高中数学- 正态分布
高中数学正态分布

高中数学正态分布正态分布是高中数学中一个重要的概率分布,也被称为高斯分布。
它在自然界和社会科学中具有广泛的应用,可以描述许多随机变量的分布情况。
正态分布具有许多独特的特性,包括对称性、钟形曲线、均值和标准差等。
本文将介绍正态分布的基本概念、性质以及它在实际问题中的应用。
一、基本概念正态分布是一种连续型的概率分布,它的概率密度函数可以用一个钟形曲线来表示。
钟形曲线关于均值对称,左右两边的面积相等。
正态分布的概率密度函数可以用数学公式表示,但在本文中我们不涉及具体公式。
二、性质1. 对称性:正态分布的钟形曲线关于均值轴对称,即曲线左右两侧的面积相等。
2. 峰度:正态分布的峰度较高,表示数据相对集中,没有明显的长尾巴。
3. 均值和标准差:正态分布的均值和标准差决定了曲线的位置和形状。
均值决定了曲线的中心位置,标准差决定了曲线的宽度。
三、应用举例正态分布广泛应用于各个领域,下面举几个例子说明其具体应用:1. 身高分布:人类的身高大致符合正态分布,均值是一定范围内的平均身高,标准差则决定了身高的变化范围。
2. 考试成绩:在一次考试中,学生的成绩往往呈现出正态分布的特点。
均值代表了班级的平均水平,标准差则反映了学生成绩的离散程度。
3. 生产质量控制:正态分布在生产过程中的质量控制中发挥重要作用。
通过对产品尺寸、重量等特征的测量,可以判断产品是否符合正态分布,从而进行质量控制和改进。
四、正态分布的应用思考正态分布的应用思考是高中数学中常见的问题类型之一。
通过理解正态分布的基本概念和性质,我们可以解决一些实际问题,例如:1. 求解概率:已知某一正态分布的均值和标准差,我们可以求解某个范围内的概率,从而回答一些关于随机事件的概率问题。
2. 参数估计:通过样本数据对总体的均值和标准差进行估计,从而推断总体的特征。
3. 假设检验:通过正态分布的性质,可以进行关于总体均值的假设检验,从而判断总体是否满足某种条件。
高中数学中的正态分布是一种重要的概率分布,具有广泛的应用。
高中数学 正态分布

是反映随机变量取值的平均水平的特征数, 可以用样本均值去估计;
是衡量随机变量总体波动大小的特征数,可 以用样本标准差去估计.
现实生活中的正态分布
• 长度测量误差 • 某一地区同年人的身高、体重、肺活量 • 一定条件一生长的小麦的株高、穗长、单位
面积产量 • 正常生产条件下各种产品的质量指标 • 某地每年七月份的平均气温、平均温度、降
互平行但相互错开的圆柱 形小
木块,小木块之间留有适当的 空
隙作为通道, 前面挡有一块玻璃.
让一个小球从高尔顿板 上方的
通道口落下,小球在下落过 程中
图2.4 1
与层层小木块碰撞, 最后掉入高尔顿板下方 的某一球槽内.
频率分布直方图
y
曲线图
曲线就是(或近似是)
下列函数的图像
O
x
, x
1
2
e
e
2 2
, x , 的图象
正 态
正态分布 密度曲线
① ②
分
正态曲线特点 ③
布
④
3原则
⑤
⑥
作业
课本习题2.4A组1,2题
复习
随机变量的方差
性质
意义
D(aX+b)=a2D(X)
若X服从两点分布,则DX=p(1-p)
若X~B(n,p),则D(X)=np(1-p)
高尔顿板 英国生物统计学家高尔顿设计的用 来研究随机现象的模型,称为高尔顿钉板。
你见过高尔顿板吗 ? 图2. 4 1
所示的就是一块高尔顿 板示意
图.在一块木板上钉上若干 排相
3原则
通常认为服从于正态分布N(,2)的随机变 量X只取(-3,+3)之间的值.
例1 商场经营的某种包装的大米质量(单位:kg) X~N(10,0.12), 任选一袋这种大米,质量在9.7~10.3 kg的概率是多少?
