21.1 一元二次方程 同步练习题1 含答案
人教版九年级数学上册 第二十一章练习题含答案

人教版九年级数学上册 第二十一章练习题含答案21.1一元二次方程一、选择题1.若n 是方程x 2+mx+n=0的根,n≠0,则m+n 等于( )A .-12B .12C .1D .-12.下列叙述正确的是( )A .形如ax 2+bx+c=0的方程叫一元二次方程B .方程4x 2+3x=6不含有常数项C .(2)x)2=0是一元二次方程D .一元二次方程中,二次项系数一次项系数及常数项均不能为03.下列方程中,关于x 的一元二次方程有( )①x 2=0 ②ax 2+bx+c=0 x 2-2+a -x=0 ⑤(m-1)x 2+4x+2m =0 ⑥1x +1x =13⑧(x+1)2=x 2-9A .2个B .3个C .4个D .5个 4.如果(a -1)x 2+ax +a 2-1=0是关于x 的一元二次方程,那么必有( )A .a≠0B .a≠1C .a≠-1D .a =±-15.已知方程(x +m)(x -4)=0和方程x 2-2x -8=0的两根分别相等,则m 等于( )A .1B .-1C .2D .-26.方程 -12x 2+4x =3 的二次项系数、一次项系数和常数项的乘积为( ) A .-6 B .6 C .12 D .-127.下列哪一个选项是一元二次方程( )A .10x=9B .2(y-1)=3yC .2x 2-3x+1=0D .2120x x-=8.方程x 2)x 化为一般形式,它的各项系数之和可能是))A B . C D .19.下列方程中是关于x 的一元二次方程的是( )A .2430x x -+=B .20ax bx c ++=C .220x x -+=D .223250x xy y --= 10.方程(m+2)m x +mx-8=0是关于x 的一元二次方程,则( )A .m=2±B .m=2C .m=-2D .m ≠2±二、填空题11.已知x=2是关于x 的一元二次方程x 2)4x+m=0的一个根,则m=__________)12.已知m 是方程x 2﹣2018x+1=0的一个根,则代数式m 2﹣2017m+220181m ++3的值等于_____. 13.请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为﹣2.则你构造的一元二次方程是_____.14.方程(x–3)2+5=6x 化成一般形式是________,其中一次项系数是________.15.如果(a+2)x 2+4x+3=0是一元二次方程,那么a 所满足的条件为___________.三、解答题16.先化简,再求值:211(1)21+1m m m m m m --÷-+++,其中m 是关于x 的一元二次方程2330x x +-=的根17.把关于x 的方程()()()23x x x -=化成一元二次方程的一般形式,并写出方程中各项与各项的系数.18.一元二次方程()2(1)10a x b x c -+-+=化为一般形式后为22310x x --=,试求a b c+的值. 19.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.(1)2(5)36x -=;(2)3(1)2(1)y y y +=+.20.观察以下方程:①237150x x --=;②221090x x +-=;③2560x x ++=;④243110x x -+=,解答下列问题: ()1上面的四个方程有三个方程的一次项系数有共同特点,请你用代数式表示出这个特点;()2请你写出符合这个条件的一元二次方程的一般形式.21.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)2014年某超市销售一种品牌童装,平均每天可售出30件,每件盈利40元.面对下半年市场竞争激烈,超市采用降价措施,每件童装每降价2元,平均每天就多售出6件.要使平均每天销售童装利润为1 000元,那么每件童装应降价多少元?22.已知关于x 的一元二次方程m(x -1)2=-3x 2+x 的二次项系数与一次项系数互为相反数,则m 的值为多少?23.)))))))(1)若n(n ≠0)是关于x )))x 2+mx −2n =0的根,求m +n )))(2)已知x ,y 为实数,且y =2√x −5+3√5−x −2,))))【参考答案】1.D 2.C 3.A 4.B 5.C 6.B 7.C 8.D 9.A. 10.B 11.412.202013.2x 2﹣8=014. x 2–12x+14=0 –1215.a≠)216.211,325m m --++17.22690x x 二次项22x ,二次项系数2;一次项6x -,一次项系数6-;常数项9-18.32-19.(1)210110x x --=,1,10-,11- (2)2320y y +-=,3,1,2-20.()1一次项系数为奇数21n +(n 是整数);()()22210ax n x c +++=.21.)1)10x 2+6x -52=0))2)3x 2-90x-200=0.22.223.)1)-2))2)1621.2解一元二次方程一.选择题1.解一元二次方程(x -1)2=2(x -1)最适宜的方法是( )A .直接开平方B .公式法C .因式分解法D .配方法2.利用配方法解一元二次方程x 2-6x+7=0时,将方程配方为(x -m )2=n ,则m 、n 的值分别为( )A .m=9,n=2B .m=-3,n=-2C .m=3,n=0D .m=3,n=23.一元二次方程x 2-6x+5=0的两根分别是x 1、x 2,则x 1•x 2的值是( )A .5B .-5C .6D .-64.关于x 的方程x 2-mx+6=0有一根是-3,那么这个方程的另一个根是( )A .-5B .5C .-2D .25.设方程x 2+x -2=0的两个根为α,β,那么α+β-αβ的值等于( )A .-3B .-1C .1D .36.一元二次方程(2x+1)(2x -1)=8x+15的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如果a 、b 是关于x 的方程(x+c )(x+d )=1的两个根,那么(a+c )(b+c )等于( )A .1B .-1C .0D .c 28.已知关于x 的一元二次方程x 2-2(k -1)x+k 2+2=0的两个实数根为x 1和x 2,设t=,则t 的最大值为( )A .-4B .4C .-6D .69.关于x 的一元二次方程ax 2+5x+3=0有两个不相等的实数根,则实数a 的取值范围是( )A.a<且a≠0B.a>C.a≤且a≠0 D.a≥10.关于x的一元二次方程x2+(a2-3a)x+a=0的两个实数根互为倒数,则a的值为()A.-3B.0C.1D.-3 或011.定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{2,4}=4.因此,max{-2,-4}=-2;按照这个规定,若max{x,−x}=,则x的值是()A.-1B.-1或C.D.1或12.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,(x-3)(x-6)=0的实数根是3或6,x2-3x+2=0的实数根是1或2,3:6=1:2,则一元二次方程(x-3)(x-6)=0与x2-3x+2=0为相似方程.下列各组方程不是相似方程的是()A.x2-16=0与x2=25B.(x-6)2=0与x2+4x+4=0C.x2-7x=0与x2+x-6=0D.(x+2)(x+8)=0与x2-5x+4=0二.填空题13.一元二次方程(x+1)2=x+1的根是.14.若关于x的一元二次方程ax2-x+1=0有实数根,则a的最大整数值是.15.