主成分分析方法操作

主成分分析方法操作
主成分分析方法操作

ENVI主成分分析(PCA)是通过使用Principal Components选项生成互不相关的输出波段,达到隔离噪声和减少数据集的维数的方法。由于多波段数据经常是高度相关的,主成分变换寻找一个原点在数据均值的新的坐标系统,通过坐标轴的旋转来使数据的方差达到最大

ENVI主成分分析(PCA)是通过使用Principal Components选项生成互不相关的输出波段,达到隔离噪声和减少数据集的维数的方法。

由于多波段数据经常是高度相关的,主成分变换寻找一个原点在数据均值的新的坐标系统,通过坐标轴的旋转来使数据的方差达到最大,从而生成互不相关的输出波段。

主成分(PC)波段是原始波谱波段的线性合成,它们之间是互不相关的。可以计算输出主成分波段(与输入的波谱波段数相同)。

第一主成分包含最大的数据方差百分比,第二主成分包含第二大的方差,以此类推,最后的主成分波段由于包含很小的方差(大多数由原始波谱的噪声引起),因此显示为噪声。由于数据的不相关,主成分波段可以生成更多种颜色的彩色合成图像。

ENVI 能完成正向和逆向的主成分(PC)旋转。

1.正向主成分(PC)旋转

正向PC旋转用一个线性变换使数据方差达到最大。当使用正向PC旋转时,ENVI允许计算新的统计值,或根据已经存在的统计值进行旋转。输出值可以存为字节型、浮点型、整型、长整型或双精度型。也可以基于特征值来提取PC旋转的输出内容,生成只包含所需的PC 波段的输出。

计算新的统计值和旋转

使用Compute New Statistics and Rotate选项可以计算数据特征值、协方差或相关系数矩阵以及PC正向旋转。

选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate。

当出现Principal Components Input File对话框时,选择输入文件或用标准ENVI选择程序选取子集。将会出现Forward PC Rotation Parameters对话框。

注意:点击“Stats Subset”按钮可以基于一个空间子集或感兴趣区计算统计信息。该统计将被应用于整个文件或文件的空间子集。详细介绍,请参阅第348页的“根据子集进行统计”。在“Stats X/Y Resize Factor”文本框中键入小于1的调整系数,用于计算统计值时的数据二次采样。

注意:键入一个小于1的调整系数,将会提高统计计算速度。例如:使用一个0.1的调整系数,在统计计算时将只用到十分之一的像元。

若需要,键入一个输出统计文件名。使用箭头切换按钮,选择是根据“Covariance Matrix”(协方差矩阵)还是根据“Correlation Matrix”(相关系数矩阵)计算主成分波段。

注意:一般说来,计算主成分时,选择使用协方差矩阵。当波段之间数据范围差异较大时,选择相关系数矩阵,并且需要标准化。

选用输出到“File”或“Memory”。在“Output Data Type”菜单中,选择所需的输出文件数据类型。

选择输出的主成分波段数。可以通过键入所需的数字,或用“Number of Output PC Bands”标签旁的增减箭头按钮来确定输出的主成分波段数。默认的输出波段数等于输入波段数。也可以用特征值来选择输出的主成分波段数,按照如下步骤操作。

A. 点击“Select Subset from Eigenvalues”标签附近的按钮,选择“YES”。统计信息将被计算,并出现Select Output PC Bands对话框,列出每个波段和其相应的特征值。同时也列出每个主成分波段中包含的数据方差的累积百分比。

B. 在“Number of Output PC Bands”文本框中,键入一个数字或点击箭头按钮,确定要输出的波段数。特征值大的主成分波段包含最大的数据方差。较小的特征值包含较少的数据信息和较多的噪声。为了节省磁盘空间,最好仅输出具有较大特征值的波段。

C. 在Select Output PC Bands对话框中,点击“OK”。输出的PC旋转将只包含选择的波段数。例如:如果选择“4”作为输出的波段数,则只有前4个主成分波段会出现在输出文件里。

在Forward PC Rotation Parameters对话框中,点击“OK”。

ENVI处理完毕后,将出现PC EigenValues绘图窗口,主成分波段将被导入可用波段列表中,并用于显示。ENVI主成分分析

对PCA 输出应用掩膜

当进行正向PC旋转时,可以对输出结果应用掩膜。如果已经为输入文件指定了掩膜,可以设定输出图像中被掩膜遮蔽部分的输出值。

在ENVI主菜单中,选择Transforms > Principal Components > Forward PC Rotation > Compute New Statistics and Rotate。当出现文件选择对话框时,选择输入图像并应用掩膜。当出现Forward PC Parameters对话框时,在“Output Mask Value”文本框中,为被掩膜遮蔽部分键入一个输出值。掩膜将被应用于统计信息的计算,输出数据的被遮蔽区域被置为输入的掩膜值。

