第六章实数复习导学案

合集下载

2023年人教版七年级数学下册第六章《实数》导学案

2023年人教版七年级数学下册第六章《实数》导学案

新人教版七年级数学下册第六章《实数》导学案课型:展示课【学习目标】1.知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数;2.知道实数和数轴上的点一一对应;3.经历用有理数估算2的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神【重点难点预测】1、知道无理数的客观存在性、无理数和实数的概念;2、会判断一个数是有理数还是无理数.3、无理数探究中“逼近”思想的理解一、学前准备【自学新知】用计算器计算,把下列有理数写成小数的形式,你能发现什么:53-, 847, 119, 911, 95, 结论:我们把 叫做无理数。

和 统称为实数。

如:。

G,…都是无理数,π=3.14159265…也是无理数。

2、下列各数哪些是有理数?哪些是无理数?31,3.1,02021020XX2…,2,-π,38,36,325,2π。

用根号表示的数一定是无理数吗?二、探究活动【探究无理数】探索活动1 2是个整数吗?为什么?探索活动 2 那么,2是一个分数吗?面对这个问题,我们该如何解决呢?请同学们分组讨论。

探索活动3 2到底多大呢?请同学们根据前面的结果,分组讨论,精确地估计2的范围。

归纳结论:备注 (教师复备栏及学生笔记)这是一个无限不循环小数,我们称这样的数是 。

我们把有理数和无理数统称为 。

【例题研讨】例1.把下列各数填入相应的集合内,432,-39,3.1415,10,0.6,0,3125-, 3π,4916 ,0.01001000100001……(1)有理数集合:{ …}(2)无理数集合:{ …}(3)整数集合: { …}(4)正实数集合:{ …}2.数14、32、2π中,无理数有( ). (A )0个 (B )1个 (C )2个 (D )3个 3.(1)把下列各数填入相应的集合内:-7,0.32,13, 8,3216,- 2π. 有理数集合:{ …};无理数集合:{ …};(2)213、38-、0、27、3π、5.0、3.14159、-0.020XX0002 0.12121121112… (1)有理数集合{ }(2)无理数集合{ }(3)正实数集合{ }(4)负实数集合{ }三、自我测试1、把下列各数填在相应的集合里:31, 3.1 ,02021020XX2…,2,-π,38,36,325,2π。

2023年人教版七年级数学下册第六章《实数2》导学案 (2)

2023年人教版七年级数学下册第六章《实数2》导学案 (2)

新人教版七年级数学下册第六章《实数2》导学案一、学习目标1、了解实数范围内,相反数、倒数、绝对值的意义。

2、会按要求用近似有限小数代替无理数,再进行计算。

二、重点与难点重点:在实数内会求一个数的相反数、倒数、绝对值。

难点:简单的无理数计算。

三、合作探究㈠ 学前准备1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律2、用字母表示有理数的加法交换律和结合律3、有理数的混合运算顺序㈡自主探索 独立阅读,自习教材总结 当数从有理数扩充到实数以后,1、数a 的相反数是 ;2、一个正实数的绝对值是它 ;一个负实数的绝对值是它的 ;0的绝对值是 。

3、实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。

在进行实数的运算时,有理数的运算法则及运算性质等同样适用。

讨论 下列各式错在哪里?1、2133993393-⨯÷⨯=⨯÷=2、()21212-=-3、5656-=-4、当2x =±时,2202x x -=- 四、精讲精练例1、计算下列各式的值: ⑴322--⑵333总结 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的练习(15π (精确到0.01) (232(结果保留3个有效数字)解:⑴322-322303==(加法结合律)⑵3323 (32353=+=(分配律)总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算计算⑴ 22—3 2 ⑵︳︱32-+22 ⑶ ()221-㈢应用迁移,巩固提高例2⑴求5的算术平方根于的平方根之和(保留3位有效数字)⑵2552--+(精确到0.01)⑶2a a π-+- (2a π<<)(精确到0.01) 例3 已知实数a b c 、、在数轴上的位置如下,化简()222a b a b c a c +++---例4 计算202232223-⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 五、课堂小结1、实数的运算法则及运算律。

2023年人教版七年级数学下册第六章《实数复习与小结》导学案

2023年人教版七年级数学下册第六章《实数复习与小结》导学案

新人教版七年级数学下册第六章《实数复习与小结》导学案【本章知识结构图】开平方互为逆运算乘方开方开立方【知识点一】平方根与立方根算术平方根平方根立方根概念如果2x a,那么x叫做a的平方根。