关于x的一元二次方程mx2-(3m-1)x+2m-1=0.其根的判别式的值为1,则该方程的根为.16.若关于x的一元二次方程x2+kx+1=0有两个相等的实数根,则k的值为.17.设m、n是方程x2+x-1001=0的两个实数根,则m2+2m+n的值为.三.解答题18.解下列方程:(1)(y-2)(y-3)=12;(2)4(x+3)2=25(x-1)2;(3)2x2+3x-1=0(请用配方法解).19.已知:关于x的一元二次方程x2+mx=3(m为常数).(1)证明:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.20.已知关于x的一元二次方程x2-4x-2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.21.已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,的值.22.已知关于x的方程x2-4x+k+1=0有两实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1、x2,且,求实数k的值.参考答案1-5:CDACC 6-10:ABDAC 11-12:BC13、14、-115、16、±217、100018、19、(1)证明:x2+mx-3=0,∵a=1,b=m,c=-3∴△=b2-4ac=m2-4×1×(-3)=m2+12,∵m2≥0,∴m2+12>0,∴△>0,∴无论m为何值,该方程都有两个不相等的实数根;(2)设方程的另一个根为-1.520、:(1)k≥2.(2)k=3.21、(1)k的取值范围为k>-1;(2)1.22、:(1)k≤3.(2)k=-3.21.3实际问题与一元二次方程一.选择题1.某市一楼盘准备以每平方米8000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米7220元的均价开盘销售,则平均每次下调的百分率是()A.4.875%B.5%C.5.4%D.10%2.两个相邻自然数的积是132.则这两个数中,较大的数是()A.11B.12C.13D.143.原价196元的某商品经过两次降价后,现售价100元,如果两次降价的百分数都为x,那么下列各式中正确的是()A.196(1﹣2x)=100B.196(1﹣x)2=100C.100(1+2x)=196D.100(1+x)2=1964.为迎接春节促销活动,某服装店从1月份开始对冬装进行“折上折”(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需640元,设该店冬装原本打x折,则有()A.1000(1﹣2x)=640B.1000(1﹣x)2=640C.1000()2=640D.1000(1﹣)2=6405.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86406.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5%B.10%C.15%D.20%7.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m8.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨瘦肉价格由原来每千克23元,上升到每千克40元,设平均每次上涨a%,则下列方程中正确的是()A.23(1+a%)2=40B.23(1﹣a%)2=40C.23(1+2a%)=40D.23(1﹣2a%)=409.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为x尺,下列方程符合题意的是()A.2=x2B.2=x2C.x2+(x﹣2)2=(x﹣4)2D.210.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有一棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB的长为()A.8或24B.16C.12D.16或12二.填空题11.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有人.12.如图,有一块矩形铁皮,长为100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为1400cm2,那么铁皮各角切去的正方形的边长为cm.13.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为米.14.某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共贺卡78张,设这个小组的同学共有x人,可列方程:.15.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则可列一元二次方程为.(化用一般式表示)三.解答题16.某果农2017年的年收入为5万元,由于党的惠农政策的落实,2019年年收入增加到7.2万元,求平均每年年收入的增长率.17.要在一个8cm×12cm的照片外侧的四周镶上宽度相同的银边.并且要使银边的面积和照片的面积相等.那么银边的宽应该是多少?18.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.若花圃的面积刚好为45平方米,则此时花圃的AB段长为多少?19.受新型冠状病毒的影响,口罩成为最紧缺的物资之一,因此在2020年初.星星服装厂快速转型生产一次性医用口罩和N95口罩.一次性医用口罩和N95口罩的成本分别为1元/个、8元/个.星星服装厂3月份共生产两种口罩80万个并售完,其中N95口罩单个售价是一次性医用口罩单个售价的12倍,一次性医用口罩的销售额为90万元,N95口罩的销售额为360万元.(1)3月份星星服装厂两种口罩的单个售价分别是多少元?(2)由于国内口罩不再紧缺,而国外疫情逐渐爆发,从4月份起,星星服装厂将生产的口罩全部远销国外.因为将口罩出口销售,所以一次性医用口罩和N95口罩每个的成本均增加50%.4月份该厂生产并销售一次性医用口罩50万个,N95口罩25万个,两种口罩的总利润为425万元,一次性医用口罩和N95口罩的单个售价之比为1:6,5月份两种口罩的单个成本与4月份相同,总利润比4月份增加了25万元,一次性医用口罩的单个售价比4月份增加1元,N95口罩的单个售价比4月份降低a%,同时一次性医用口罩和N95口罩的数量与3月份相比,分别增加a%、a%.求a的值.参考答案与试题解析一.选择题1.【解答】解:设平均每次下调的百分率是x,根据题意可得:8000(1﹣x)2=7220,解得:x1==5%,x2=(不合题意舍去),故选:B.2.【解答】解:设这两个数中较大的数为x,则较小的数为(x﹣1),依题意,得:x(x﹣1)=132,解得:x1=12,x2=﹣11(不合题意,舍去).故选:B.3.【解答】解:设两次降价的百分数都为x,根据题意,得:196(1﹣x)2=100,故选:B.4.【解答】解:设该店冬装原本打x折,依题意,得:1000()2=640.故选:C.5.【解答】解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.6.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.7.【解答】解:∵与墙垂直的边为xm,∴与墙平行的边为(28﹣2x)m.依题意,得:x(28﹣2x)=80,整理,得:x2﹣14x+40=0,解得:x1=4,x2=10.当x=4时,28﹣2x=20>12,不合题意,舍去;当x=10时,28﹣2x=8.