根据子集进行统计

使用“Stats Subset”按钮可以基于一个空间子集或感兴趣区来计算统计信息。该统计将被应用于整个文件或文件的空间子集。

在Forward PC Parameters对话框中,点击“Stats Subset”按钮。在Select Statistics Subset对话框中,从下列选项中选择:

要选取一个标准图像空间子集,点击“Calculate Stats On Image Subset”按钮,使用标准ENVI 方法构建子集。要选取感兴趣区作为子集,点击“Calculate Stats On ROI”按钮来显示一个感兴趣区列表,然后点击感兴趣区名来选择它。

提示:要将先前保存的感兴趣区添加到感兴趣列表中,在子集对话框中,点击“Restore ROIs”,选择感兴趣区文件,然后选择感兴趣区。

ENVI主成分分析

根据已有统计进行PC 旋转

如果已经为数据统计出协方差和特征值,可以将它们输入到PC旋转中。可以在PC 旋转中使用包含如下数据的统计文件,包括:与输入数据具有相同波段数的协方差和特征值(也许已经用Basic Tools >Compute Statistics选项,或在以前的PC旋转中计算出了这些统计值)。提示:当为PCA旋转计算统计信息时,如果要避免使用某些特定像元,首先建立一个包含这些“坏”像元的掩膜,然后使用Basic Tools >Statistics对掩膜图像计算协方差统计信息,也可以使用该统计文件进行主成分分析。

选择Transforms > Principal Components > Forward PC Rotation > PC Rotation from Existing Stats。当出现标准ENVI选择文件或子集对话框时,选择输入文件,并用标准ENVI文件选择程序建立所需的子集。将出现另一个文件选择对话框,在当前输入数据目录列表中,显示出了已经存在的统计文件(默认扩展名为.sta )。

用标准ENVI文件选择程序选择统计文件。选择输出到“File”或“Memory”。在“Output Data Type”按钮菜单中,选择输出文件的数据类型。选择输出的主成分波段数。

可以通过键入所需的数字,或用“Number of Output PC Bands”标签旁的增减箭头按钮来确定输出的主成分波段数。默认的输出波段数等于输入波段数。也可以用特征值来选择输出的主成分波段数,按照如下步骤操作。

点击“Select Subset from Eigenvalues”标签附近的按钮,选择“YES”。统计信息将被计算,并出现Select Output PC Bands对话框,其中列出每个波段和其相应的特征值,同时也列出每个主成分波段中包含的数据方差的累积百分比。

在“Number of Output PC Bands”文本框中,键入一个数字或点击箭头按钮,确定要输出的波段数。

特征值大的主成分波段包含最大的数据方差。较小的特征值包含较少的数据信息和较多的噪声。为了节省磁盘空间,最好仅输出具有较大特征值的波段。

在Select Output PC Bands对话框中,点击“OK”。输出的PC旋转将只包含选择的波段数。例如:如果选择“4”作为输出的波段数,则只有前4个主成分波段会出现在输出文件里。

在Forward PC Rotation Parameters对话框中,点击“OK”。

ENVI处理完毕后,将出现PC EigenValues绘图窗口,主成分波段将被导入可用波段列表中,并用于显示。想了解特征值绘图窗口中有关编辑以及其它选项的信息,请参阅第193页的“交互式绘图功能”。

(2)反向PC旋转

使用Inverse PC Rotation工具可以将主成分图像变换回原始数据空间。

选择Transforms > Principal Components > Inverse PC Rotation。当出现标准ENVI选择文件或子集对话框时,选择输入文件,并用标准ENV 文件选择程序建立所需子集。将出现另一个文件选择对话框,在当前输入数据目录列表中,显示出了已经存在的统计文件(默认扩展名为.sta )选择在正向PC旋转中存储

的统计文件。

注意:在选择反向PC旋转之前,统计文件必须已经存在。

在“Calculate using”标签旁,使用箭头切换按钮选择“Covariance Matrix”或“Correlation Matrix”。

注意:如果想要将图像反变换回原始数据空间,使用与正向PC旋转中相同的计算方法。

选择输出到“File”或“Memory”。在“Output Data Type”按钮菜单中,选择输出文件的数据类型。

点击“OK”运行反向变换。ENVI处理完毕后,主成分波段将被导入到可用波段列表中,并用于显示(用标准灰阶或RGB彩色合成方法)。

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

SPSS进行主成分分析的步骤(图文)精编版

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:

单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果:

KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下:

根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式: λi i i A U = 故可以由这二者通过计算变量来求得主成分载荷矩阵U 。 新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables )的公式分别如下二张图所示:

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

SPSS主成分分析操作步骤,详细的很啊^_^==

SPSS主成分分析操作步骤,详细的很啊^_^ SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入“A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX 8+0.298ZX 9 +0.355ZX 10

数学建模主成分分析方法

主 成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 一、主成分分析的基本原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:

111212122212p p n n np x x x x x x X x x x ???=????L L L L L L L (1) 如何从这么多变量的数据中抓住地理事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。则 11111221221122221122,,......................................... ,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++??=+++????=+++?L L L (2)

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893

多组分分析方法综述

重金属多组分分析的研究现状 近年来,随着科技的进步,单组分重金属的检测技术已经非常成熟,但是在实际污染体系中重金属离子种类繁多,且它们之间往往存在相互干扰,传统的化学分析方法和化学分析仪器难以一次性精确的检测出各个重金属离子的浓度,需要对共存组分进行同时测定。 对共存组分进行同时测定,传统的化学分析方法是首先通过加入各种掩蔽剂进行组分的预分离,然后采用单组分重金属检测技术进行分析检测。这种方法的分离过程往往冗长繁琐,实验条件苛刻,费时费力,而且检测精度低,无法应用于污染现场的检测。 随着计算机科学技术、光谱学和化学信息学的发展,复杂体系的多组分分析已成为当今光谱技术的研究热点,应用范围涉及环境监测、石油化工、高分子化工、食品工业和制药工业等领域,而且需求日益显著。由于多重金属离子共存时会产生重金属离子间的相互作用,因此在用化学分析仪器检测时会产生相干数据干扰,对实验结果产生影响,为了使测试结果更加准确,需要在实验的基础上建立数学模型,用于数据处理,消除各重金属离子共存时产生的相干数据干扰。近年来,引入化学计量学手段,用“数学分离”部分代替复杂的“化学分离”,从而达到重金属离子的快速、简便分析测定[1]。 化学计量学是一门通过统计学或数学方法将对化学体系的测量值与体系的状态之间建立联系的学科,它应用数学、统计学和其他方法和手段(包括计算机)选择最优试验设计和测量方法,并通过对测量数据的处理和解析,最大限度地获取有关物质系统的成分、结构及其他相关信息。目前,已有许多化学计量学方法从不同程度和不同方面解决了分析化学中多组分同时测定的问题,如偏最小二乘法(PLS)、主成分回归法(PCR)、Kalman滤波法、多元线性回归(MLR)等,这些方法减少了分离的麻烦,并使试验更加科学合理。 (1) 光谱预处理技术 这些方法用来降噪、消除无关信息。 ①主成分分析法 在处理多元样本数据时,假设总体为X=(x1,x1,x3…xn),其中每个xi (i=1,2,3,…n)为要考察的数量指标,在实践中常常遇到的情况是这n个指标之间存在着相关关系。如果能从这n个指标中构造出k个互不相关的所谓综合指标(k

