电荷的量子化 电荷守恒定律

合集下载

电荷及其守恒定律教案

电荷及其守恒定律教案

电荷及其守恒定律教案第一章:电荷的概念1.1 静电荷与动电荷静电荷:物体在摩擦或其它方式作用下产生的电荷。

动电荷:电荷在电场作用下发生的移动。

1.2 电荷的性质电荷是量子化的,即电荷量是基本电荷的整数倍。

电荷具有正负两种性质,同性相斥,异性相吸。

第二章:电荷的守恒定律2.1 电荷守恒定律的内容电荷不能被创造也不能被消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。

在封闭系统中,电荷的总量保持不变。

2.2 电荷守恒定律的证明与应用通过实验验证电荷守恒定律。

电荷守恒定律在电容器、电池等电子设备中的应用。

第三章:电荷的测量3.1 电荷量的单位库仑(C):电荷量的基本单位。

微库仑(μC)、纳库仑(nC)等:电荷量的衍生单位。

3.2 电荷量的测量工具静电电荷计:利用电荷与质量的比值来测量电荷量。

电荷流式计:通过测量单位时间内通过某一点的电荷量来确定总电荷量。

第四章:电荷的积累与释放4.1 电荷的积累物体在摩擦或其它方式作用下积累电荷。

电荷在导体表面的积累。

4.2 电荷的释放电荷通过放电现象从物体表面或内部释放。

放电的方式包括:尖端放电、火花放电、接地放电等。

第五章:静电场与电荷相互作用5.1 静电场的基本概念静电场:由静止电荷产生的电场。

电场强度、电势差等静电场的基本物理量。

5.2 电荷在静电场中的相互作用电荷在静电场中的受力分析。

电荷在静电场中的运动规律。

第六章:静电场的基本计算6.1 电场强度的计算电场强度的定义:在某一点的电场力对该点的单位正电荷。

电场强度的计算公式:E = F/Q,其中E为电场强度,F为电场力,Q为测试电荷。

6.2 电势差的计算电势差的定义:两点间的电势差等于单位正电荷从一点移动到另一点时电场力所做的功。

电势差的计算公式:U = W/Q,其中U为电势差,W为电场力所做的功,Q为测试电荷。

第七章:静电场中的电荷分布7.1 静电平衡状态静电平衡状态下,导体内部的电场强度为零,电荷分布在导体的外表面。

电荷的量子化电荷守恒定律

电荷的量子化电荷守恒定律
电偶极矩:
电偶极子的轴:从-q 指向+q 的矢量r0称为电偶极子的轴
(1)轴线延长线上一点的电场强度
.
+
-
当x>>r0时,x2- r0 2/4≈ x2
在电偶极子轴线延长线上任意点的电场强度的大小与电偶极子的电偶极矩大小成正比,与电偶极子中心到该点的距离的三次方成反比;电场强度的方向与电偶极矩的方向相同。
5-2 库仑定律
库仑 (Charlse-Augustin de Coulomb 1736 ~1806)
法国物理学家1773年提出的计算物体上应力和应变分布情况的方法,是结构工程的理论基础。1779年对摩擦力进行分析,提出有关润滑剂的科学理论。1785~1789年,用扭秤测量静电力和磁力,导出著名的库仑定律。他还通过对滚动和滑动摩擦的实验研究,得出摩擦定律。
续17
两个常用公式
注意前述两个推导结果
均匀带电球面的场强
续25
Q


相对于O点的力矩
(1)
力偶矩最大
力偶矩为零
(电偶极子处于稳定平衡)
(2)
(3)
力偶矩为零
(电偶极子处于非稳定平衡)
求电偶极子在均匀电场中受到的力偶矩。
讨论
三、点电荷电场强度
在真空中,点电荷Q 放在坐标原点,试验电荷放在r 处,由库仑定律可知试验电荷受到的电场力为
点电荷场强公式
Q>0,电场强度E与er同向Q<0,电场强度E与er反向。
说明:(1)点电荷电场是非均匀电场;(2)点电荷电场具有球对称性。
四、电场强度叠加原理
1、电荷离散分布
在点电荷系Q1,Q2,…,Qn 的电场中,在P点放一试验电荷q0,根据库仑力的叠加原理,可知试验电荷受到的作用力为