故选:C.8.【解答】解:当猪肉第一次提价a%时,其售价为23+23a%=23(1+a%);当猪肉第二次提价a%后,其售价为23(1+a%)+23(1+a%)a%=23(1+a%)2.∴23(1+a%)2=40.故选:A.9.【解答】解:设门对角线的长为x尺,由题意得:2=x2,故选:B.10.【解答】解:设AB=xm,则BC=(28﹣x)m,依题意,得:x(28﹣x)=192,解得:x1=12,x2=16.∵P处有一棵树与墙CD、AD的距离分别是15m和6m,∴x2=16不合题意,舍去,∴x=12.故选:C.二.填空题(共5小题)11.【解答】解:设该群一共有x人,依题意有x(x﹣1)=156,解得:x=﹣12(舍去)或x=13,答:这个群一共有13人.故答案为13.12.【解答】解:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意得:(100﹣2x)(50﹣2x)=1400,展开得:x2﹣75x+900=0,解得:x1=15,x2=60(不合题意,舍去),则铁皮各角应切去边长为15cm的正方形.故答案是:15.13.【解答】解:设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(30+4x+24+4x)x=80整理得:4x2+27x﹣40=0解得x1=﹣8(舍去),x2=.故答案为:.14.【解答】解:设这个小组的同学共有x人,则每人送(x﹣1)张贺卡,根据题意得:x(x﹣1)=78.故答案为:x(x﹣1)=78.15.【解答】解:设比赛组织者应邀请x个队参赛,则可列一元二次方程为:x(x﹣1)=28,整理得:x2﹣x﹣56=0.故答案为:x2﹣x﹣56=0.三.解答题(共4小题)16.【解答】解:设平均每年年收入的增长率为x,依题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:平均每年年收入的增长率为20%.17.【解答】解:设银边的宽为xcm,依题意,得:(12+2x)(8+2x)﹣12×8=12×8,整理,得:x2+10x﹣24=0,解得:x1=2,x2=﹣12(不合题意,舍去).答:银边的宽应该是2cm.18.【解答】解:设AB=x米,则BC=(22﹣3x+2)米,依题意,得:x(22﹣3x+2)=45,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,22﹣3x+2=15>14,不合题意,舍去;当x=5时,22﹣3x+2=9,符合题意.答:若花圃的面积刚好为45平方米,则此时花圃的AB段长为5米.19.【解答】解:(1)设3月份星星服装厂生产一次医用口罩x万个,则生产N95口罩(80﹣x)万个,依题意,得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴==1.5,1.5×12=18(元).答:3月份星星服装厂生产的一次医用口罩的单个售价为1.5元,生产的N95口罩的单个售价为18元.(2)设4月份星星服装厂生产的一次医用口罩的单个售价为y元,则生产的N95口罩的单个售价为6y元,∵4月份两种口罩的总利润为425万元,∴[y﹣(1+50%)×1]×50+[6y﹣(1+50%)×8]×25=425,∴y=4,6y=24.又∵5月份总利润比4月份增加了25万元,∴[4+1﹣(1+50%)×1]×60(1+a%)+[(1﹣a%)×24﹣(1+50%)×8]×(80。
2020-2021学年数学人教版九年级上册21.1_一元二次方程_同步训练及答案

2020-2021学年数学人教版九年级上册21.1_一元二次方程_同步训练及答案2020-2021学年数学人教版九年级上册21.1 一元二次方程同步训练一、选择题1. ( 2分) 方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为()A. 3、2、5B. 2、3、5C. 2、﹣3、﹣5D. ﹣2、3、52. ( 2分) 下列方程中,一定是关于x的一元二次方程的是()A. ax2+bx+c=0B. ﹣3(x+1)2=2(x+1)C. x2﹣x(x﹣3)=0D.3. ( 2分) 已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A. ﹣4B. 4C. ﹣2D. 24. ( 2分) 如图,在宽为,长为的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.如果设小路宽为,根据题意,所列方程正确的是().A. B.C. D.5. ( 2分) 已知a是方程x2﹣3x﹣1=0的一个根,则代数式﹣2a2+6a﹣3的值是()A. ﹣5B. ﹣6C. ﹣12﹣2D. ﹣12+26. ( 2分) 已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是()A. 1B. ﹣2C. 0D. ﹣17. ( 2分) 若关于x的一元二次方程(m﹣2)x2+3x+m2﹣3m+2=0的常数项为0,则m等于()A. 0B. 1C. 2D. 1或28. ( 2分) 若关于x的一元二次方程ax2﹣bx+4=0的解是x=2,则2020+2a﹣b的值是()A.2016B.2018C.2020D.20229. ( 2分) 若是关于x的一元二次方程,则a的值是()A. 0B. 2C. -2D. ±210. ( 2分) 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2017年底某市汽车拥有量为16.9万辆.己知2015年底该市汽车拥有量为10万辆,设2015年底至2017年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.9二、填空题11. ( 4分) 把一元二次方程化为一般形式为:________,二次项为:________,一次项系数为:________,常数项为:________。
(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。
人教版九年级数学上《21.1一元二次方程》同步测试含答案(K12教育文档)

人教版九年级数学上《21.1一元二次方程》同步测试含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学上《21.1一元二次方程》同步测试含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学上《21.1一元二次方程》同步测试含答案(word版可编辑修改)的全部内容。
