波函数及其统计诠释
大学物理波函数

18
例1:已知描述粒子的归一化波函数为(t,x,y,z),求在t时刻、 在x到x+dx的无限大薄层内发现粒子的概率。
( t,x ,y ,z ) d x d y d z 解: 体积元内的概率为
Ψ
2
7
4.用电子双缝衍射实验说明概率波的含义 先看经典波: 声波的干涉
振幅矢量相加
i t A ( x ) e 通过上缝的声波用 描述 1 it )e 描述 2(x 通过下缝的声波用 A
A A ) e 双缝 齐开时的声波为 ( 1 2
i t
8
A A ) e 双缝 齐开时的声波为 ( 1 2
薛定谔方程
§15-1 §15-2 §15-3 §15-4 波函数及其统计诠释 薛定谔方程 力学量的算符表示和平均值 一维势阱和势垒问题
1
波函数的统计解释 一、波函数和概率波
二、物理对波函数的要求
三、自由粒子的波函数
2
一、波函数和概率波
1. 波函数
物质波波函数写成 ( r ,t )
2.玻恩(M.Born)假设 物质波不代表实在物理量的波动 而是刻划粒子在空间概率分布的概率波
10
•双缝齐开时 电子可通过上缝 也可通过下缝 通过上 下缝各有一定的概率 总概率幅
Ψ Ψ Ψ 12 1 2
2 12 2 2
21
| Ψ | | Ψ Ψ | 总概率密度 P 12 1
2 1 2 2
12
出现了干涉
干涉项
11
结论 1)干涉是概率波的干涉 是由于概率幅的线性叠加产生的 2)即使只有一个电子 当双缝齐开时
归一化条件
( r , t ) ( r , t ) d 1
波函数及其统计诠释

概率密度表示为 ρ(x, y, z, t) = ψ ∗ (x, y, z, t)ψ (x, y, z, t)
2. 波函数是单值的、连续的和有限的。
3
3. 波函数允许包含一个任意的常数因子
了同一波个函量数子ψ态(rv,,t对) 和于空Aψ间(r任v, t意) (两A是点常rvi 数和)描rvj 述有
§2-6 波函数及其统计诠释 一、经典物理学中的波函数
微观粒子的运动状态称为量子态, 用
波函数 ψ (rv, t) 来描述的,这个波函数所
反映的微观粒子波动性,就是德布罗意波。 (量子力学的基本假设之一)
二、在量子力学中波函数的统计意义
1926年玻恩指出:德布罗意波或波函数 ψ (rv,t) 不代表实际物理量的波动,而是描述粒子在空 间的概率分布的概率波。 在统计意义下波函数具有下面的性质:
系统的可能的量子态,那么它们的线性叠加为
∑ ψ(rv, t) =c1ψ1(rv, t)+c2ψ2(rv, t)+⋅⋅⋅ = ciψi (rv, t) i 也是这个系统的一个可能的量子态 5
1. 量子力学中描述微观粒子的波函数本身是没有 直接物理意义的, 具有直接物理意义的是的模的 平方,它代表了粒子出现的概率。
2
微观粒子的概率波的波函数表示为
ψ(rv,t) =ψ(x, y,z,t)
那么在t时刻、在空间(x,y,z)附近的体积元dxdydz内 粒子出现的概率正比于
ψ(x, y, z,t) 2 dxdydz
ቤተ መጻሕፍቲ ባይዱ
ψ ( rvi , t ) 2 ψ ( rvj , t ) 2
=
Aψ ( rvi , t ) 2 Aψ ( rvj , t ) 2
波函数的统计诠释