2025届高中数学一轮复习课件《正态分布》ppt

高考一轮总复习•数学
A.甲工厂生产的零件尺寸的平均值等于乙工厂生产的零件尺寸的平均值 由正态曲线的对称轴相等可知. B.甲工厂生产的零件尺寸的平均值小于乙工厂生产的零件尺寸的平均值 C.甲工厂生产的零件尺寸的稳定性高于乙 甲的正态曲线瘦高,即稳定性高于乙. 工厂生产的零件尺寸的稳定性 D.甲工厂生产的零件尺寸的稳定性低于乙工厂生产的零件尺寸的稳定性
(2)由已知得 E(ξ)=3,D(ξ)=4,故 E(2ξ+1)=2E(ξ)+1=7,D(2ξ+1)=4D(ξ)=16.故选 D.
解析
高考一轮总复习•数学
第21页
题型
服从正态分布的概率计算
典例 2 (1)(2024·陕西西安模拟)陕西洛川苹果享誉国内外,据统计,陕西洛川苹果(把
苹果近似看成球体)的直径 X(单位:mm)服从正态分布 N(70,52),则直径在(80,85]内的概率
高考一轮总复习•数学
第27页
135 分的为特别优秀,那么本次数学考试成 μ+2σ 绩特别优秀的大约有________人.(若 X~N(μ,σ2),则 P(μ-σ≤X≤μ+σ)≈0.68,P(μ -2σ≤X≤μ+2σ)≈0.95) (2)(2024·河北张家口统考)某校举办乒乓球颠球比赛,现从高一年级 1 000 名学生中随机 选出 40 名学生统计成绩(单位:个),其中 24 名女生的平均成绩 x 女=70,标准差 s 女=4;16 名男生的平均成绩 y 男=80,标准差 s 男=6.
σ = 9. 因 为
μ
- 2σ
=
110
-
2×9
= 92
,
P(ξ≥90)>P(ξ≥92) =
P(ξ≥μ -
2σ)
=
1 2
高中数学必修三正态分布知识点

高中数学必修三正态分布知识点正态分布为高中数学必修三课本的新增内容之一,有哪些知识点需要我们学习呢?下面是店铺给大家带来的高中数学正态分布知识点,希望对你有帮助。
高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。
当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。
叫标准正态曲线。
正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。
在标准正态总体N(0,1)中:高中数学必修三二项分布知识点二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
高中数学---正态分布

练习:
一台机床生产一种尺寸为10mm的零件,现从中抽 测10个,它们的尺寸分别如下(单位:mm):10.2, 10.1, 10, 9.8, 9.9, 10.3, 9.7, 10, 9.9, 10.1.如果机床生产零
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
正态曲线下的面积规律
• 对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
5、特殊区间的概率:
若X~N (, 2 ),则对于任何实数a>0,概率
( 3由当 ,于a这 33些概)时之率正内值态,很其总小他体(区的间一取取般值值不几几超乎乎过总不5取%可值能)于.,区 在通实间常 际称运这用些中情就况只发考生虑为这小个概区率间事,件称。为 3 原则.
例1、在某次数学考试中,考生的成绩 服从一个 正态分布,即 ~N(90,100). (1)试求考试成绩 位于区间(70,110)上的概率是
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D )
A.0.9544 B.0.0456 C.0.9772 D.0.0228
3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
P(2 X 2) = 0.9544 .
4、若已知正态总体落在区间 (0.3, ) 的概率为0.5,则
人教版高中数学选修三7.5 正态分布 课件

探究二
探究三
素养形成
当堂检测
反思感悟 在解决与正态分布有关的实际问题时,通常认为服从正
态分布N(μ,σ2)的随机变量X只取[μ-3σ,μ+3σ]之间的值.若服从正态
分布的随机变量的某些取值超出了这个范围,则说明出现了意外情
况.
探究一
探究二
探究三
素养形成
当堂检测
数形结合思想与转化思想在正态分布中的应用
答案:0.4
探究一
探究二
探究三
素养形成
当堂检测
4.设X~N(0,1).
求:(1)P(-1≤X≤1);
(2)P(0≤X≤2).