《21.1 一元二次方程》一.选择题1.下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=02.下列方程中,是一元二次方程的是( )A.5x+3=0 B.x2﹣x(x+1)=0 C.4x2=9 D.x2﹣x3+4=03.关于x的方程是一元二次方程,则a的值是()A.a=±2 B.a=﹣2 C.a=2 D.4.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是()A.2,﹣3 B.﹣2,﹣3 C.2,﹣3x D.﹣2,﹣3x5.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.06.把方程2(x2+1)=5x化成一般形式ax2+bx+c=0后,a+b+c的值是( )A.8 B.9 C.﹣2 D.﹣17.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为( )A.1 B.﹣1 C.2 D.﹣28.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012二.填空题9.关于x的方程(m﹣3)﹣x=5是一元二次方程,则m=______.10.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是______.11.方程(3x﹣1)(x+1)=5的一次项系数是______.12.一元二次方程3x2+2x﹣5=0的一次项系数是______.13.关于x的一元二次方程3x(x﹣2)=4的一般形式是______.14.方程3x2=5x+2的二次项系数为______,一次项系数为______.15.已知x=﹣1是方程x2+mx+1=0的一个根,则m=______.16.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为______.17.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是______.18.已知关于x的一元二次方程ax2+bx+c=0(a≠0)有一个根为1,一个根为﹣1,则a+b+c=______,a﹣b+c=______.三.解答题19.若(m+1)x|m|+1+6x﹣2=0是关于x的一元二次方程,求m的值.20.关于x的方程(m2﹣8m+19)x2﹣2mx﹣13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程a(x+1)2+b(x+1)+c=0化为一般式后为3x2+2x﹣1=0,试求a2+b2﹣c2的值的算术平方根.《21。
人教版九年级上册数学21.1一元二次方程同步训练 (word、含答案)

人教版九年级上册数学21.1 一元二次方程同步训练一、单选题1.下列方程中是一元二次方程的是( )A .20ax bx c ++=B .17x -=C .2760x +=D .2250x y -=2.一元二次方程2310x x --=的二次项系数、一次项系数、常数项分别是( ) A .1,-3,1 B .1,-3,-1 C .-1,-3,1 D .1,3,-1 3.将一元二次方程2524x x -=化为一般形式后,其一次项系数为( ) A .4x - B .4- C .25x D .2- 4.已知a 是方程x 2-2x -1=0的一个解,则代数式3a 2-6a +3的值为( ) A .0 B .4 C .5 D .6 5.已知0x =是关于x 的一元二次方程22340x x k ++-=的一个根,则k 的值为( )A .4B .-4C .±1D .±4 6.若关于x 的方程(a ﹣2)x 2+x ﹣3=0是一元二次方程,则a 的取值范围是( ) A .a ≠0 B .a ≠2C .a >2D .a <2 7.若关于x 的方程()222470mm x x --+-=是一元二次方程,则m 的值为( ) A .2m ≠ B .2m =±C .2m =-D .2m = 8.下列方程中,①2210x +=,①20ax bx c ++=,①2(2)(2)3x x x +-=-,①2120x x-=,是一元二次方程的有( ) A .1个 B .2个 C .3个 D .4个二、填空题9.关于x 的方程220x mx m -+=的一个根为-1,则m 的值为__________. 10.已知1x =是方程20x ax b +-=的一个根,则2023a b -+=______. 11.若(a -2)x 2-6x -1=0是关于x 的一元二次方程,则a 的取值范围为________.12.若关于x 的方程()11450k k x x +-+-=是一元二次方程,则k =______.13.一元二次方程23280x x --=的常数项是______. 14.若关于x 的方程(m -3)xm ²-7-x +3=0是一元二次方程,则m 的值是________. 15.已知1x =-是方程220x x m +-=的一个根,则m 的值为__________. 16.一元二次方程5x 2– 3x = 4+2x 化为一般形式是_______.三、解答题17.将一元二次方程5x 2﹣1=4x 化成一般形式,并写出二次项系数、一次项系数和常数项.18.已知m 是方程2210x x +-=的一个根,求代数式2422019m m ++的值.19.关于x 的方程2232mx x x mx -=-+是一元二次方程,m 应满足什么条件?20.如果关于x 的方程(m ﹣3)x |m ﹣1|﹣x+3=0是一元二次方程,求m 的值.21.已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?参考答案:1.C2.B3.B4.D5.A6.B7.C8.A9.1 3 -10.202211.a≠212.1-13.8-14.-315.1-16.5x2– 5x -4=017.5x2﹣4x﹣1=0,二次项系数是5,一次项系数是﹣4,常数项是﹣1 18.202119.1m≠20.﹣121.(1)-2或±1(2)2。
人教版九年级数学上册《21-1 一元二次方程》作业同步练习题及参考答案

第二十一章一元二次方程21.1 一元二次方程1.下列方程化为一般形式后,常数项为零的是( )A.5x-3=2x2B.(2x-1)(2x+4)=-4C.(3x-1)(2x+4)=1D.(x+3)(x+2)=-62.有x 支球队参加篮球比赛,共比赛了45 场,每两队之间都比赛一场,则下列方程中符合题意的是( )A.1x(x-1)=45B.1x(x+1)=452 2C.x(x-1)=45D.x(x+1)=453.已知关于x 的方程x2-kx-6=0 的一个根为x=3,则实数k 的值为( )A.1B.-1C.2D.-24.已知关于x 的方程kx2+2x-1=3x2 为一元二次方程,则k 的取值范围是( )A.k≠0B.k≠-3C.k≠3D.k 可以取任何实数5.在方程x2+x=y, 5x-7x2=8,x2+y2=1,(x-1)(x-2)=0,x2-1=6 中,一元二次方程的个数是.�6.一元二次方程2x2+4x-1=0 的二次项系数、一次项系数及常数项之和为.7.把下列方程化成一元二次方程的一般形式,并分别写出它们的二次项系数、一次项系数和常数项.(1)8x2-2x=1+2x;(2)(y-1)(y-2)=1.2 � 8. 小刚在写作业时,一不小心,方程 3x 2- x-5=0 的一次项系数被墨水盖住了,但从题目的答案中,他知道方程的一个解为 x=5,请你帮助小刚求出被覆盖的数.9. 已知方程(m+4)x |m|-2+8x+1=0 是关于 x 的一元二次方程,求 m 的值.10. 若关于 x 的一元二次方程(m-1)x 2+x+|m|-1=0 有一个根为 0,则 m 的值为( )A.1B.-1C.1 或-1D.111. 已知关于 x 的方程 x 2+bx+a=0 有一个根为-a (a ≠0),则下列代数式的值恒为常数的是() A .abB .�C .a+bD .a-b12. 关于 x 的方程(m 2-16)x 2+(m+4)x+2m+3=0,当 m时,是一元一次方程;当 m 时,是一元二次方程.13. 根据下列问题,列出关于 x 的方程,并将其化成 ax 2+bx+c=0(a ≠0)的形式:(1)一个长方形的宽比长少 3,面积是 75,求长方形的长 x ;(2) 两个连续偶数的积为 168,求较小的偶数 x ;(3) 一个直角三角形的两条直角边的长的和是 20,面积是 25,求其中一条直角边的长 x.14. 已知关于 x 的一元二次方程 ax 2+bx+c=0,且 a ,b ,c 满足 �-1+(b-2)2+|a+b+c|=0,求满足条件的一元二次方程的一般形式.2 1 2 2 15.已知 m ,n 都是方程 x 2+2 018x-2 019=0 的根,试求代数式(m 2+2 018m-2 018)(n 2+2 018n+1)的值.