波函數的統計詮釋現在,讓我們回頭再來看薛丁格的波動力學。
其實,當時在波動力學中還存在一個懸而未決的大問題,這就是波動方程式中包含的波函數ψ的物理意義究竟是什麼。
最初,薛丁格認為ψ函數負數模的平方式電荷的密度,這就好像電子分解成電子雲似的。
但是,哥本哈根的物理學家們並沒有像接受薛丁格的理論那樣給以讚賞。
與之相反,薛丁格對波函數的解釋遭到波耳的批評和反對。
波耳邀請薛丁個到家中討論這個問題,最後,兩人馬拉松式的討論竟把薛丁格累得病倒在波耳家中。
然而,主人卻堅持在床頭繼續與薛丁格討論。
波耳既善良熱情又很有涵養,可是在及其重要的物理學問題面前,他實在難以抑制激情。
1926年,玻恩把薛丁格波動方程用於量子力學散射過程,從而提出了波函數的統計詮釋(statistical interpretation)。
玻恩是當時享有盛名的物理學家,他1882年12月11日生於普魯士,1907年獲哥廷根大學博士學位,1921年起任該校物理系主任。
玻恩不但個人成就卓越,對學生和晚輩的提攜更是不遺餘力,海森伯、泡利等人都曾是他的研究助手。
希特勒上台後,玻恩被迫流亡英國,先後在劍橋大學和愛丁堡大學任教。
1953年退休後,波恩回到了德國,直到1970年1月5日逝世。
玻恩在1926年發表的一篇論文中指出,薛丁格波函數是一種機率振幅(probability amplitude),它的絕對值的平方對應於測量到的電子的機率分佈。
直到這時,波函數的物理含意才變得明確了。
不過,一個力學理論竟然給出了機率,這簡直是太令人震驚了!在電子的繞射圖中,底片上暗環實際上就是許多電子集中到達的地方,亮環處就是電子幾乎沒有到達過的位置。
按繞射環的半徑統計出每個環中電子留下的黑斑數目,物理學家馬上就發現,以環的半徑為橫座標、相應半徑的黑斑數為縱座標作的圖,其形狀與光以及X射線繞射的密度分佈曲線相同。
這是偶然的巧合,還是另有什麼深刻的含意呢?由於這一分佈曲線也呈波的形狀,而且對應的是電子射中底片某點的機率,玻恩建議把這種波命名為機率波。
03讲-Schrodinger Equation

1
(2)3
2
( p)eipr /d 3 p
(
pi
)eipi
r
/
i
可见,| ( pi ) |2 代表 (r ) 中含有平面波
eipi r / 的成分,因此,| ( pi ) |2 应该代表粒子具
有动量 pi 的概率。
13
二、力学量的平均值(2)——动量
d
d 0 粒子数目在全空
dt
s
dt
间中保持不变
26
四、薛定谔方程(4) 能量本征方程
薛定谔方程
i
(r ,
t
)
[
2
2
V
(r ,
t)]
(r ,
t)
t
2m
若V (r,t)不显含 t
,则可令
(r ,
t)
E
(r )
f
(t),有
i f (t)
s
ds
电磁学:左边表示在
量子力学:左边表示在
区域 内电荷在单位
区域 内找到粒子概率
时间内的增量,右边
单位时间内的增量,右
单位时间内通过 的
边单位时间内通过 的
封闭表面 S 流入 内 的总电流。电荷守恒
封闭表面 S 流入 内
的概率。概率守恒
d
d
j
ds
附近的概率,那么粒子坐标的平
均值,例如 x 的平均值 x ,由概率论,有
x
| (r ) |2
xd 3r
物质波及其统计诠释波函数

物质波的发现
德布罗意提出
1924年,法国物理学家路易·德布罗 意提出所有微观粒子都具有波动性质 ,即物质波。
实验验证
随后,科学家们通过双缝干涉实验等 证实了微观粒子具有波动性质,证明 了德布罗意的物质波理论。
物质波的应用
粒子探测
01
物质波的干涉和衍射现象可用于探测微观粒子的位置和动量。
光学仪器
02
03
波函数是量子力学中的基本概念,是描述微观世界的
基本工具之一。
04
物质波与波函数的关系
物质波与波函数的联系
物质波描述了微观粒子在空间 中的分布和运动状态,而波函 数是描述粒子状态的数学工具。
物质波的幅度和相位可以通 过波函数来描述,波函数的 模方表示粒子在某一位置出
现的概率密度。
物质波和波函数都遵循波动方 程,如薛定谔方程,描述了粒 子在时间和空间中的行为。
03
物质波与其他物理现象的交叉研究
物质波与光学、电磁学等领域有密切的联系,未来将有更多跨学科的研
究,以探索物质波与其他物理现象的相互作用和相互启发。
物质波及其统计诠释在未来的应用前景
量子信息处理
利用物质波的干涉和衍射等性质,可以实现量子比特的控制和操 作,为量子计算和量子信息处理提供新的工具和手段。
物质波及其统计诠释波函数
目录
• 物质波的简介 • 物质波的统计诠释 • 波函数的介绍 • 物质波与波函数的关系 • 物质波及其统计诠释波函数的发
展前景
01
物质波的简介
物质波的概念
物质波
与机械波不同,物质波是微观粒子如 电子、光子等具有的波动性质。
德布罗意波长
物质波的波长λ=h/p,其中h是普朗克 常数,p是粒子的动量。
12-4 12-5物质波及其统计诠释,波函数

