()()r A r B ≤.4.设n 阶⽅阵A 的伴随矩阵*0A ≠,⾮齐次线性⽅程组Ax b =有⽆穷多组解,则对应的齐次线性⽅程组0Ax =的基础解系 A) 不存在;B) 仅含⼀个⾮零解向量;C) 含有两个线性⽆关的解向量; D) 含有三个线性⽆关的解向量.5.下列⼦集能构成22R的⼦空间的是A) 221{|||0,}V A A A R ?==∈;B) 222{|()0,}V A tr A A R==∈;C) 2223{|,}V A A A A R ?==∈;D) 224{|,}V A A A A A R ?'==-∈或.6.设V 是数域K 上的线性空间, V 上的线性变换?在基12,,...,n ααα下的矩阵为A 且||2A =,若?在基11,,...,n n ααα-下的矩阵为B , 则||B =A) 2n; B) 2; C)12; D) 不能确定.7.设V 是n 维向量空间,?和ψ是V 上的线性变换,则dimIm dimIm ?ψ=的充分必要条件是A) ?和ψ都是可逆变换;B) Ker ?=Ker ψ;C) Im Im ?ψ=; D) ?和ψ在任⼀组基下的表⽰矩阵的秩相同. 8.设?是线性空间V 到U 的同构映射, 则下列命题中正确的有个. (Ⅰ) ?为可逆线性映射;(Ⅱ) 若W 是V 的s 维⼦空间, 则()?W 是U 的s 维⼦空间; (Ⅲ) ?在给定基下的表⽰矩阵为可逆阵;(Ⅳ) 若12V=V V ⊕, 则1212)))⊕=⊕(V V (V (V . A) 1B) 2C) 3D) 4⼆、填空题(32分. 共8题,每题4分)1. 若矩阵1234(,,,)A αααα=经过⾏初等变换化为1003002401050000-??-, 那么向量组1234,,,αααα的⼀个极⼤⽆关组是其余向量由此极⼤⽆关组线性表⽰的表⽰式为.2. 设3维向量空间的⼀组基为123(1,1,0),(1,0,1),(0,1,1)ααα===,则向量(2,0,0)β=在这组基.3. 设1V ,2V 均为线性空间V 的⼦空间,则12()L V V ?4. 数域K 上所有三阶反对称矩阵构成的线性空间的维数是的⼀组基. 5. 已知12K上的线性变换?定义如下:((,))(0,)ab a ?=-,则Ker ?=Im ?6. 设?是数域K 上n 维线性空间V 到m 维线性空间U 的线性映射, 则?为满射的充分必要条件是(请写出两个)7. 设12,,...,n ααα和12,,...,n βββ是线性空间V 的两组基,从12,,...,n ααα到12,,...,n βββ的过渡矩阵为P . 若?是V 上的线性变换且,()i i ?αβ=1,2,...,i n =,则?在基12,,...,n βββ下的表⽰矩阵是8. 设?是线性空间V 上的线性变换,?在基12,,...,n ααα下的表⽰矩阵为0A B C ??,其中A 为r r ?矩阵,则存在V 的⼀个⾮平凡?-,,)r α.三、(8分) 设线性空间V 的向量组12,,...,m ααα线性⽆关,V β∈,考虑向量组12,,,...,m βααα.求证:或者该向量组线性⽆关,或者β可由12,,...,m ααα线性表⽰. ,,m α线性相关,则存在不全为,,k m 使得+k m m α+=.事实上,若k +k m m α+=12,,...,ααα线性⽆关知1m k ==k =0.m ==k =0.,,k m 不全为0相⽭盾.mm k k α--从⽽,或者该向量组线性⽆关,或者β可由α四、(10分) 设1V ,2V 分别是数域K 上的齐次线性⽅程组12n x x x == =与120n x x x +++=的解空间. 证明112n KV V ?=⊕.1n V V a ?∈n n a a ==++=,则0n a ===1n n K a ??∈,11i V a n∈∑, 21n i i V a n =??∈?∑n a =1n i i a n =?∑+n a1n V V a ∈n n a a ==++=,则0n a ===(1)000011n n-?,1,1,,1)n ?,所以1.故1dim V (1)000011n n-? ?,1,1,,1)n ?,1dim 1,dim V =1n n K a ??∈,11i n V a n ?∈∑, 21n i i n V a n =??∈?∑n a =1n i i n a n =?∑+n n a五、(10分) 设m n A K ?∈. 证明:()r A r =的充分必要条件是存在m r B K ?∈,r n C K ?∈,使得()()r B r C r ==且A BC =.