★16.某教学资料中出现了一道这样的题目: 1x 2-x=2 化为一元二次方程的一般形式,并写出它 把方程 2的二次项系数、一次项系数和常数项.现在把上面的题目改编成下面的两道小题,请回答问题:(1) 下列式子中有哪些是方程 x -x=2 化为一元二次方程的一般形式?.(填序号)①1x 2-x-2=0,②-1x 2+x+2=0,③x 2-2x=4,④-x 2+2x+4=0,⑤ 3x 2-2 3x-4 3=0.2 2(2) 方程1x 2-x=2 化为一元二次方程的一般形式后,它的二次项系数、一次项系数和常数项之间具有什么关系?参考答案夯基达标1.B2.A3.A4.C 由原方程得(k-3)x 2+2x-1=0,结合题意可知 k-3≠0,即 k ≠3.5.26.57. 解 (1)一般形式:8x 2-4x-1=0,二次项系数、一次项系数和常数项分别为 8,-4,-1.(2)一般形式:y 2-3y+1=0,二次项系数、一次项系数和常数项分别为 1,-3,1.8. 解 设=a.∵x=5 是关于 x 的方程 3x 2-ax-5=0 的一个解,∴3×52-5a-5=0,解得 a=14,即被覆盖的数是 14.9. 分析 根据一元二次方程的二次项系数不为零和未知数的最高次数为 2 确定 m 的值.�+ 4 ≠ 0,|�|-2 = 2,解得m=4.培优促能10.B 对于含字母系数的一元二次方程,要注意除了满足未知数的最高次数是2 以外,还要保证二次项系数不为0.由题意,得(m-1)×02+0+|m|-1=0,且m-1≠0,解得m=-1.故选B.11.D 把x=-a 代入方程x2+bx+a=0,得a2-ab+a=0,∵a≠0,∴a-b=-1.故选D.12.=4 ≠±413.解(1)x(x-3)=75,化成ax2+bx+c=0(a≠0)的形式为x2-3x-75=0.(2)x(x+2)=168,化成ax2+bx+c=0(a≠0)的形式为x2+2x-168=0.(3)1x(20-x)=25,化成ax2+bx+c=0(a≠0)的形式为x2-20x+50=0.214.分析关键是理解算术平方根、完全平方数和绝对值的非负性,即�-10,(b-2)2≥0,|a+b+c|≥0.只有使各项都为0 时,其和才为0.�-1 = 0, 解由�-1+(b-2)2+|a+b+c|=0,得�-2 = 0,� = 1, 解得� = 2,� + � + � = 0, � = -3.由于 a 是二次项系数,b 是一次项系数,c 是常数项,故所求方程的一般形式为x2+2x-3=0. 15.解∵m,n 都是方程x2+2 018x-2 019=0 的根,∴m2+2 018m-2 019=0,n2+2 018n-2 019=0.∴m2+2 018m=2 019,n2+2 018n=2 019.∴原式=(2 019-2 018)×(2 019+1)=2 020.创新应用16.解(1)①②④⑤(2)若设它的二次项系数为a(a≠0),则一次项系数为-2a、常数项为-4a(或者说:这个方程的二次项系数∶一次项系数∶常数项=1∶(-2)∶(-4)).解由题意,得。
人教版九年级数学上册:一元二次方程同步练习 (含答案)

第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。
一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。
人教版数学九年级上册 第21章 21.1---21.3练习题

人教版数学九年级上册第21章21.1---21.3练习题含答案21.1一元二次方程一.选择题1.若关于x的一元二次方程ax2+bx+4=0的一个根是x=﹣1,则2015﹣a+b的值是()A.2011B.2015C.2019D.20202.将一元二次方程5x2﹣1=4x化为一般形式,其中一次项系数是()A.5B.﹣4C.3D.﹣13.下列方程中,是一元二次方程的是()A.2x﹣3=0B.x2﹣2y=0C.=﹣3D.x2=04.已知关于x的一元二次方程x2﹣x+a2﹣1=0的一个根为0,则a的值为()A.1B.﹣1C.±1D.5.已知x=﹣2是一元二次方程x2+mx+4=0的一个解,则m的值是()A.﹣4B.4C.0D.0或46.一元二次方程x2﹣2x+3=0的一次项和常数项分别是()A.2和3B.﹣2和3C.﹣2x和3D.2x和37.方程(m+1)x|m﹣1|+mx+2=0是关于x的一元二次方程,则()A.m=﹣1或3B.m=3C.m=﹣1D.m≠﹣18.关于x的方程ax2﹣2x+1=0是一元二次方程,则()A.a>0B.a<0C.a≠0D.a≤19.将关于x的一元二次方程x(x+2)=5化成一般式后,a、b、c的值分别是()A.1,2,5B.1,﹣2,﹣5C.1,﹣2,5D.1,2,﹣5 10.已知a是方程x2+x﹣1=0的一个根,则代数式a3+2a2+2019的值是()A.2018B.2019C.2020D.2021二.填空题11.方程(m﹣2)x|m|+3mx+1=0是关于x的一元二次方程,则m=.12.m是方程x2﹣6x﹣5=0的一个根,则代数式11+6m﹣m2的值是.13.若x=2是一元二次方程x2+x+c=0的一个解,则c2=.14.关于x的一元二次方程(a﹣1)x2+x+a2+2a﹣3=0的一个根是0,则a的值是.15.已知a是方程x2﹣3x+1=0的根,则2a2﹣5a﹣2+的值为.三.解答题16.已知m是方程x2﹣2x﹣3=0的一个根,求(m﹣2)2+(m+3)(m﹣3)的值.17.已知方程x2﹣bx+3=0的一个根是1,求b的值和方程的另外一个根.18.已知m是方程x2﹣x﹣3=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.19.若m是一个一元二次方程x|a+1|﹣x﹣5=0的一个实数根.(1)求a的值;(2)不解方程,求代数式(m2﹣m)(m﹣+1)的值.参考答案与试题解析一.选择题1.【解答】解:把x=﹣1代入方程ax2+bx+4=0得a﹣b+4=0,所以a﹣b=﹣4,所以2015﹣a+b=2015﹣(a﹣b)=2015﹣(﹣4)=2019.故选:C.2.【解答】解:一元二次方程5x2﹣1=4x化为一般形式是5x2﹣4x﹣1=0,一次项系数分别为﹣4.故选:B.3.【解答】解:A、是一元一次方程,故A不合题意;B、是二元二次方程,故B不合题意;C、是分式方程,故C不合题意;D、是一元二次方程,故D符合题意.故选:D.4.【解答】解:把x=0代入方程x2﹣x+a2﹣1=0得:a2﹣1=0,∴a=±1.故选:C.5.【解答】解:因为x=﹣2是一元二次方程x2+mx+4=0的一个解,所以4﹣2m+4=0解得m=4.故选:B.6.【解答】解:一元二次方程x2﹣2x+3=0的一次项是﹣2x,常数项是3,故选:C.7.【解答】解:由方程(m+1)x|m﹣1|+mx+2=0,得,解得m=3,故方程(m+1)x|m﹣1|+mx+2=0是关于x的一元二次方程,则m=3.故选:B.8.【解答】解:∵关于x的方程ax2﹣2x+1=0是一元二次方程,∴a≠0,故选:C.9.【解答】解:方程整理得:x2+2x﹣5=0,则a,b,c的值分别是1,2,﹣5,故选:D.10.【解答】解:由题意可知:a2+a﹣1=0,∴a2+a=1,∴原式=a3+a2+a2+2019=a(a2+a)+a2+2019=a+a2+2019,=1+2019=2020,故选:C.二.填空题(共5小题)11.【解答】解:由题意,得|m|=2,且m﹣2≠0,解得m=﹣2,故答案为:﹣2.12.【解答】解:∵a是方程x2﹣6x﹣5=0的一个根,∴a2﹣6a﹣5=0,整理得,a2﹣6a=5,∴11+6m﹣m2=﹣(m2﹣6m)+11,=﹣5+11,=6.故答案为:6.13.【解答】解:依题意,得22+2+c=0,解得,c=﹣6,则c2=(﹣6)2=36.