质子、中子、原子、分子…也有波动性
9
1993年美国科 学家移动铁原 子,铁原子距 离0.9纳米
“量子围栏”
48个铁原子排列在 铜表面
证明电子的波动性
10
波粒二象性是普遍的结论
宏观粒子也具有波动性
m大
0
例:m = 0.01kg v = 300m/s 的子弹
h h 6.63 1034 2.21 10 m P m 0.01 300
( x, t ) ( x )e
i Et
, ( x ) Ae (空间因子)
33
i px
自由粒子波函数:
( x ) Ae
三维:
( r ) Ae
2 2
i px
p>0:向右
p<0:向左
i p r
概率密度: A const.
空间位置完全不确定,动量取确定值
分析: 原子线度 r ∼ 10 -10 m 若电子Ek = 10eV 则
由不确定关系有 ΔP 2Δr
2E 6 10 m /s m
ΔP Δ 6 105 m/s m 2m Δr
轨道概念不适用! 代之以电子云概念
24
在宏观现象中,不确定度关系可以忽略。
p const.
【思考】自由粒子波函数能归一化吗?
34
5、状态叠加原理 量子力学要求:若体系具有一系列互异的可 能状态 1,2 ,则它们的线性组合
C n n
也是该体系的一个可能的状态。展开系数Cn 为 任意复常数。
若叠加中各状态间的差异无穷小, 则应该用 积分代替求和: C d
16-1-2 波函数及其统计诠释

5. 波函数满足态叠加原理。 ——量子力学理论的一个基本假设
如果波函数 1 (r , t ) , 2 (r , t ), …都是描述系统的可能 的量子态,那么它们的线性叠加
(r ,t ) c1 1 (r ,t ) c2 2 (r ,t ) ci i (r ,t )
二、在量子力学中波函数的统计意义 1、经典物理学中的波函数 力学: 电磁学:
y( x, t ) A cos(t kx)
E (r , t ) E0 cos(k r t ) B(r , t ) B0 cos(k r t )
在经典物理学中,从波动现象中得到波函数, 波函数表达出某一个具体的物理量随时间的变化 规律,以及该物理量随空间位置的变化规律。 波函数是具有物理意义的。
t 时刻粒子出现在空间某点 r 附近体积元 dV
中的概率,与波函数平方及 dV 成正比。 出现在 dV 内概率:
dW Ψ (r , t ) dV
2
dV=dx dy dz
( x, y, z, t ) dxdydz 或 ( x, y, z, t ) ( x, y, z, t )dxdydz
2
则在t 时刻、在空间(x,y,z)附近的单位体积内粒子 出现的概率,即概率密度,为
( x , y , z , t ) ( x, y , z , t )
2
( x, y, z, t ) ( x, y, z, t )
1882~1970
他的相关作品: 《晶体点阵动力学》(1915年) 《爱因斯坦相对论》(1920年) 《固态原子理论》(1923年) 《原子动力学问题》(1926年) 《原子物理学》(1935年) 《晶格动力学》(1954年) 《物理学实验与理论》(1943年) 《我们一代的物理学》(1956年) 《物理学与政治学》(1962年)
22-2 波函数及统计解释