证明:充分性:由于m rB K∈,r nC K∈满⾜()()r B r C r ==且A BC =,所以()()()()()r r B r C r r A r BC r B r =+-≤=≤=故()r A r =.必要性:由于()r A r =,所以存在m 阶可逆矩阵P 及n 阶可逆矩阵Q 使得000rI A P Q ??=.令,(,0)0r r I B P C I Q ??==,则m r B K ?∈,r n C K ?∈满⾜()()r B r C r ==且A BC =.六、(8分) 设V , U, W 是有限维线性空间,:V U ?→,:W U ψ→是线性映射. 求证:存在线性映射:V W σ→使得?ψσ=的充分必要条件是Im Im ?ψ?.证明:充分性:法⼀:取V 的⼀组基12,,,n ααα,由于Im Im ?ψ?,所以()Im i ?αψ∈,1i n ?≤≤,即存在i W β∈使得()()i i ?αψβ=.定义线性映射:V W σ→满⾜(),1i i i n σαβ=?≤≤,则()()(),1i i i i n ψσαψβ?α==?≤≤.因此,ψσ?=.法⼆:取V 的⼀组基12,,,n ξξξ,U 的⼀组基12,,,m ηηη,W 的⼀组基12,,,s γγγ.设1212(,,,)(,,,)n m m n A ?ξξξηηη?= 1212(,,,)(,,,)s m m s B ψγγγηηη?=其中1212(,,,),(,,,)n s A B αααβββ==.由于I m I m ?ψ?,所以1212(,,,)(,,,)n s L L αααβββ?,即11,sj ij i i j n c αβ=?≤≤=∑.取()ij s n C c ?=,则A B C =.定义线性映射:V W σ→满⾜1212(,,,)(,,,)n s C σξξξγγγ=,则?ψσ=.必要性:对任意Im β?∈,存在V α∈使得()β?α=.由于?ψσ=,所以()β?α=(())Im ψ?αψ=∈从⽽,Im Im ?ψ?.附加题: (本部分不计⼊总分)设V , U, W 是有限维线性空间且dim dim V W =,:V U ?→,:W U ψ→是线性映射. 证明:存在可逆线性映射:V W σ→使得?ψσ=的充分必要条件是Im Im ?ψ=.证明:充分性:法⼀:由于d i m d i m V W =且Im Im ?ψ=,所以由维数公式知:d i m d i m Ke r K e r ?ψ=.取Ker ψ的⼀组基12,,,r ηηη;Ker ?的⼀组基12,,,r ξξξ,将其扩充为V的⼀组基121,,,,,r r n ξξξξξ+,则1(),()r n ?ξ?ξ+是Im ?的⼀组基.由于Im Im ?ψ=,所以1(),()r n ?ξ?ξ+是Im ψ的⼀组基.设()(),1i i r i n ?ξψη=?+≤≤,由于1(),,()r n ψηψη+线性⽆关,所以1,,r n ηη+线性⽆关.我们断⾔,121,,,,,,r r n ηηηηη+线性⽆关.事实上,若1122110r r r r n n k k k k k ηηηηη++++++++=,则将ψ作⽤于上式得11()()0r r n n k k ψηψη++++=.由于1(),,()r n ψηψη+线性⽆关,所以10r n k k +===.于是1122r r k k k ηηη+++=0.⼜12,,,r ηηη是Ker ψ的⼀组基,故10r k k ===从⽽,121,,,,,,r r n ηηηηη+线性⽆关.注意到dim W n =,故121,,,,,,r r n ηηηηη+是W 的⼀组基.定义线性映射:V W σ→满⾜(),1i i i n σξη=?≤≤.由于12,,,n ξξξ是V 的⼀组基,12,,,n ηηη是W的⼀组基,故σ可逆.⼜()()(),1i i i i n ψσξψη?ξ==?≤≤,从⽽?ψσ=.法⼆:取V 的⼀组基12,,,n ξξξ,U 的⼀组基12,,,s γγγ,W 的⼀组基12,,,n ηηη.设1212(,,,)(,,,)n s s n A ?ξξξγγγ?=1212(,,,)(,,,)n s s n B ψηηηγγγ?=且dimIm dimIm r ?ψ==,则()()r A r B r ==.于是,存在n 阶可逆矩阵,P Q 使得1(,0),AP A =1(,0)BQ B =,其中11,s r A B K ?∈列满秩.由于Im Im ?ψ=,所以同上题证明可知存在n 阶矩阵C 使得A BC =,则11(,0)()A AP BQ Q CP -==.