特征正数有__个算术平方根,是__数有___个平方根,它们____________有____个立方根,是____数0 0的算术平方根是______ 0的平方根是______ 0的立方根是______ 负数有____个立方根,是____数符号表示估算被开方数越大,对应的算术平方根也__________。

被开方数越大,对应的立方根也__________。

规律被开方数的小数点每向左(或向右)移动_____,其算术平方被开方数的小数点每向左(或向右)移动_____,其立方根平方根立方根有理数无理数实数根的小数位相应的向左(或向右)移动_____位。

的小数位相应的向左(或向右)移动_____位。

公式﹡_____2=a()()____________2a a =()__________________33333=-==a a a【跟踪训练一】1、9的平方根是_________,—8是 的平方根; 81的平方根是 ;—64的立方根是 ;立方根是-2的数是 ; ____81=,____49.0=-, ____925=±,____1253=-,____643=--, _____)25(2=-,____)27(33=- 2、下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.16的平方根是4±D.-27没有立方根3.下列运算正确的是( )A.39±=B.33-=-C.39-=-D.932=-4.下列各组数中互为相反数的是( )A.-2 与2(2)-B.-2 与38-C.-2 与12- D.2与2-5.若a 为实数,则下列式子中一定是负数的是( )A .2a - B .2)1(+-a C .2a - D .)1(+--a6.估算324+的值( )A 、在5和6之间B 、在6和7之间C 、在7和8之间D 、在8和9之间7.写出1到2之间的一个无理数___________8.平方根等于它本身的数是_______,算术平方根等于它本身的数是________,立方根等于 它本身的数是_________ 9.比较大小:10.已知 ≈0.6694, ≈1.442,那么 ≈________8_____1725_____263_____263--5.0_____215-11.如果1311.0,311.172.1==x ,则x =_______12.一个正数x 的平方根分别是a+1和a-3,则a=______,这个正数是_______ 13.在数轴上离原点距离是5的点表示的数是_________。

沪科版数学七年级下册第6章《实数》复习教学设计

沪科版数学七年级下册第6章《实数》复习教学设计

沪科版数学七年级下册第6章《实数》复习教学设计一. 教材分析沪科版数学七年级下册第6章《实数》复习教学设计,主要涵盖实数的定义、分类和性质,以及实数与数轴的关系。

本章内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

教材内容主要包括有理数、无理数和实数的概念,实数的性质,实数与数轴的对应关系等。

二. 学情分析学生在七年级上学期已经学习了有理数和无理数的基本概念,对实数有一定的了解。

但部分学生对实数的性质和实数与数轴的关系理解不够深入,需要通过复习教学进一步巩固和提高。

学生的学习兴趣较高,但由于实数的概念较为抽象,部分学生可能在理解上存在困难。

三. 教学目标1.理解实数的定义和分类,掌握实数的性质。

2.建立实数与数轴的对应关系,能运用实数解决实际问题。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.实数的定义和分类。

2.实数的性质和实数与数轴的关系。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的性质和实数与数轴的关系。

2.利用数轴直观展示实数,帮助学生理解实数与数轴的对应关系。

3.通过实例分析,让学生学会运用实数解决实际问题。

六. 教学准备1.准备相关的教学PPT,内容包括实数的定义、分类、性质和实数与数轴的关系等。

2.准备数轴教具,用于展示实数与数轴的对应关系。

3.准备一些实际问题,用于巩固学生对实数的理解和应用。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。

提问:实数有哪些分类?实数与数轴有什么关系?2.呈现(10分钟)通过PPT展示实数的性质,如:实数有大小、可以进行加减乘除等运算。

同时,展示实数与数轴的对应关系,解释实数在数轴上的位置与其实数值的关系。

3.操练(10分钟)让学生分组讨论,通过数轴教具和PPT上的实例,自主探究实数的性质和实数与数轴的关系。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对学生探究的结果,进行巩固练习。

人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章实数复习课教案课题 实数复习 课型 复习 备课人教学目标 1.体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养估算和运算能力。