玻恩 (M. Born , 1882 - 1970) 在这个观念的启 发下,马上将其推广到 Ψ 函数上: |Ψ|2 必须是电子 (或其它粒子)的几率密度” 。
第22章 量子力学
22-2 波函数及统计解释
(r,t)的物理意义:
波函数的模的平方(波的强度)代表时刻 t、在 空间r点处,单位体积元中微观粒子出现的概率。
( x, t ) 0e
第22章 量子力学
22-2 波函数及统计解释
或由关系
E ,
可将波函数改写为
p k
( x, t ) 0e
i ( Et px )
——0为待定常数
若粒子为三维自由运动,波函数可表示为
(r , t ) 0 e
i
( pr E t)
•
第22章 量子力学
22-2 波函数及统计解释
波函数应满足的条件
统计诠释对波函数提出的要求
1 有限:
根据波函数的统计诠释,要求在空间任何有 限体积元中找到粒子的概率为有限值*
第22章 量子力学
22-2 波函数及统计解释
2
归一化条件
粒子出现在dV 体积内的几率为:
(r , t )dV (r , t ) dV
粒子在空间各点的概率总和应为 l
* (r , t ) (r , t )dV 1
2
(x,t)
x
—( 全空间)
第22章 量子力学
22-2 波函数及统计解释
3
单值
从而保证概率密度——|ψ(r)|2在任意时刻t 都是 确定的单值
4 连续
波函数满足的微分方程为二阶的(见后),要 求波函数的一阶导数连续,波函数本身必须连续。 总之,波函数应满足的条件: 单值、有限、连续和归一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§15-1波函数及其统计诠释
在经典物理学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用它的位置矢量和动量来描述的。
但是,对于微观粒子,由于它具有波动性,根据不确定关系,其位置和动量是不可能同时准确确定的, 所以我们也就不可能仍然用位置、动量以及轨道这样一些经典概念来描述它的运动状态了。
微观粒子的运动状态称为量子态,是用波函数ψ(r, t)来描述的,这个波函数所反映的微观粒子波动性,就是德布罗意波。
在经典物理学中,我们曾经用波函数y(x, t) = a cos(ωt-kx)表示在t时刻、在空间x处的弹性介质质点离开平衡位置的位移,用波函数e(r, t) = e0 cos(k⋅r-ω t)和b(r, t) = b0 cos (k⋅r-ω t)分别表示在t时刻、在空间r处的电场强度和磁场强度。
那么在量子力学中描述微观粒子的波函数ψ(r, t)究竟表示什么呢?
为了解释微观粒子的波动性,历史上曾经有人认为,微观粒子本身就是粒子,只是它的运动路径像波;也有人认为,波就是粒子的某种实际结构,即物质波包,波包的大小就是粒子的大小,波包的速度(称为群速)就是粒子的运动速度;还有人认为,波动性是由于大量微观粒子分布于空间而形成的疏密波。
实验证明,这些见解都与事实相违背,因而都是错误的。
1926年玻恩(m.born, 1882-1970)指出,德布罗意波或波函数ψ(r, t)不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。
对波函数的这种统计诠释将量子概念下的波和粒子统一起来了。
微观粒子既不是经典概念中的粒子,也不是经典概念中的波;或者说,微观粒子既是量子概念中的粒子,也是量子概念中的波。
其量子概念中的粒子性表示它们是具有一定能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿运动定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。
但是,在量子力学中描述微观粒子的波函数本身是没有直接物理意义的, 具有直接物理意义的是波函数的模的平方,它代表了粒子出现的概率。
如果某微观粒子的概率波的波函数是ψ(r, t)=ψ(x,y,z, t),那么在t时刻、在空间(x,y,z)附近的体积元d x d y d z内粒子出现的概率正比于
或,其中ψ*(x,y,z,t)是ψ(x,y,z,t)的共轭复数(或称复共轭)。
于是,在t时刻、在空间(x,y,z)附近单位体积内粒子出现的概率,即概率密度可以表示为
.(15-1)
既然波函数与粒子在空间出现的概率相联系,所以波函数必定是单值的、连续的和有限的。
在经典物理学中,波函数ψ(r, t)和aψ(r, t)(a是常数)代表了能量或强度不同的两种波动状态;而在量子力学中,这两个波函数却描述了同一个量子态,或者说代表了同一个概率波,因为它们所表示的概率分布的相对大小是相同的。
也就是说,对于空间任意两点r i和r j下面的关系必定成立
. (15-2)
所以,波函数允许包含一个任意的常数因子。
如果粒子被限制在一个有限的空间内运动,那么在任意时刻在全空间找到这个粒子的概率必定等于1,即
,(15-3)
式中v是波函数存在的全空间。
上式就称为波函数的归一化条件。
由归一化条件可以确定波函数中的常数因子。
满足归一化条件的波函数的绝对值的平方所代表的概率,称为绝对概率;不满足归一化条件的波函数的绝对值的平方所代表的概率,称为相对概率。
量子力学中并不排斥使用一些不能归一的理想波函数,如描述自由粒子的平面波波函数。
在经典的波动学中,我们曾经讨论过波动所遵从的叠加原理,即各列波共同在某质点引起的振动,是各列波单独在该质点所引起的振动的合成。
在量子力学中也有一个类似的原理,这个原理称为态叠加原理,是量子力学原理的一个基本假设,适用于一切微观粒子的量子态。
态叠加原理可以表述为:如果波函数ψ1(r, t), ψ2(r, t), ……都是描述系统的可能的量子态,那么它们的线性叠加
, (15-4) 也是这个系统的一个可能的量子态。
式中c1 , c2 ,…一般也是复数。
最后简要介绍关于宇称的概念。
如果将描述粒子状态的波函数的所有坐标改变符号(即r →-r,或x →-x, y®-y, z ®-z),这称为波函数的空间反演。
宇称就是描述微观粒子波函数在空间反演下所具有的一种对称性。
如果波函数经空间反演后,波函数的数值和符号都不改变,即
,(15-5)
就称该波函数具有偶宇称(或正宇称);如果波函数经空间反演后,波函数的数值不变而符号改变,即
,(15-6)
就称该波函数具有奇宇称(或负宇称)。