解:∵X~N(0,1),∴μ=0,σ=1.
(1)P(-1≤X≤1)≈0.682 7.
1
1
(2)P(0≤X≤2)= P(-2≤X≤2)≈ ×0.954
2
2
5=0.477 25.
)
A.8
B.16
C.20
D.32
答案:B
探究一
探究二
探究三
素养形成
当堂检测
3.在某项测量中,测量结果ξ~N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率
为0.1,则ξ在(2,3)内取值的概率为
.
解析:根据正态曲线的对称性可知,ξ在(2,3)内取值的概率
P=
1
2×(1-2×0.1)=0.4.
N(2,σ2),P(ξ≤4)=0.84,则P(ξ≤0)=(
)
A.0.16
B.0.32
C.0.68
D.0.84
答案:A
探究一
探究二
探究三
素养形成
当堂检测
2.(2020山东济南高三月考)某班有48名学生,一次考试后的数学成
高中数学正态分布

指数分布与正态分布关系
指数分布是一种连续型概率分布 ,用于描述两个连续事件之间的 时间间隔。
在某些情况下,指数分布可以近 似为正态分布。具体来说,当指 数分布的参数 $lambda$ 足够大 时,指数分布 $Exp(lambda)$ 可以用正态分布 $N(frac{1}{lambda}, frac{1}{lambdasqrt{2}})$ 来近似 。然而,这种近似通常不如二项 分布和泊松分布逼近正态分布那 样准确。
多元正态分布的定义
多元正态分布是指多个随机变 量组成的向量服从正态分布的 情况。
多元正态分布的性质
多元正态分布具有一些重要的 性质,如联合分布、边缘分布 、条件分布和独立性等。
多元正态分布在统计学中 的应用
多元正态分布广泛应用于多元 统计分析中,如多元线性回归 、主成分分析、因子分析等。
多元正态分布的参数估计 和假设检验
对于多元正态分布的参数估计 和假设检验,可以使用最大似 然估计、协方差矩阵的估计和 多元t检验等方法进行。
感谢您的观看
THANKS
对两个正态总体均值或方差进行 比较的假设检验,如t检验和F检 验的两样本版本。
置信区间构建
利用样本数据构造总体均值的置 信区间,以估计总体均值可能落 入的范围。
01
02
单样本假设检验
对单个正态总体均值或方差进行 假设检验,如t检验和F检验。
03
04
配对样本假设检验
对配对观测值之差的均值进行假 设检验,如配对t检验。
智商分布
智商测试的结果也符合正态分布,大 部分人的智商处于中等水平,极高和 极低的智商相对较少。
生产过程中质量控制
产品质量分布
在生产线上,产品质量往往呈现 正态分布,大部分产品符合质量 标准,极少数产品存在严重缺陷
高三数学正态分布知识点

高三数学正态分布知识点正文:正态分布是概率论和统计学中经常应用的一种重要分布。
其特点是在均值附近的概率较高,而在离均值较远处的概率较低。
在高中数学的学习中,正态分布也是一个重要的知识点。
本文将介绍高三数学正态分布的相关知识。
一、正态分布的定义正态分布,又称为高斯分布,是一种连续型概率分布。
对于一个服从正态分布的随机变量X,其概率密度函数可以表示为:f(x) = (1 / sqrt(2 * π * σ^2)) * exp(-(x - μ)^2 / (2 * σ^2))其中,μ是均值,σ是标准差。
二、正态分布的性质1. 对称性:正态分布是以均值为对称轴,两侧面积相等的曲线。
2. 峰度:正态分布的峰度是指曲线的陡峭程度,峰度值为3。
3. 切点:正态分布曲线与均值之间会有两个切点,也即均值加减标准差的位置。
三、标准正态分布标准正态分布是指均值为0,标准差为1的正态分布。
它是对正态分布进行标准化后的结果。
对于一个服从正态分布的随机变量X,可以通过以下公式将其转化为标准正态分布的随机变量Z:Z = (X - μ) / σ四、正态分布的应用正态分布在实际生活和科学研究中具有广泛的应用,以下是几个常见的应用场景:1. 质量控制:正态分布可以帮助企业在生产过程中进行质量控制,通过控制产品的均值和标准差,来确保产品的质量稳定。
2. 统计分析:正态分布在统计学中扮演了重要角色,可以用于分析和描述大量数据的分布情况,从而得出结论或进行预测。
3. 考试评分:在考试评分过程中,教师常常采用正态分布来确定分数段及相应的等级,从而更公平地进行评价。
4. 实验设计:科学实验中常常会涉及到测量误差和数据分布的问题,正态分布可以作为参考,帮助科研人员进行实验设计和数据分析。
五、常用的正态分布应用题1. 求解概率:给定正态分布的均值和标准差,可以求解指定区间的概率。
2. 求解分位数:给定正态分布的均值和标准差,可以求解给定概率下的分位数,即求解落在该概率下的随机变量取值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.8 与 10
D.2 与 10
解析:由正态曲线 f(x)=
1 2πσe
(
x )2 8
知,
2πσ= 8π, μ=10,
即 μ=10,σ=2.