2.理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了解平方根、立方根的计算器求法;巩固实数的运算。

3.从局部到整体,一点一练,分层过关。

教学过程设计教学环节教学学活动设计 一、知识网络专题一:平方根与立方根【1】算术平方根: 1.如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”。

特别规定:0的算术平方根仍然为0。

2.算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

总体复习这一章的概况先复习平方根和立方根这一专题,熟悉概念,性质,以及这两个概念,性质之间的区别与联系3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

【2】平方根: 1.概念:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即)0(2≥=a a x ,当时,我们称x 是a 的平方根,记做)0(≥±=a a x :。

2.性质:(1)正数有两个平方根,他们互为相反数 (2)0的平方根是0; (3)负数没有平方根 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

【3】立方根 1.概念:如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。

记做:3a (注意:这里的3是根指数,不能省略) 2.立方根的性质: (1)正数的立方根是正数, 负数的立方根是负数; 0的立方根是0. (2) 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。

第6章 实数 章节复习 人教版数学七年级下册教与练导学案

第6章 实数 章节复习 人教版数学七年级下册教与练导学案

人教版初中数学七年级下册第六章实数章节复习导学案一、学习目标:1.梳理本章的相关概念,通过回顾平方根、立方根、实数及有关的概念,强化概念之间的联系;2.会进行开平方和开立方运算及巩固实数的运算.二、学习过程:知识梳理一、算术平方根1.算术平方根的定义:_________________________________________________________________________________ _____________________________________________________2.算术平方根的性质:(1)一个正数的算术平方根有___个; 0的算术平方根有____个,是____;____没有算术平方根.(2)被开方数a是非负数,即_______; a是非负数,即________.(双重非负性)(3)被开方数越大,对应的算术平方根也_____. 若a>b>0,则_____>___>0.(4)被开方数扩大(或缩小)100倍,它的算术平方根扩大(缩小)______倍.二、平方根1.平方根的定义:_________________________________________________________________________________ _____________________________________________________2.平方根的特征:(1)正数有______个平方根,它们互为__________;(2)0的平方根是____;(3)______没有平方根.3.平方根的表示:正数a的算术平方根可以表示为_______,正数a的负的平方根,可以表示为____. 正数a的平方根可以用_______表示,读作“__________”.4.平方根与算术平方根的联系与区别:三、立方根1.立方根的定义:___________________________________________________________________类似于平方根,一个数a的立方根,用符号“_____”表示,读作“_________”,其中a是________,3是_________.正数的立方根是______;负数的立方根是______;0的立方根是______.立方根的性质:一般地,平方根与立方根的区别和联系四、实数及其运算1.有理数我们知道有理数包括_____和_______,它们都可以写成____________或者________________的形式.,,,,.=______,=_______,=_______,=______,=_______.【归纳】___________________________________________________________ _________________________________________________________________.2.无理数通过前两节的学习,我们知道,很多数的平方根和立方根都是___________.无限不循环小数又叫做_________.例如,-,,等都是无理数.π是无理数吗?1.01001000100001…是无理数吗?____________________.常见的无理数的三种形式:(1)____________________________________;(2)____________________________________;(3)___________________________________________________________.3.实数__________和__________统称为实数.(1)按定义分(2)按性质分当数的范围从有理数扩充到实数以后,实数与数轴上的点是________的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数. 与规定有理数的大小一样,对于数轴上的任意两个点,_________________________________________________________.数a的相反数是______,这里a表示任意一个实数.【归纳】______________________________________________________________________________________________________________________________.4.