设111212122X X Q CP X X -??=,其中11X 是r 阶⽅阵,则1112112122(,0)(,0)X X A B X X ??=.从⽽,1111A B X =.⼜1A 列满秩,所以存在2r sA K ?∈使得21r A A I =.于是,212111()r I A A AB X ==,即11X 是可逆矩阵.因此,存在可逆矩阵11100n r X X Q P I --??=使得()111111111111100(,0),0(,0)00n r n r X X BX BQ P B P B X P A P A I I ------=====定义线性映射:V W σ→满⾜1212(,,,)(,,,)n n X σξξξηηη=由于X 可逆且A BX =,故σ可逆且?ψσ=.必要性:由于?ψσ=,所以同上题证明可知Im Im ?ψ?.⼜由:V W σ→可逆可知1ψ?σ-=,所以Im Im ψ??.从⽽,Im Im ?ψ=.。
高等代数期末考试题库及答案解析

高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
高等代数期末复习1

东 北 大学 秦 皇 岛 分 校课程名称: 高等代数〔二次型1〕 试卷: (A)答案 考试形式:闭卷授课专业: 信息与计算科学 考试日期: 2021年5月 试卷:共2页第五章 二次型1.〔Ⅰ〕用非退化线性交换化以下二次型为标准形,并利用矩阵验算所得结果: 1〕323121224x x x x x x ++-2)23322221214422x x x x x x x ++++ 3)32312122216223x x x x x x x x -+--4〕423243418228x x x x x x x x +++ 5〕434232413121x x x x x x x x x x x x +++++6〕4342324131212422212222442x x x x x x x x x x x x x x x ++++++++ 7〕43322124232221222x x x x x x x x x x ++++++2.证明:秩等于r 的对称矩阵可以表成r 个秩等于1的对称矩阵之和。
3.证明:⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21与 ⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21 合同,其中n i i i 21是n ,,2,1 的一个排列。
4.设A 是一个n 阶矩阵,证明:1〕A 是反对称矩阵当且仅当对任一个n 维向量X ,有0='A X X 。
2〕假如A 是对称矩阵,且对任一个n 维向量X 有0='A X X ,那么0=A 。
装订线装 订 线 内 不 要 答 题学 号姓 名班 级5.假如把实n 阶对称矩阵按合同分类,即两个实n 阶对称矩阵属于同一类当且仅当它们合同,问共有几类?6.证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是:它的秩等于2且符号差等于0,或者秩等于1。
7.判断以下二次型是否正定:1〕2332223121217160130481299x x x x x x x x x +-++- 2〕23322231212128224810x x x x x x x x x +-+++ 3〕jn j i i ni ixx x∑∑≤<≤=+1124〕11112+-==∑∑+i n i ini i xx x装订线装 订 线 内 不 要 答 题学 号姓 名班 级8.t 取什么值时,以下二次型是正定的:1〕3231212322214225x x x x x tx x x x +-+++ 2〕32312123222161024x x x x x tx x x x +++++9.证明:假如A 是正定矩阵,那么A 的主子式全大于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳农业大学理学院第一学期期末考试
《高等代数》试卷(1)
一、填空(共35分,每题5分)
1.设4
2
()49f x x x x =++-, 则(3)f -= 69_ .. 2.当t = _2,-2 .时, 3()3f x x x t =-+有重因式。
3. 令()f x ,()g x 是两个多项式, 且33()()f x xg x +被21x x ++整除, 则
(1)f = 0_ , (1)g = _0 .