答案:B
2.如图是正态分布 N(μ,σ21),N(μ,σ22), N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线, 那么 σ1,σ2,σ3 的大小关系是( ) A.σ1>σ2>σ3 B.σ3>σ2>σ1 C.σ1>σ3>σ2 D.σ2>σ1>σ3 解析:由σ的意义可知,图象越瘦高,数据越集中, σ2越小,故有σ1>σ2>σ3. 答案:A
(1)正态曲线是单峰的,它关于直线x=μ对称,由 此性质结合图象求μ.
(2)正态曲线在x=μ处达到峰值,由此性质结合图 象可求σ.
1.设有一正态总体,它的概率密度曲线是函数 f(x)的图象,
且
f(x)=
1 8πe
(
x
10 )2 8
,则这个正态总体的均值与标准差
ห้องสมุดไป่ตู้分别是
()
A.10 与 8
B.10 与 2
期望为μ,标准差为σ的正态分布通常记作 N(μ,σ2), μ=0,σ=1的正态分布叫 标准正态分布.
2.正态曲线的性质 (1)曲线在x轴的上方 ,并且关于直线 x=μ 对称; (2)曲线在 x=μ 时处于最高点,并由此处向左右两边 延伸时,曲线逐渐 降低 ,呈现“中间高,两边低 ”的形状; (3)曲线的形状由参数σ确定,σ越 大,曲线“矮胖”;σ 越 小,曲线越“高瘦”.
7.灯泡厂生产的白炽灯泡的寿命为X(单位:小时),已 知X~N(1 000,302),要使灯泡的平均寿命为1000小时 的概率约为99.7%,则灯泡的最低寿命应控制在多少 小时以上? 解:因为灯泡的使用寿命X~N(1 000,302), 故X在(1 000-3×30,1 000+3×30)的概率为99.7%, 即X在(910,1 090)内取值的概率约为99.7%, 故灯泡的最低使用寿命应控制在910小时以上.
[精解详析] 从给出的正态曲线可知,该正态曲线关于
直线
x=20
对称,最大值是 2
1
,所以 π
μ=20.
由
1= 2π·σ 2
1
,得 π
σ=
2.
于是概率密度函数的解析式是
f(x)=2
1
π·e
()0x2 4
2
,x∈(-∞,+∞),
总体随机变量的期望是 μ=20,方差是 σ2=( 2)2=2.
[一点通] 利用正态曲线的性质可以求参数μ,σ, 具体方法如下:
2.对于正态曲线的性质,应结合正态曲线的特点 去理解、记忆.
[例1] 如图所示是一个正态曲线,试根据该图象写出 其正态分布的概率密度函数的解析式,求出总体随机变量 的期望和方差.
[思路点拨] 给出了一个正态曲线,就给出了该曲线 的对称轴和最大值,从而就能求出总体随机变量的期望、 标准差及解析式.
3.正态分布的3σ原则 P(μ-σ<X<μ+σ)=68.3%; P(μ-2σ<X<μ+2σ)= 95.;4% P(μ-3σ<X<μ+2σ)= 99.7. % 正态变量的取值几乎都在距x=μ三倍标准差之内,这就 是正态分布的3σ原则.