实数的运算性质(1)当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.(2)在进行实数运算时,有理数的运算法则及运算性质同样适用.1.交换律:加法__________________,乘法___________________2.结合律:加法______________________,乘法_______________________3.分配律:___________________________考点解析考点1:算术平方根的概念及计算例1.求下列各数的算术平方根:(1) 100 (2) 49(3) 0.000164例2.化简:(1) 111(2) (―1.3)2(3) (―2)×(―8)25【迁移应用】【1-1】16的算术平方根是( )A.4B.±4C.2D.±2【1-2】一个正方形的面积变为原来的4倍,则它的边长变为原来的____倍;面积变为原来的9倍,则它的边长变为原来的____倍;面积变为原来的100倍,则它的边长变为原来的____倍;面积变为原来的n倍时,则它的边长变为原来的_____倍.【1-3】求下列各数的算术平方根.(1)64;(2)0.25;(3)4;(4)52;(5)―;(6)104.9考点2:算术平方根的非负性应用例3.若(x―4)2+y+3=0,求(x+y)2019的算术平方根.【迁移应用】若实数x、y、z满足x+2+(y―3)2+|z+6|=0,求xyz的算术平方根.考点3:平方根的概念及计算例4.求下列各式的值:(1) ;(2) -;(3) ±.例5.已知一个正数m 的平方根为2n +1和4―3n .(1)求m 的值;(2)|a ―1|+b +(c ―n)2=0,a +b +c 的平方根是多少?例6.已知2a ―1的算术平方根是3,b ―1的平方根是±4,c 是13的整数部分,求a +2b ―c 的平方根.【迁移应用】【3-1】下列式子中,正确的是( )A.±4=2 B.(-2)2=-2 C.4=±2 D.22=2【3-2】计算: (1)121=______; (2)- 1.69=_______;(3)-(-0.3)2=_______; (4)±324=_______.【3-3】已知一个正数的平方根是2x+3和x-9,则这个数是______.【3-4】求下列各数的平方根.(1)49; (2)1625; (3)279; (4)0.36; (5)―.【3-5】求下列各式中的x.(1)9x2―25=0,(2)4(x―2)2―9=0.考点4:立方根的概念及计算例7.列各式的值:(1) ;(2) ;(3) .例8.已知a2=16,|b|=9,3c=―2,且ab<0,bc>0,求a―b+c的值.例9.对于结论:当a+b=0时.a3+b3=0也成立.若将a看成a3的立方根,b看成b3的立方根.由此得出结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子进行验证;(2)若37―y和32y―5互为相反数,且x―3的平方根是它本身,求x+y的立方根.【迁移应用】【4-1】下列说法正确的是()A.9的算术平方根是±3B.―8没有立方根C.―8的立方根―2D.8的立方根是±2【4-2】下列各式中,正确的是()A.― 3.6=―0.6B.3―5=―35C.(―13)2=―13D.36=±6【4-3】如果32.37≈1.333,323.7≈2.872,那么323700约等于()A.28.72B.287.2C.13.33D.133.3【4-4】已知a―5的平方根是±4,2b―1的立方是―27,求a―4b的算术平方根.【4-5】已知A=m―2n―m+3是n―m+3的算术平方根,B=m―2n+3m+2n是m+2n的立方根,求B―A的平方根.考点5:实数的概念、性质及分类例10.如图,请将数轴上标有字母的各点与下列实数对应起来:例11.把下列各数填在相应的大括号内:例12.如图所示,数轴上A,B两点表示的数分别为-1和3,点B关于点A的对称点为C,求点C所表示的实数.【迁移应用】【5-1】如图,数轴上A,B两点表示的数分别为2和5.1,则A,B两点之间表示整数点共有( ) A.6个 B.5个 C.4个 D.3个【5-2】若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是______.【5-3】把下列各数分别填入相应的集合内:考点6:实数的大小比较例13.通过估算比较下列各组数的大小:(1) 5与1.9;(2)与1.5.例14.比较下列各组数的大小.(1)与2.5;(2)与.【迁移应用】【6-1】将下列各实数按从小到大的顺序排列,并用“<”号连接起来.【6-2】比较3,4,的大小.【6-3】已知(n为正整数),则2n的立方根为______.【6-4】比较下列各组数的大小:(1)8 与 10; (2)65 与 8; (3)5―12 与 0.5; (4)5―12 与 1.考点7:实数的运算例15.计算:(1)|3-2|-(-2)2+2×32; (2)|2-10|+|10-14|+|4-14|;(3)14×(22+3)-23π(保留小数点后两位).【迁移应用】【7-1】下列计算正确的是( )A.|2-3|=2-3 B.9=±3C.32+3=35D.3―27=-3【7-2】练习:(1) 22-32; (2) |2-3|+22.【7-3】化简与计算:考点8:实数的应用例16.高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空物体自由下落到地面的时间t(单位:s)和(不考虑风速的影响,g≈9.8m/s2).已知一幢大楼高高度h(单位:m)近似满足公式t=2hg78.4m,若一颗鸡蛋从楼顶自由落下,求落到地面所用时间.例17.如图,一只蚂蚁从点A沿数轴向右爬行3个单位长度到达点B.已知点A表示的数是-3,设点B表示的数为m.(1)m的值为_________;(2)计算:|m-1|+3(m+6)+1.【迁移应用】【8-1】一个长、宽,高分别为50cm、8cm、20cm的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是()A.20cm B.200cm C.40cm D.80cm【8-2】如图,从一个大正方形中裁去面积为4cm2和25cm2的两个小正方形,求留下的阴影部分的面积.【8-3】王老师为班级图书角购买了四本同一型号的字典,这种字典的长与宽相等.班长将这4本字典放入一个容积为512cm3的正方体礼盒里,恰好填满.求这一本字典的厚度.。