故答案为:36.14.【解答】解:根据题意知,x=0是关于x的一元二次方程(a﹣1)x2+x+a2+2a﹣3=0的根,∴a2+2a﹣3=0,解得,a=﹣3或a=1,∵a﹣1≠0,∴a≠1.故答案是:﹣3.15.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,∴a2=3a﹣1,∴2a2﹣5a﹣2+=2(3a﹣1)﹣5a﹣2+=a+﹣4=﹣4=﹣4=3﹣4=﹣1.故答案为﹣1.三.解答题(共4小题)16.【解答】解:∵m是方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴(m﹣2)2+(m+3)(m﹣3)=m2﹣4m+4+m2﹣9=2(m2﹣2m)﹣5=2×3﹣5=1.17.【解答】解:把x=1代入x2﹣bx+3=0得1﹣b+3=0,解得b=4,方程化为x2﹣4x+3=0,(x﹣1)(x﹣3)=0,所以x1=1,x2=3,即方程的另一个解为3.18.【解答】解:∵m是方程x2﹣x﹣3=0的一个实数根,∴m2﹣m﹣3=0,即m2=m+3,∴(m2﹣m)(m﹣+1)=(m+3﹣m)=3×=3×2=6.19.【解答】解:(1)根据题意得|a+1|=2,解得a=1或a=﹣3;(2)∵m是一个一元二次方程x2﹣x﹣5=0的一个实数根,∴m2﹣m﹣5=0,∴m2﹣m=521.2解一元二次方程一、选择题(共12题)1、一元二次方程x2﹣5x+6=0的解为()A.x1=2,x2=﹣3 B.x1=﹣2,x2=3C.x1=﹣2,x2=﹣3 D.x1=2,x2=32、一元二次方程x2-2x-1=0配方后可化为()A.(x-1)2= 2B.(x-1)2= 1C.(x + 1)2= 1D.(x -1)2=03、方程的解是()A.x1=2,x2= 3 B.x1=2,x2=1 C.x=2 D.x=3 4、若关于x的方程kx2﹣6x+9=0有实数根,则k的取值范围是()A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠05、方程x2﹣2x+3=0的根的情况是()A.两实根的和为﹣2 B.两实根的积为3C.有两个不相等的正实数根 D.没有实数根6、下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=07、一元二次方程x2-2x+1=0的根的情况是()A.有两个不等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定8、关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A. B. C. D.09、关于x的一元二次方程x2+(a2-2a)x+a-1=0的两个实数根互为相反数,则a 的值为 ( )A.2B.0C.1D.2或010、若是关于x的一元二次方程的一个解,的值是A. 17 B. 1026 C. 2018 D. 405311、已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是()A.0 B.1 C.﹣1 D.±112、一个等腰三角形的两边长分别是方程x2-7x+10=0的两根,则该等腰三角形的周长是 ( )A.12B.9C.13D.12或9二、填空题(共5题)1、已知关于x的方程x2-3x+a=0有一个根为1,则方程的另一个根为______.2、若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是_____.3、关于 x 的一元二次方程(a﹣1)x2﹣2x+3=0 有实数根,则整数 a 的最大值是_____________.4、如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2﹣4a﹣5,那么a的取值范围是_____.5、定义新运算“※”,规则:a※b=ab﹣a﹣b,如1※2=1×2﹣1﹣2=﹣1,若x2+x﹣1=0的两根为x1,x2,则x1※x2= .三、解答题(共4题)1、已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.2、关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若2(x1+x2)+ x1x2+10=0.求m的值.3、关于x的一元二次方程kx2-(2k-2)x+(k-2)=0(k≠0).(1)求证:无论k取何值时,方程总有两个不相等的实数根;(2)要使得方程的两个实数根都是整数,求整数k可能的取值.4、阅读理解题:小聪是个非常热爱学习的学生,老师在黑板上写了一题:若方程x2﹣6x﹣k﹣1=0与x2﹣kx﹣7=0有相同根,试求k的值及相同根.思考片刻后,小聪解答如下:解:设相同根为m,根据题意,得①﹣②,得(k﹣6)m=k﹣6 ③显然,当k=6时,两个方程相同,即两个方程有两个相同根﹣1和7;当k≠6时,由③得m=1,代入②式,得k=﹣6,此时两个方程有一相同根x=1.∴当k=﹣6时,有一相同根x=1;当k=6时,有两个相同根是﹣1和7.聪明的同学,请你仔细阅读上面的解题过程,解答问题:已知k为非负实数,当k取什么值时,关于x的方程x2+kx﹣1=0与x2+x+k﹣2=0有相同的实根.参考答案一、选择题1、D;2、A.;3、A;4、B;5、D;6、B;7、B;8、A;9、B;10、B;11、C;12、A;二、填空题1、 22、 k>0且k≠1.3、 04、 a>﹣1且a≠﹣且a≠且a≠﹣5、0,三、解答题1、解:由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得m=5.当m=5时,原方程化为x2﹣4x+4=0.解得x1=x2=2.所以原方程的根为x1=x2=2.2、(1)m≤3.25.(2)m=-3.3、解:(1)证明:∵kx2-(2k-2)x+(k-2)=0(k≠0),∴Δ=[-(2k-2)]2-4k(k-2)=4>0,∴无论k取何值时,方程总有两个不相等的实数根.(2)由求根公式可求得x1=1,x2=1-,要使得方程的两个实数根都是整数,则整数k为2的因数,∴k=±1或k=±2.4、解:设相同实根是a 则a2+ka﹣1=0,a2+a+k﹣2=0,相减得(k﹣1)a﹣1﹣k+2=0,即(k﹣1)a=k﹣1,若k=1,则两个方程都是x2+x﹣1=0,有两个相同的根和.若k≠1,则a==1,即相同实根是x=1,代入方程,得12+k×1﹣1=0,k=0综上当k=0或k=1时,关于x的方程x2+kx﹣1=0与x2+x+k﹣2=0有相同的实根21.3实际问题与一元二次方程一.选择题1.一个矩形的长比宽多2,面积是99,则矩形的两边长分别为()A.9和7B.11和9C.1+,﹣1+D.1+3,﹣1+32.新型冠状病毒肺炎具有人传人性,调查发现1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,则x为()A.14B.15C.16D.173.如图,学校课外生物小组的试验园地的形状是长50米、宽30米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为800平方米.则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.50×30﹣50x﹣30x+2x2=800B.50×30﹣50x﹣2×30x=800C.(50﹣2x)(30﹣x)=800D.(50﹣x)(30﹣2x)=8004.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×225.某学校生物兴趣小组在该校空地上围了一块面积为200m2的矩形试验田,用来种植蔬菜.