1.正态分布密度函数及正态曲线完全由变量μ和σ 确定.参数μ是反映随机变量取值的平均水平的特征数, 可以用样本的均值去估计;σ是衡量随机变量总体波动 大小的特征数,可以用样本的标准差去估计.
[例3] (10分)据调查统计,某市高二学生中男生的身高 X(单位:cm)服从正态分布N(174,9).若该市共有高二男生3 000人,试估计该市高二男生身高在(174,180)范围内的人数.
[思路点拨] 因为μ=174,σ=3,所以可利用正态分布 的性质可以求解.
[精解详析] 因为身高X~N(174,9),
因为P(μ-3σ<X<μ+3σ)=0.997 4,所以正态总体 X几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间 以外取值的概率只有0.0026,这是一个小概率事件,通 常认为这种情况在一次试验中几乎不可能发生.这是统 计中常用的假设检验基本思想.
[一点通] 解答此类问题的关键在于充分利用正态 曲线的对称性,把待求区间内的概率向已知区间内的概 率进行转化,在此过程中注意数形结合思想的运用.
3.若随机变量X~N(μ,σ2),则P(X≤μ)=________.
解析:若随机变量 X~N(μ,σ2),则其正态密度曲 线关于 x=μ 对称,故 P(X≤μ)=12. 答案:12
所以μ=174,σ=3,
(2分)
所以μ-2σ=174-2×3=168,
μ+2σ=174+2×3=180,
所以身高在(168,180]范围内的概率为0.954 4.
(6分)
又因为μ=174.
所以身高在(168,174)和(174,180)范围内的概率相等,均为
0.477 2,
故该市高二男生身高在(174,180)范围内的人数是
[例2] 在某项测量中,测量结果服从正态分布N(1,4), 求正态总体X在(-1,1)内取值的概率.
[思路点拨] 解答本题可先求出X在(-1,3)内取值的概 率,然后由正态曲线关于x=1对称知,X在(-1,1)内取值 的概率就等于在(-1,3)内取值的概率的一半.
[精解详析] 由题意得 μ=1,σ=2, 所以 P(-1<X<3)=P(1-2<X<1+2)=0.682 6. 又因为正态曲线关于 x=1 对称, 所以 P(-1<X<1)=P(1<X<3)=12P(-1<X<3)= 0.341 3.
6.某人从某城市的南郊乘公交车前往北区火车站,由于 交通拥挤,所需时间(单位:分)服从X~N(50,102), 则他在时间段(30,70)内赶到火车站的概率为______. 解析:∵X~N(50,102),∴μ=50,σ=10. ∴P(30<X<70)=P(μ-2σ<X<μ+2σ)=0.954 4. 答案:0.954 4
3 000×0.477 2≈1 432(人).
(10分)
[一点通] 解决此类问题一定要灵活把握3σ原则,将 所求概率向P(μ-σ<X<μ+σ),P(μ-2σ<X<μ+2σ),P(μ- 3σ<X<μ+3σ)进行转化,然后利用特定值求出相应的概 率.同时要充分利用好曲线的对称性和曲线与x轴之间的面 积为1这一特殊性质.
4.设随机变量X服从正态分布N(2,9),若P(X>c+1)= P(X<c-1),则c=________.
解析:∵μ=2,P(X>c+1)=P(X<c-1), ∴c+1+2 c-1=2,解得 c=2. 答案:2
5.若X~N(5,1),求P(5<X<7).
解:∵X~N(5,1),∴μ=5,σ=1. 因为该正态曲线关于 x=5 对称, 所以 P(5<X<7)=12P(3<X<7)=12×0.954 4=0.477 2.
第
2.4
二 正态 章 分布
理解教材新知
把握热点 考向
考点一 考点二 考点三
应用创新演练
1.正态曲线
态变量概率密度曲线的函数表达式为f(x)=e
1
(
x )2 22
2π·σe
,x∈R,其中参数μ为正态分布变量的
数学期望 ,μ∈( -∞, +∞ );σ为正态分布变量的 标准差 ,σ∈ (0,+∞).正态变量的概率密度函数(即f(x)) 的 图象 叫做正态曲线.