电荷的量子化电荷守恒定律

电荷的量子化电荷守恒定律
电荷的量子化电荷守 恒定律
目录
• 电荷的量子化 • 电荷守恒定律 • 电荷量子化的实验验证 • 电荷守恒定律的实验验证 • 电荷量子化与电荷守恒定律的应用
01
电荷的量子化
定义与特性
定义
电荷的电荷。
特性
电荷的量子化特性导致了电子在 原子中的存在状态和行为,是理 解量子力学和原子结构的关键。
实验原理
基于量子力学和电磁学的基本原理,通过精确控 制实验条件和测量方法,对带电粒子的电荷量和 电荷分布进行测量和计算。
实验装置
包括粒子源、电场和磁场发生器、探测器和数据 采集系统等,用于产生和控制带电粒子,并测量 其电荷量和电荷分布。
实验结果与分析
实验数据
通过实验测量得到带电粒子的电荷量和电荷分布数据,包 括粒子在电场和磁场中的运动轨迹、能量损失和散射角度 等。
在其他领域的应用
量子电动力学
在量子电动力学中,电荷的量子化和电荷守 恒定律是构建理论框架的基础。这一理论对 于理解光子与电子之间的相互作用以及电磁 场的量子性质具有重要意义。
凝聚态物理
在凝聚态物理中,电荷的量子化和电荷守恒 定律对于理解电子的行为和传输以及材料的 电学性质具有指导意义。此外,在化学反应 中,电荷的量子化和电荷守恒定律也是研究 分子间相互作用和化学键合的重要工具。
意义三
电荷守恒定律对于理解物质的基本组成和相互作用机制具有重要意 义,它是粒子物理学和核物理学等领域的基础。
定律的证明与应用
证明
电荷守恒定律可以通过实验和观测得到验证,例如通过测量带电粒子的电量和荷质比等参数来验证电荷守恒定律 的正确性。
应用
电荷守恒定律在许多领域都有广泛的应用,如电子学、电磁学、光学、原子物理学和粒子物理学等。在电子学中, 电荷守恒定律是电路分析和设计的基础;在电磁学中,电荷守恒定律是电磁场理论和电磁波传播的基础;在光学 中,电荷守恒定律是光电子学和光子学等领域的基础。

05--静电场

05--静电场

r
P
dE 以环心O为原点建立如图坐标系 dE x x 在圆环上任取长为 dl的电荷元dq
x 2 2 2 cos , r x R r
kq cos kqx E i 2 i 2 2 3/ 2 r (x R )
dE d kqx 极值位置存在: [ 2 ]0 2 3/ 2 dx dx ( x R )
将带电圆盘看成是由许 多 同心带电细圆环组成
O
dE
在盘上取半径为 r, 宽度为dr细圆环
rR
x
P
x
dq 2rdr
dE
kxdq kx 2rdr i 2 2 3/ 2 i 2 2 3/ 2 (x r ) (x r )
各细圆环在 P点的电场强度方向相同 2 x R rdr x E dE i (1 )i 2 2 3 / 2 2 2 4 0 o ( x r ) 2 0 R x
两个静止点电荷之间相互作用:
y
F12
r1
z
O
q1q2 0 q1q2 F21 k 2 r21 k 3 r21 r21 r21
q1 q 2 F 21 r21 r2
x
k 8.9875 109 N m 2 /C 2 9.0 109 N m 2 /C 2
r/2 y ( r / 2)
2 2
-q
E y
cos
EB
kp 2 2 2 当y r时, y ( r / 2) y . E B 3 y
y
kqr
2
( r / 2)
2

i 3/ 2
y

5-1库仑定律

5-1库仑定律
第五章 静电场
5-1 库仑定律
F

k
q1q2 r2
er
k 8.987 551109 N m2 C2

1 k
4π 0
( 0 为真空电容率)
0

1 4π k
8.85421012 C2
N1 m2
库仑定律
F

q1q2
4π0r 2
er
第五章 静电场
(自然界的基本守恒定律之一)
第五章 静电场
5-1 库仑定律 三、 库仑定律
点电荷:若带电体的形状和大小在所讨论的 问题中可以忽略,就可以把带电体看成点电荷.
er
Q
Q er
q0
F
F q0
F

k
q1q2 r2
er
真空中的库仑定律:在真空中,两个静止的点电 荷之间的相互作用力,其大小与它们的电荷量的乘积 成正比、与它们之间的距离的平方成反比;其方向沿 着两点电荷的连线,同号电荷相斥,异号电荷相吸.
5-1 库仑定律
一、电荷的量子化 基本性质 1 电荷有正负之分;
Байду номын сангаас2 电荷量子化; 元电荷
e 1.6021019 C
q ne (n 1, 2,3, )
3 同性相斥,异性相吸.
二、电荷守恒定律
电荷守恒定律:在一个与外界没有电荷交换的 系统中,不论发生什么过程,系统内正负电荷的代数 和保持不变。