2023年人教版七年级数学下册第六章《实数复习》导学案

新人教版七年级数学下册第六章《实数复习》导学案1. 算术平方根与平方根之间有什么关系?2. 任意实数都存在平方根吗?立方根呢?4. 立方根与平方根有什么区别?【自习】1.-8的立方根与4的平方根的和是( )A.0B.4C.-4D.0或-42.已知b a ,为实数,则下列说法正确的是( )A.若a >b ,则2a >2bB.若a >b ,则2a >2bC.若a >b ,则2a >2bD.若3a >3b ,则2a >2b3.如图1,数轴上A,B 两点对应的实数分别是1和3,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为( )A.132-B.31+C.32+D.132+ 4.a 的相反数是5,则a 的绝对值是 。

5.把下列各数分虽填入相应的集合内:213, 38-, 0, 27, 3π, 0.5 , 3.141 59, -0.020 020 002, 0.121 211 211 12…, 0.76。

有理数集合{ …};无理数集合{ …};正实数集合{ …};负实数集合{ …}。

【自疑】等级: 组长签字:【自探】活动一 : a 的性质(重点) 问题1:在a 中,a 有什么限制条件? 答: 问题2:a 表示什么?a 的取值范围是多少?答:问题3:2)2(= ,2)5(= ,2)11(= 2)26( = 。

由此你能得到什么结论?问题4:25= ,2)5(-= ,217= , 2)17(-= 。

由此你能得出什么结论?活动二: 2a 的化简(难点)已知实数c b a ,,在数轴上的对应点如图2所示。

化简:c a c a c a c b b a --++++--22)()(。

活动三 : 实数的有关运算(重点)计算:33283311259875.0254--++-活动四 利用实数知识解决问题已知一个正方体的棱长是cm 5,另一个正方体的体积是它的8倍,求另一个正方体的棱长。

2023年人教版七年级数学下册第六章《实数小结与复习》导学案

新人教版七年级数学下册第六章《实数小结与复习》导学案学习目标:(1)梳理本章的相关概念,通过回顾平方根、立方根、实数及有关的概念,强化概念之间的联系.(2)会进行开平方和开立方运算.学习过程:一.导入与自主预习:1.平方根的概念是什么?算术平方根的概念是什么?这两个概念的区别与联系是什么?2.立方根的概念是什么?什么是开平方、开立方运算?乘方运算与开方运算有什么关系?3.无理数和有理数的区别是什么?有理数是能够表示成两个整数之比的数,是整数或有限小数.无理数不能表示成两个整数之比,是无限不循环小数.4.实数由哪些数组成?5.实数与数轴上的点有什么关系?实数与数轴上的点是“一一对应”的.6.数的范围是怎样从正整数逐步扩充到实数的?随着数的不断扩充,数的运算有什么发展?加法与乘法的运算律始终保持不变吗?7. 几个基本公式:(注意字母a 的取值范围) 2)(a = ; 2a = 33a = ; 33)(a = ; 3a -=二.知识探究与合作交流:例1 求下列各数的算术平方根及平方根: (1)64; (2)0.25; (3) .例2 求下列各数的立方根:(1)164- (2)36 例3 下列各数分别介于哪两个相邻的整数之间:(1)26 (2)388例4 比较下列各组数的大小:(1)3, 10; (2) 512-, 1。