如图,试验田一面靠墙,墙长35m,另外三面用49m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).设试验田垂直于墙的一边AB的长为xm,则下列所列方程正确的是()A.x(49+1﹣x)=200B.x(49﹣2x)=200C.x(49+1﹣2x)=200D.x(49﹣1﹣2x)=2006.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y亿元人民币,设每年投资的增长率为x,则可得()A.y=5(1+2x)B.y=5x2C.y=5(1+x)2D.y=5(1+x2)7.如表是一张月历表,在此月历表上用一个正方形任意圈出2×2个数(如1,2,8,9),如果圈出的四个数中的最小数与最大数的积为308,那么这四个数的和为()12345 678910111213141516171819202122232425262728293031A.68B.72C.74D.768.如图是某公司去年8~12月份生产成本统计图,设9~11月每个月生产成本的下降率都为x,根据图中信息,得到x所满足的方程是()A.30(1﹣x)2=15B.15(1+x)2=30C.30(1﹣2x)4=15D.15(1+2x)2=309.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木头柱子,在柱子的上端系有绳索,绳索从柱子上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距柱子根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为()A.x2﹣8=(x﹣3)2B.x2+82=(x﹣3)2C.x2﹣82=(x﹣3)2D.x2+8=(x﹣3)210.《代数学》中记载,形如x2+8x=33的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为2x的矩形,得到大正方形的面积为33+16=49,则该方程的正数解为7﹣4=3.”小聪按此方法解关于x 的方程x2+10x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为()A.6B.﹣C.﹣2D.5﹣5二.填空题11.某文具店三月份销售铅笔100支,四,五两个月销售量连续增长.若四,五月平均增长率为x,则该文具店五月份销售铅笔的支数是.(用含x的代数式表示)12.在Rt△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果点P,Q分别从A,B两点同时出发,则经过秒钟后,P,Q两点间距离为4厘米.13.如图,在工地一边的靠墙处,用120米长的铁栅栏围一个占地面积为2000平方米的长方形临时仓库,并在其中一边上留宽为3米的大门,设无门的那边长为x米.根据题意,可建立关于x的方程是.14.如图,用长为20m的篱笆,一面利用墙(墙的最大可用长度为11m),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1m的两扇小门.若花圃的面积刚好为40m2,则此时花圃AB段的长为m.15.如图,在足够大的空地上有一段长为3米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了16米木栏.所围成的矩形菜园的面积为14平方米,则所利用旧墙AD的长为.三.解答题16.如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB 边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?17.10月份,是柚子上市的季节,柚子味酸甜,略带苦味,含有丰富的维生素c和大量的营养元素.有健胃补血,降血糖等功效,百果园大型水果超市的红心柚与沙田柚这两种水果很受欢迎,红心柚售价12元/千克,沙田柚售价9元/千克.(1)若第一周红心柚的销量比沙田柚的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心柚多少千克?(2)若该水果超市第一周按照(1)中红心柚和沙田柚的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心柚售价降低了a%,销量比第一周增加了a%,沙田柚的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了%,求a的值.18.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?若设每个支干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为;②从主干中长出的支干的数目为;(用含x的式子表示)③又从上述支干中长出的小分支的数目为;(用含x的式子表示)(Ⅱ)完成问题的求解.19.如图①,用一块长100cm,宽80cm的薄钢片,在四个角上截去四个相同的小正方形,可以做成如图②所示的底面积为4800cm2的没有盖的长方体盒子,求截去的小正方形的边长.参考答案与试题解析一.选择题1.【解答】解:设矩形的长为x,则宽为(x﹣2),则x(x﹣2)=99,解得x=11,(舍去负值).则x﹣2=9,答:矩形的两边长分别为11和9,故选:B.2.【解答】解:设1人平均感染x人,依题意可列方程:(1+x)2=225.解得:x1=14,x2=﹣16(不合题意舍去),答:x为14,故选:A.3.【解答】解:依题意,得:(50﹣2x)(30﹣x)=800,故选:C.4.【解答】解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.5.【解答】解:设当试验田垂直于墙的一边长为xm时,则另一边的长度为(49+1﹣2x)m,依题意得:x(49+1﹣2x)=200,故选:C.6.【解答】解:依题意,得y=5(1+x)2.故选:C.7.【解答】解:设最小的数为x,则最大的数为x+8,由题意得:x(x+8)=308,解得:x1=14,x2=﹣22(不合题意,舍去),14+8=22,则四个数为:14,15,21,22,14+15+21+22=72,故选:B.8.【解答】解:设每个月生产成本的下降率为x,根据题意得:30(1﹣x)2=15,故选:A.9.【解答】解:设绳索长为x尺,可列方程为x2﹣82=(x﹣3)2,故选:C.10.【解答】解:如图2,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为:50+×4=50+25=75,∴该方程的正数解为﹣×2=5﹣5.故选:D.二.填空题11.【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故答案为:100(1+x)2.12.【解答】解:设t秒后PQ=4,则BP=6﹣t,BQ=2t,∵∠B=90°,∴PB2+BQ2=PQ2,∴(6﹣t)2+(2t)2=(4)2,解得t=或2(舍弃).答:秒后PQ间的距离为4,故答案为:.13.【解答】解:设无门的那边长为x米,则平行于墙的一面长为120+3﹣2x=123﹣2x,∴工地面积为x(123﹣2x)=2000.故答案为x(123﹣2x)=2000.14.【解答】解:设AB=x米,则BC=(20﹣3x+2)米,依题意,得:x(20﹣3x+2)=40,整理,得:3x2﹣22x+40=0,解得:x 1=,x2=4.当x=时,20﹣3x+2=12>11,不合题意,舍去;当x=4时,20﹣3x+2=10,符合题意.故答案为:4.15.【解答】解:设AB=x米,则BC=(16﹣2x)米,依题意得:x(16﹣2x)=14,解得:x1=1,x2=7.