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

SFA方法综述

SFA方法和因子分析法综述 (姬晓鹏,管理科学与工程,1009209018) 1.1DEA方法和SFA方法的区别 1.数据包络分析(DEA) 数据包络分析(data envelopment analysis)简称DEA,采用线性规划技术,是最常用的一种非参数前沿效率分析法。它由A.Charnes和W.W.Cooper[1]等人于1978年创建的,以相对效率为基础对同一类型的部门的绩效进行评价。 该方法将同一类型的部门或单位当作决策单元(DMU),其评价依据的是所能观测到的决策单元的输入数据和输出数据。输入数据是指决策单元在某种活动中所消耗的某些量,如投入资金量、原料量等,输出数据是指决策单元消耗这些量所获得的成果和产出,如产品产量、收入金额等。将各决策单元的输入输出数据组成生产可能集所形成的生产有效前沿面,通过衡量每个决策单元离此前沿面的远近,来判断该决策单元的投入产出的合理性,即技术效率[2]。 一般的评价方法比较同一类型的决策单元的效率,需要先对决策单元的输入输出指标进行比较,并通过加权得到一个综合评分,然后通过各个决策单元的评分来反映其效益优劣。数据包络分析法则巧妙地构造了目标函数,并通过Charnes -Cooper变换(称为2 C-变换)将分式规划问题转化为线性规划问题,无需统一指标的量纲,也无需给定或者计算投入产出的权值,而是通过最优化过程来确定权重,从而使对决策单元的评价更为客观。对建筑设计企业进行评价的问题,很适于数据包络分析法的评价模型。 DEA方法也存在着一些缺点:首先,当决策单元总数与投入产出指标总数接近时,DEA方法所得的技术效率与实际情况偏差较大;其次,DEA方法对技术有效单元无法进行比较;此外,由于未考虑到系统中随机因素的影响,当样本中存在着特殊点时,DEA方法的技术效率结果将受到很大影响。彭晓英等用因子分析法对指标进行筛选和综合,再采用DEA方法进行评价,解决了DEA方法对指标数量限制的问题,并对煤炭资源型城市的生态经济发展进行了评价[3]。 SFA与DEA方法都是前沿效率评价方法,它们都是通过构造生产前沿面来计算技术效率的。与DEA方法相比,SFA方法利用生产函数来构造生产前沿面,并采用技术无效率项的条件期望来作为技术效率,其结果受特殊点的影响较小且

主成分分析法的步骤和原理 (1)

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。设随机向量X 的均值为μ,协方差矩阵为Σ。对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p …… …… …… Z p =μp1X 1+μp2X 2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。R 为实对称矩阵 (即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为: 2211)()() ()(j kj n k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。 因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。特征值是各主成分的方差,它的大小反映了各个主成分的影响力。主成分Z i 的贡献率W i =∑=p j j j 1λλ,累计贡献率为

主成分分析操作步骤

主成分分析操作步骤 1)先在spss中录入原始数据 袁幌0 KMCi 删曲唇亶馳卜DG(W S^njRtJJ 11口辿J KU删 吕叫? r茗命窗?n靂二?1 a 15柞mjj 和啊r fJl I 111 1芋砂1a Q X X目 2險£g 2壬无8 3>SB壬9 4申料皺咱 B Z X a t8 2±@ &一:jfi fulfil9 2£X9 ?寓咽8 ?E9 2)菜单栏上执行【分析】一一【降维】一一【因子分析】,打开因素分析对话框,将要分析的变量都放入【变量】窗口中

3)设计分析的统计量 点击【描述】:选中“ Statistics ”中的“原始分析结果”和“相关性矩阵”中的“系数”。(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。 点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的第一个选项即可。

点击【得分】:选中“保存为变量”,方法中选“回归”;再选中 V 尿存为穽昼腔} 「方法 -------------- ◎目甘砂 < Bartlett C Ardorson-F?ubin 点击【选项】:选择“按列表排除个案”。 点击【旋转】:选取第一个选项“无”。 (当因子分析的抽取方法选择主成分法时,且不进 “显示因子得分系数矩阵” 行因子旋转,则其结果即为主成分分析)

4)结果解读 5) A.相关系数矩阵:是6个变量两两之间的相关系数大小的方阵。通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。 B.共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和通讯最多,而娱乐教育文化损失率最大。 C.总方差的解释:系统默认方差大于1的为主成分。如果小于1,说明这个主因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差为3.568,第二主成分的方差为1.288,前两个主成分累加占到总方差的80.939%<

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

(完整版)评价方法综述

评价方法综述 综合评价是指对以多属性体系结构描述的对象系统作出全局性、整体性的评价,即对评价对象的全体根据所给的条件,采用一定的方法给每个评价对象赋予一个评价值,再据此择优或排序。 常用的综合综合评价方法可以分为以下几大类: (1)定性评价方法,包括专家会议法、德尔菲法(Delphi法)。这类方法具有操作简单,可以利用专家的知识,结论易于使用的优点,但是主观比较强,多人评价是结论难收敛,适合于不能或难以量化的大系统,简单的小系统。 (2)技术经济分析方法,包括经济分析法和技术评价法,分别通过价值分析、成本效益分析、价值功能分析,采用NPV(Net Present value)、IRR(Internal Rate of Retum)等指标和通过可行性分析、可靠性评价等。该方法含义明确,可比性强,但是建立模型比较困难,只适用评价因素少的对象。 (3)多属性决策方法(Multi Attribute Decesion-makingMethod,简称DADM),这类方法通过化多为少、分层序列、直接求非劣解、重排次序法莱排序与评价,具有描述精确,可以处理多决策者、多指标、动态的对象的优点,但由于隶属刚性的评价,无法涉及模糊因素的对象。 (4)系统工程法,包括评分法、关联矩阵法和层次分析法(Analytic Hierarchy Proeess,简称AHP),前两者具有方法简单、容易操作的优点,但只能用于静态评价;AHP法的可靠度比较高,误差小,但评价对象的因素不能太多(通常不多于9个)。 (5)模糊数学方法,包括模糊综合评价、模糊积分、模糊模式识别等,能克服传统数学方法中的“唯一解”的弊端,根据不同可能性得出多个层次的问题解,但不能解决评价指标间相关造成的信息重复问题,隶属函数、模糊相关矩阵等的确定方法有待进一步研究。 (6)物元分析方法与可拓评价,可以解决评价对象的指标存在不相容性和可变性的问题。 (7)统计分析方法,包括主成分分析、因子分析、聚类分析和判别分析等,具有全面性、可比性、客观合理的优点,但都需要大量的统计数据,没有反映客观发展水平。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析在SPSS中的操作应用(2)