例5 计算下列各式的值:(1) 2(22)+ (2) 32(425381264)3--+-例6 下列各数:① 3.14 1 ② 0.333 33··· ··· ③57- ④π ⑤25± ⑥ 23- ⑦ 0.303 000 300 000 3··· ···(相邻两个3之间0的个数逐次增加2).其中是有理数的有_______;是无理数的有_______(填序号).当堂训练:32310,a a a <、若求的值运算:加、减、乘、除、乘方、开方. 运算律:加法交换律、加法结合率、乘法交换律、乘法结合律、乘法分配律. 实数运算2. x 取何值时,下列各式有意义(1)x -4 : ;(2)34x +: ;(3)212-+x x : 3. 若()x x -=-222,则x 的取值范围是4. 已知115+的小数部分为m ,115-的小数部分为n ,则=+n m5. 、下列说法正确的是( )A 、16的平方根是4±B 、6-表示6的算术平方根的相反数C 、 任何数都有平方根D 、2a -一定没有平方根 6. 已知等腰三角形的两边长b a ,满足()013325322=-+++-b a b a ,求三角形的周长7. 如果一个数的平方根是1+a 和72-a ,求这个数三.总结释疑:说说本节课你的收获与存在的问题。

人教版七年级下册第六章 实数《复习课》导学案

第六章复习课1.知道平方根、算术平方根、立方根的概念,能用开平方或开立方运算求一个数的平方根或立方根.2.知道无理数和实数的概念,会对实数进行分类,能进行简单的实数四则运算.3.会求实数的绝对值、相反数,会进行实数的大小比较.进一步体验数形结合及分类思想在数学中的重要性.4.重点:会求一个非负数的平方根、算术平方根及实数的立方根,会进行实数的运算.◆体系构建◆核心梳理1.结合平方根与算术平方根的概念完成下面的填空.(1)如果x2=a,那么x(x>0)叫作a的算术平方根,a的平方根记作±a,其中a 叫作被开方数.(2)一个正数有两个平方根,它们互为相反数; 0 的平方根是0,负数没有平方根.(3)求一个数平方根的运算叫作开平方,它与平方互为逆运算.(4)如果一个正数x的平方等于a,那么这个正数x叫作a的算术平方根,0的算术平方根是0.2.立方根的概念和性质.3,求一个数(1)如果一个数的立方等于a,那么这个数叫作a的立方根,记作a立方根的运算叫作开立方.(2)正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.实数及其运算.(1)有理数和无理数统称实数.(2)有限小数和无限循环小数叫作有理数,无限不循环小数叫作无理数.(3)实数按大小可分为正实数、0、负实数.(4)实数与数轴上的点 一一对应 ,平面直角坐标系中的点与 有序实数对 是一一对应的.(5)若a ≠0,则它的相反数是 -a ,它的倒数是 1a .0的相反数是 0 .(6)一个正实数的绝对值是 它本身 ;一个负实数的绝对值是 它的相反数 ; 0的绝对值是 0 .专题一 平方根、算术平方根的计算(1)279;(2) . 解:(1)27的平方根是±5,算术平方根是5;(2) 25的平方根是± 5,算术平方根是 5. 专题二 立方根的计算2.-0.008和27的立方根分别是(C )A.-0.2,±35 B .-0.008无立方根,27125的立方根为35C .-0.2,35 D.±0.2,-35专题三 实数的分类3.在实数-23,0, 3,-3.14,π2, 4,-0.1010010001…(每两个1之间依次多1个0),227,这8个实数中,无理数有 (C ) A.1个 B.2个 C.3个 D.4个4.下列说法正确的有 ④⑥ .(填序号)①无限小数都是无理数;②带根号的数是无理数;③有理数都是有限小数;④实数不是有理数就是无理数;⑤两个无理数的和与积都是无理数;⑥有理数与无理数分别平方后不可能相同.专题四 实数的大小比较与运算5.实数a 、b 、c 在数轴上的位置如图所示,则a+c ,b+c ,bc 的大小关系是(B )a+c>b+c>bc .bc>a+c>b+c a+c>bc>b+c b+c>a+c>bc 专题五 实数的绝对值、相反数6. - 的相反数是 5- 2 ,绝对值是 5- 2 .专题六 关于几种非负数的问题7.若a-1+|a+b|=0,则a2012+b2013的值为0.专题七在坐标系中求不规则图形的面积8.如图,A,B,C三点的坐标分别为(3,0),(1,),(0,1),求四边形OABC的面积.解:S四边形OABC=12×(1+3)×1+12×2×3=12+323.【方法归纳交流】在坐标系内求某个图形的面积时,一般将它分成几个和x轴、y轴有关的易求出面积的图形,然后求和或差.见《导学测评》P 16。