9-1 电荷的量子化 电荷守恒定律

9-1 电荷的量子化 电荷守恒定律

早期, 早期 , 由于磁现象曾被认为是与电现象独立无 关的, 同时也由于磁学本身的发展和应用, 关的 , 同时也由于磁学本身的发展和应用 , 如近代 磁性材料和磁学技术的发展, 磁性材料和磁学技术的发展 , 新的磁效应和磁现象 的发现和应用等等, 使得磁学的内容不断扩大, 的发现和应用等等 , 使得磁学的内容不断扩大 , 所 以磁学在实际上也就作为一门和电学相平行的学科 来研究了。 来研究了。 电磁学从原来互相独立的两门科学(电学、磁学) 电磁学从原来互相独立的两门科学(电学、磁学) 电学 发展成为物理学中一个完整的分支学科, 发展成为物理学中一个完整的分支学科 , 主要是基 于两个重要的实验发现, 于两个重要的实验发现 , 即电流的磁效应和变化的 磁场的电效应。 这两个实验现象, 加上麦克斯韦 关 磁场的电效应 。 这两个实验现象 , 加上 麦克斯韦关 麦克斯韦 于变化电场产生磁场的假设, 于变化电场产生磁场的假设 , 奠定了电磁学的整个 理论体系, 理论体系 , 发展了对现代文明起重大影响的电工和 电子技术。 电子技术。
第九章 静电场
q = ne
( n = 1, 2 ,3, ⋯ )
9 - 1 电荷的量子化 电荷守恒定律 二 在孤立系统中,电荷的代数和保持不变. 孤立系统中,电荷的代数和保持不变. 系统中 自然界的基本守恒定律之一) (自然界的基本守恒定律之一)
物理学教程 第二版) (第二版)
电荷守恒定律( 电荷守恒定律(Conservation Law of charge)
6.1786年,伽伐尼发现电流。 . 年 伽伐尼发现电流。 7.1820年,奥斯特发现电流的磁效应。 . 发现电流的磁效应。 年 奥斯特发现电流的磁效应 安培提出右手定则,分子电流假说。 安培提出右手定则,分子电流假说。 提出右手定则 8.1831年,法拉第发现电磁感应现象。 . 发现电磁感应现象。 年 法拉第发现电磁感应现象 9.1852年 麦克斯韦提出场的概念。 9.1852年,麦克斯韦提出场的概念。 提出场的概念 10.1865年,麦克斯韦建立了系统的电磁场理论。 . 年 麦克斯韦建立了系统的电磁场理论。 11.1888年,证明电磁波与光波的同一性。 . 年 证明电磁波与光波的同一性。 12.1895年,伦琴发现 射线。 . 发现x射线 年 伦琴发现 射线。 13.1897年,J.J.汤姆孙发现电子,获1906年诺贝奖。 . 汤姆孙发现电子 年诺贝奖。 年 汤姆孙发现电子, 年诺贝奖 14.1905年,爱因斯坦创立相对论。 . 创立相对论。 年 爱因斯坦创立相对论

电荷守恒定律与电荷的量子化

电荷守恒定律与电荷的量子化
电荷守恒定律是自然界中的基本守恒定律。无论在宏观 领域还是微观领域,电荷守恒定律都成立。
1.3 电荷的量子化
1913年,美国物理学பைடு நூலகம்密立根用油滴实验测出了基本单 元电荷的电量,即一个电子所带电量的绝对值。我们将这种 基本单元电荷的电量称为元电荷,用符号e表示,且
e=1.602×10–19C 实验证明,带电体所带电量q=ne(n=±1,±2,…), 即带电体所带电量都是元电荷的整数倍。电荷的这种只能取 离散的、不连续的量值的性质称为电荷的量子化。
大量实验表明,自然界中只存在两种不同性质的电荷,即 正电荷和负电荷。其中,规定正电荷是指用绸子摩擦过的玻璃 棒所带的电荷;负电荷是指用毛皮摩擦过的硬橡胶棒所带的电 荷。同种电荷相互排斥,异种电荷相互吸引。
1.2 电荷守恒定律
摩擦起电和感应起电等事实表明,任何使物体带电的过 程,都是使物体中原有的正、负电荷分离或转移的过程。一 个物体失去一些电子,必有其他物体获得这些电子。于是人 们总结出电荷守恒定律:系统中正、负电荷的代数和在任何 物理过程中始终保持不变。
物理学
电荷守恒定律与电荷的量子化
1.1 电荷
我们知道,用绸子或毛皮摩擦过的玻璃棒、硬橡胶棒等都 能吸引羽毛、纸屑等轻小物体,这表明这些物体在摩擦后进入 一种特殊的状态,这种状态称为带电状态。我们把处于这种状 态的物体称为带电体,带电体所带电荷的多少称为电荷量,简 称电荷,常用符号Q或q表示,其单位为库伦(C)。
物理学