当x=1时,16﹣2x=14>3,不合题意舍去;当x=7时,16﹣2x=2.答:所利用旧墙AD的长为2米.故答案为:2米.三.解答题16.【解答】解:(1)设经过x秒后,AP=CQ,则AP=xcm,CQ=(10﹣2x)cm,依题意,得:x=10﹣2x,解得:x=.答:经过秒后,AP=CQ.(2)设经过y秒后,△PBQ的面积等于15cm2,则BP=(8﹣y)cm,BQ=2ycm,依题意,得:(8﹣y)×2y=15,化简,得:y2﹣8y+15=0,解得:y1=3,y2=5.答:经过3秒或5秒后,△PBQ的面积等于15cm2.17.【解答】解:(1)设第一周销售红心柚x千克.则沙田柚(x﹣200)千克,根据题意得:12x+9(x﹣200)≥6600,解得:x≥400.答:第一周至少销售红心柚400千克;(2)根据题意得:12(1﹣a%)×400(1+a%)+9×200(1+a%)=6600(1+%),∴a1=45,a2=0(舍去).答:a的值为45.18.【解答】解:(Ⅰ)①根据题意得主干的数目为1;②从主干中长出的支干的数目为小x;③又从上述支干中长出的小分支的数目为x2;(Ⅱ)设每个支干长出x个小分支,则1+x+x2=91,解得:x1=9,x2=﹣10(舍去),答:每个支干长出9个小分支.19.【解答】解:设截去的小正方形的边长为xcm,则长方形盒子的底面为长(100﹣2x)cm,宽为(80﹣2x)cm的长方形,依题意,得:(100﹣2x)(80﹣2x)=4800,化简,得:x2﹣90x+800=0,解得:x1=10,x2=80(不合题意,舍去).答:截去的小正方形的边长为10cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人人教版九年级数学上册第21章《一元二次方程》同步练习1带答
案
◆随堂检测
1、判断下列方程,是一元二次方程的有____________.
(1)32250x x -+=; (2)21x =; (3)221
35224
5x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=. (提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)
2、下列方程中不含一次项的是( )
A .x x 2532=-
B .2916x x =
C .0)7(=-x x
D .0)5)(5(=-+x x
3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.
4、1、下列各数是方程21(2)23
x +=解的是( ) A 、6 B 、2 C 、4 D 、0
5、根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x .
(2)一个矩形的长比宽多2,面积是100,求矩形的长x .
(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x .
◆典例分析
已知关于x 的方程22(1)(1)0m x m x m --++=.
(1)x 为何值时,此方程是一元一次方程?
(2)x 为何值时,
此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.
解:(1)由题意得,21010
m m ⎧-=⎨+≠⎩时,即1m =时,
方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.
(2)由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0
m x m x m --++=是一元二次方程.此方程的二次项系数是21m -、一次项系数是(1)m -+、常数项是m .
◆课下作业
●拓展提高
1、下列方程一定是一元二次方程的是( )
A 、22
310x x
+-= B 、25630x y --=
C 、220ax x -+=
D 、22(1)0a x bx c +++=
2、2121003m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m = C 、32m = D 、无法确定
3、根据下列表格对应值:
x
3.24 3.25 3.26 2ax bx c ++ -0.02 0.01 0.03
判断关于x 的方程20,(0)ax bx c a ++=≠的一个解x 的范围是( )
A 、x <3.24
B 、3.24<x <3.25
C 、3.25<x <3.26
D 、3.25<x <3.28
4、若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.
5、下面哪些数是方程220x x --=的根?
-3、-2、-1、0、1、2、3、
6、若关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少?
●体验中考
1、(2009年,武汉)已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )
A .-3
B .3
C .0
D .0或3
(点拨:本题考查一元二次方程的解的意义.)
2、(2009年,日照)若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )
A .1
B .2
C .-1
D .-2
(提示:本题有两个待定字母m 和n ,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)
参考答案:
◆随堂检测
1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足0a ≠的条件下才是一元二次方程.
2、D 首先要对方程整理成一般形式,D 选项为2250x -=.故选D.
3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.
4、B 将各数值分别代入方程,只有选项B 能使等式成立.故选
B.
5、解:(1)依题意得,2425x =,
化为一元二次方程的一般形式得,24250x -=.
(2)依题意得,(2)100x x -=,
化为一元二次方程的一般形式得,221000x x --=.
(3)依题意得,222(2)10x x +-=,
化为一元二次方程的一般形式得,22480x x --=.
◆课下作业
●拓展提高
1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.
2、C 由题意得,212m -=,解得3
2
m =.故选D.
3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 的值,使20ax bx c ++=,即
是方程20ax bx c ++=的一个解.故选B. 4、0;b a c =+;0 将各根分别代入简即可.
5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.
同理可得2,0,1,3x =-时,都不是方程220x x --=的根. 当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根.
6、解:由题意得,21010
m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.
●体验中考
1、A 将2x =带入方程得4220m ++=,∴3m =-.故选A.
2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=, ∴2m n +=-.故选D.。