人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例

2.通过问题的提出和解决,引导学生发现实数知识之间的内在联系。
3.利用问题引导学生进行推理和证明,培养他们的逻辑思维能力。
4.鼓励学生主动寻找解决问题的方法,培养他们的自主学习能力和创新意识。
(三)小组合作1.将学生分为小ຫໍສະໝຸດ ,鼓励他们进行合作学习和讨论交流。
2.设计具有挑战性和综合性的任务,让学生在合作中解决问题,提高解决问题的能力。
(三)学生小组讨论
1.将学生分为小组,给出具有挑战性和综合性的任务,让学生在小组合作中解决问题。例如,可以让学生探讨实数的性质和运算规则,并尝试解决一些实际问题。
2.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。例如,可以让每个小组成员依次发表自己的观点,并进行讨论交流。
(四)总结归纳
三、教学策略
(一)情景创设
1.利用生活实际问题,创设情境,引发学生对实数的兴趣和好奇心。
2.通过图形、模型等直观教具,帮助学生形象地理解实数的概念和性质。
3.设计具有挑战性和针对性的问题,激发学生的思考和探索欲望。
4.创设互动交流的平台,让学生分享自己的思考过程和解决问题的方法。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识和解决问题的能力。
3.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。
4.注重小组合作的过程和结果,对学生的合作学习和团队精神进行评价和反馈。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,发现自己的优点和不足,提高自我认知能力。
2.让学生通过自我评价和同伴评价,了解自己的学习进展和提高方向。
1.培养学生对数学学科的兴趣和热情,使他们愿意主动学习数学。
2.培养学生的团队合作意识,使他们能够在学习过程中相互帮助、共同进步。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册第六章实数复习导学案
复习目标:
1.进一步掌握平方根、立方根的有关概念、表示方法和性质。

2.能熟练地进行开平方和开立方运算,掌握几种基本公式。

3.增强用类比的方法分析问题的能力。

一、知识回顾
(一)数的开方:下列各式有什么意义, 算术平方根、平方根、立方根是如何定义的?
a a
±3a
练习:1、—8是的平方根; 64的平方根是;64的值是;
364的平方根是;—64的立方根是;
2、大于17
-而小于11的所有整数为
(二)算术平方根、平方根、立方根的区别与联系
练习: 1、169的算术平方根表示为 = ;
14
2
25的平方根表示为 = ;0.064的立方根表示为 =
2、x取何值时,下列各式有意义
(1)x
-
4:;(2)34x
+:;(3)2
1
2
-
+
x
x

3、判断正误
(1)4的算术平方根是±2.
(2)4的平方根是2.
(3)8的立方是2.
(4)-1的立方根是-1
(5)-1的平方根是±1
(6)16的平方根是±4
(7)-6表示6的算术平方根的相反数
(8)-a2一定没有平方根
4、一个正数x的平方根分别是a+1和a-3,则这个正数是 .
5、解下列方程128
23=
x9
)2
(2=
-
x
1
2
(三)几个基本公式:(注意字母a 的取值范围)
2)(a = 2a = 33a = 33)(a = 3a -=
练习: 1、
2
)71
(-= 21999=
的值求、若33
2,02a a a +<
(四)实数: 实数的分类
_________⎧⎧⎧⎫
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎨⎬⎪⎪⎪⎪⎧⎪⎪⎪⎨⎨
⎪⎪⎭⎩⎩⎪
⎪⎪⎪⎫
⎧⎨
⎬⎪⎩⎪⎭⎩
______整数____________有限小数或循环小数______实数负分数____________________________________________ 1.实数与数轴:实数与数轴上的点______________对应.
2.实数的相反数、倒数、绝对值:实数a 的相反数为______;若a,b 互为相反数,
则a+b=______;非零实数a 的倒数为_____(a ≠0);若a ,b 互为倒数,则ab=________。

3.______(0)
||______(0)a a a ≥⎧=⎨<⎩
4. 数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。

5.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.
_______(0,_______(0,0).a b a b =≥≥=≥>
练习:下列各数中,有理数为 ;无理数为
3737737773.085094
320225233
、、、、、、、、、---π
(相邻两个3之间的7逐渐加1)
(二)实数的有关运算
1、计算3
232223--++-
2、解方程(1)
4)3(92
=-y (2)()01253273
=++x。

相关文档
最新文档