电磁学 全套课件

电磁学 全套课件

2、计算
S
均匀电场中,平面 S 的电通量
S与电场强度垂直 e E S
S的法向与电场强度成 角

e E S E S cos E S
S

n

S
非均匀电场中,任意曲面 S 的电通量
在S上任取一小面元dS

de

E

dS

e
S de
当 qi 0 ,e>0,多数电场线从正电荷发出并穿出高斯面,
反之则多数电场线穿入高斯面并终止于负电荷
电场线是不闭合的曲线
----静电场是“有源场 ”
穿过高斯面的电通量只与高斯面内的电荷有关
高斯面上的电场强度与高斯面内外电荷都有关
高斯定理也适用于变化的电场
四、高斯定理应用举例
高斯定理可以用于求解具有高度对称性的带电体系所产生的电 场的场强。
超距的观点: 电荷
电荷
电场的观点: 电荷

电荷
近代物理的观点认为:凡是有电荷存在的地方,其周围空间便存 在电场
q1
q2
静电场的主要表现: 力:放入电场中的任何带电体都要受到电场所作用的力---电场力 功:带电体在电场中移动时,电场力对它做功 感应和极化:电场中的导体或介质将分别产生静电感应现象或极化
dx θ1= π -θ2
L q
E
j
j
4 0a 2 4 0a 2
例2、半径为R的均匀带电细圆环,电量为q。求圆环轴线上任 一点的场强。
dE dE
0
R
x
P
r
dEx x
讨论: x>>R时
x =0时
dl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 种类: 正电荷,负电荷 2 性质: 同种相斥,异种相吸
3 量度: 库仑(C)
4 电荷的量子化:
q ne (n 1, 2, 3, )
e 1.6021019 C
第五章 静电场
3
物理学
第五版
5-1
电荷的量子化 电荷守恒定律
Байду номын сангаас
1906~1917年,密立根(likan )用液滴 法测定了电子电荷,证明微小粒子带电量的变化是 不连续的,它只能是元电荷 e 的整数倍,即粒子的电 荷是量子化的。 电荷量子化(chaege quantization)是个实验规律。 二 电荷守恒定律 不管系统中的电荷如何迁移,系统的电荷的代 数和保持不变. (自然界的基本守恒定律之一)
本章结构安排:先后从电场对电荷作用的电场 力和电荷在电场中移动时电场力对电荷作功这两个 方面,引入电场强度和电势两个描述电场特性的重 要物理量;说明反映静电场基本性质的规律:场强 叠加原理、高斯定理和场强环流定律。并讨论场强 和电势之间的关系。
物理学
第五版
5-1
电荷的量子化 电荷守恒定律

电荷的量子化
电磁学是一门与生产技术关系密切,在理论研 究方面也占重要地位的学科。在普通物理学中,电 磁学与前面力学有不同之处,主要是研究的对象具 有完全不同的结构。力学讨论的对象都是由原子、 分子组成的物质,称作实物。电磁学研究的主要对 象是电磁场,它与实物不同,但也是一种客观存在 的物质,即以一种场的形式存在的物质。电磁场在 空间是连续分布的,因此描述电磁场的基本物理量 常是空间坐标的函数,描述变化的电磁场的物理量 又同时是时间的函数。一般,这些物理量大多是矢 量函数,这就要用到较复杂的数学知识和较高的空 间知觉能力。因此,学习这部分内容时,矢量运算 的知识和微积分知识是必不可少的。在处理习题时, 应尽量用这方面的知识简化运算过程。
第五章 静电场
4
相关文档
最新文档