4. 行列式
31021
62
10113201
-=-- 23 。
5. 矩阵的积41010311
1321022
01134⎛⎫
⎪
--⎛⎫ ⎪= ⎪
⎪⎝⎭ ⎪⎝⎭
9219911--⎛⎫
⎪⎝⎭。
6. 1
500031021-⎛⎫ ⎪= ⎪ ⎪⎝⎭
1
05011023⎛⎫ ⎪ ⎪- ⎪ ⎪
- ⎪⎝⎭ 7. 1234123
412
342202220430
x x x x x x x x x x x x +++=⎧⎪
+--=⎨⎪---=⎩的一般解为 134234523423x x x x x x
⎧
=+⎪⎪⎨
⎪=--⎪⎩
, 34,x x 任意取值。
二、(10分)令()f x ,()g x 是两个多项式。
求证((),())1f x g x =当且仅当(()(),()())1f x g x f x g x +=。
证:必要性. 设(()(),()())1f x g x f x g x +≠。
(1%)
令()p x 为()(),()()f x g x f x g x +的不可约公因式,(1%)则由()|()()p x f x g x 知
()|()p x f x 或()|()p x g x 。
(1%)
不妨设()|()p x f x ,再由()|(()())p x f x g x +得()|()p x g x 。
故()|1p x 矛盾。
(2%) 充分性. 由(()(),()())1f x g x f x g x +=知存在多项式(),()u x v x 使
()(()())()()()1u x f x g x v x f x g x ++=,(2%)
从而()()()(()()())1u x f x g x u x v x f x ++=,(2%) 故((),())1f x g x =。
(1%)
三、(16分),a b 取何值时,线性方程组
1231231
2321(21)31(3)21
ax bx x ax b x x ax bx b x b ++=⎧⎪
+-+=⎨⎪+++=-⎩ 有唯一解、没有解、有无穷解?在有解情况下求其解。
解:
21212131011032100122201011000122a b a b a b b a b b b b b a b
b b b ⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪+-+-⎝⎭⎝⎭
-⎛⎫ ⎪→- ⎪ ⎪+-⎝⎭
(5%)
当2
(1)0a b -≠时,有唯一解:1235222
, (1)+11
b b x x x a b b b ---=
==++,;
(4%) 当1b =时,有无穷解:3210,1,x x ax ==-1x 任意取值;
当a 0,5b ==时,有无穷解:14
12333,,,x k x x k ==-=任意取值;(3%)
当1b =-或0 1 5a b b =≠±≠且且时,无解。
(4%)
四、(10分)设12,,...,n a a a 都是非零实数,证明
123121111...
11111 (111)
111...11...(1).............111...
11n
n i i
n
a a a a a a a a =+++=++∑
证: 对n 用数学归纳法。
当n=1时 , 1111
11(1)D a a a =+=+, 结论成立(2%);
假设n-1时成立。
则n 时
n D = 1
12233
111...
10111...
11111 (10111)
(11)
111...10111...11..........................
111...
1111...11n
a a a a a a a +++++++ =1211...n n n a a a a D --+ (4%)
现由归纳假设1112111
...1n n n i i D a a a a ---=⎛⎫=+ ⎪⎝⎭
∑
有 n D =1211...n n n a a a a D --+=112112111
......1n n n n i i
a a a a a a a a ---=⎛⎫++ ⎪⎝⎭
∑
=12111
...1n
n n i i
a a a a a -=⎛⎫
+ ⎪⎝⎭
∑
,(3%) 故由归纳原理结论成立。
(1%)
五、(10分)证明4
()1f x x =+在有理数域上不可约。
证: 令1x y =+得(1%)
432()()4642g y f x y y y y ==++++。
(3%)
取素数p=2满足
2|2,2|4,2|6,2|4,且2不整除1, 4不整除2. (2%)
再据艾茵斯坦茵判别法知4
3
2
()4642g y y y y y =++++在有理数域上不可约,(2%)
从而4
()1f x x =+在有理数域上不可约(2%)
六、(9分)令A 为数域F 上秩为r 的m n ⨯矩阵,0r >。
求证:存在秩 为r 的m r ⨯矩阵F 和秩为r 的r n ⨯矩阵G , 使得A FG =。
证: A 为数域F 上秩为r 的m n ⨯矩阵,0r >, 则存在m m ⨯可逆阵
P 和n n ⨯可逆阵Q
使
00
0r
I A P Q ⎛⎫
= ⎪⎝⎭
.(3%) 进而令
(),00r r
I F P G I Q ⎛⎫
== ⎪⎝⎭
(4%)
就得A FG =(2%) .
七、(10分)设A , B 是n n ⨯矩阵, 且A B +,A B -可逆。
求证22n n ⨯矩阵A B P B A ⎛⎫= ⎪⎝⎭
可逆, 且求1
P -。
证:
||||||00
A B A B B A B B P A B A B B
A
B A A
A B
++=
===+-≠+-,
故P 可逆 (5%)
令1X Y P T S -⎛⎫=
⎪⎝⎭
有 00
n n I A B X Y I B A T
S ⎛⎫
⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭
.(1%) 进而00n n
AX BT I AY BS BX AT BY AS I +=⎧⎪+=⎪⎨+=⎪
⎪+=⎩(1%),解得1111
1()()2
1()()2X A B A B Y A B A B T Y S X ----⎧
⎡⎤=++-⎣⎦⎪⎪⎪⎡⎤=+--⎨⎣⎦⎪=⎪⎪=⎩
(3%)。