主成分分析在SPSS中的操作应用(2) SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。 用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入 “A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX

因子分析是主成分分析的推广和发展

因子分析是主成分分析的推广和发展,它也是将具有错综复杂关系的变量(或样品)综合为数量较少的几个因子,以再现原始变量与因子之间的相互关系,同时根据不同因子还可以对变量进行分类,它也是属于多元分析中处理降维的一种统计方法。 因子分析的内容十分丰富,这里仅介绍因子分析常用一种类型:R型因子分析(对变量做因子分析)。 基本思想:因子分析的基本思想是通过变量(或样品)的相关系数矩阵(对样品是相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量去描述多个变量(或样品)之间的相关(相似)关系,但在这里,这少数几个随机变量是不可观测的,通常称为因子。然后根据相关性(或相似性)的大小把变量(或样品)分组,使得同组内的变量(或样品)之间相关性(或相似性)较高,但不同组的变量相关性(或相似性)较低。 R 型因子分析数学模型: 用矩阵表示:= 简记为 且满足: 即和是不相关的; Digg 排行 主成 分分 析 动态 分析 法 判别 分析 聚类 分析 因子 分析 密切 值法 综述 综合 评价 分析 相关 分析 法 因素 分析 法 平衡 分析 法 热门

即不相关且方差皆为1。 即 不相关,且方差不同。 其中 是可实测的个指标所构成 维随机向量, 是不可观测的向量,称为的公共因子或潜因子。称为 因子载荷是第个变量在第个公共因子上的负荷。矩阵称为因子载荷矩阵; 称为的特殊因子,通常理论上要求的斜方差阵是对角阵,中包括了随 机误差。 因子分析和主成分分析的区别:主成分分析的数学模型实质上是一种变换, 而因子分析模型是描述原指标斜方差阵结构的一种模型。另外,在主成分分 析中每个主成分相应的系数是唯一确定的。与此相反,在因子分析中每个因 子的相应系数不是唯一的,即因子载荷不是唯一的。 因子模型中公共因子,因子载荷和变量共同度的统计意义: 假定因子模型中,各个变量以及公共因子、特殊因子都已经是标准化(均 值为0,方差为1)的变量。 (1)因子载荷的统计意义:因子载荷的统计意义就是第个变量与第 个公共因子的相关系数即表示依附于的分量(比重)。它反映第个变量 评论

主成分分析法的步骤和原理

主成分分析法的步骤和原理 (总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X 1,X 2 …X p 来表示,这p个变量构 成的p维随机向量为X=(X 1,X 2 …X p )t。设随机向量X的均值为μ,协方差矩阵 为Σ。假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为: Σ=E{(X-E[X])(X-E[X])}=(如图 对X进行线性变化,考虑原始变量的线性组合: Z1=μ11X1+μ12X2+…μ1p X p Z2=μ21X1+μ22X2+…μ2p X p ……………… Z p=μp1X1+μp2X2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2 ……Z p ,并且Z 1 是X1,X2…X p的线性组合 中方差最大者,Z 2是与Z 1 不相关的线性组合中方差最大者,…,Z p是与Z 1 , Z 2……Z p-1 都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始 数据可得矩阵X=(x ij ) m×p ,其中x ij 表示第i家上市公司的第j项财务指标数 据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分 析。其中,R ij (i,j=1,2,…,p)为原始变量X i 与X j 的相关系数。R为实对 称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式 为:

相关文档
最新文档