涡轮振动模态及叠讲义加应力计算

合集下载

某机高压涡轮叶片振动模态分析

某机高压涡轮叶片振动模态分析

某机高压涡轮叶片振动模态分析摘要:以某机高压涡轮工作叶片为研究对象,讨论其模态振动理论,采用UG建立叶片实体模型,利用有限元软件ANSYS Workbench对其进行模态分析,并与电动振动台测量结果进行对比,得到有限元分析结果具有一定的可靠性,为数值模拟振动测试数据提供一定的可信度依据,尤其对一些科研机种叶片的数值振动模态仿真分析提供了参考价值。

关键字:振动测试;模态分析;叶片;ANSYS Workbench引言叶片是航空发动机重要组成部分,工作时主要承受离心载荷、气动载荷、热载荷以及工况环境变化导致的交变载荷,工作中很容易发生故障,据统计振动故障占发动机总故障的15%,而叶片振动故障又占振动故障的75%。

而据粗略统计,我国现役航空发动机发生的重大事故中,涡轮叶片的断裂高达80%以上[1]。

因此叶片工作时的可靠性直接关系到整个发动机的运行安全性及使用寿命,为避免叶片振动故障的出现,在设计、制造及维修过程中对叶片进行振动模态分析,得到其固有频率、振型以及振动应力分析就显得尤其重要。

然而,高压涡轮叶片在发动机工作状态下直接对叶片进行频率及振动形态的观察及测试是比较困难甚至是不可能的。

在生产及制造中,一般只对叶片进行自由振动分析,测得其固有频率及振动形态。

单从使用角度来看,仅仅对叶片进行自由模态分析是不精确的,无法获得叶片全生命使用周期内的准确频率及振动形态。

本文首先在电动振动台ES-10-240上对高压涡轮叶片进行振动测试,得出其平均固有频率。

然后再UG中建立叶片实体模型,利用有限元软件ANSYS Workbench对其进行模态分析,对比有限元分析结果与试验结果。

在此基础上对高压涡轮叶片进行预应力模态分析,得到更准确的振动频率及振动形态,为高压涡轮叶片设计及加工提供一定的参考价值。

1 模态分析理论模态分析是结构动力学分析中最基础、也是最重的一种分析类型,其主要是用于计算结构的振动频率和振动形态,每一个模态都有特定的固有频率、阻尼比和模态阵型。

航空发动机自由涡轮叶片裂纹故障分析

航空发动机自由涡轮叶片裂纹故障分析

航空发动机自由涡轮叶片裂纹故障分析马利丽;何立强;任伟峰【摘要】针对某涡桨发动机在试车过程中发生的自由涡轮叶片裂纹故障,对裂纹叶片进行荧光检查、叶片测频和冶金分析,并通过MSC/PATRAN有限元分析软件确定叶片的振动特性.结果表明:叶片裂纹发生的原因为叶片的第5阶固有频率与导叶激励频率接近而发生共振,引起叶片发生高阶振动,造成叶片高周疲劳失效所致.重点调整螺旋桨的工作转速范围,使其基本处于规定的安全工作转速范围内.后经1000 h 试车验证,均未再发生类似故障.【期刊名称】《航空发动机》【年(卷),期】2018(044)006【总页数】5页(P54-58)【关键词】自由涡轮叶片;裂纹;振动;共振;高周疲劳;涡桨发动机【作者】马利丽;何立强;任伟峰【作者单位】中国航空发动机集团,北京100097;中国航空发动机集团,北京100097;中国航发湖南动力机械研究所,湖南株洲412002【正文语种】中文【中图分类】V232.40 引言航空发动机涡轮叶片长期工作在高温、高压、高转速的恶劣环境下,在气动、机械和热的共同作用下,其结构强度和振动等问题比较突出。

随着发动机性能的提高和空气流量的加大,工作叶片变得薄而长,很容易出现振动问题,并导致叶片出现裂纹甚至断裂[1-2]。

国内外很多学者对叶片强度与振动问题进行了研究。

金向明等[3]对整体离心叶轮叶片的振动可靠性进行分析;李春旺等[4]分别考虑离心力场、气动力场、温度场及热力场等因素的影响,对某航空发动机涡轮叶片工作状态下的振动模态进行分析,发现温度场和离心力场是影响叶片固有频率的主要因素,但对叶片的振型影响很小。

田爱梅等[5]提出1种构件振动可靠性设计方法;徐可君等[6]建立了叶片振动非概率可靠性评估体系、方法及模型,并将其应用于航空发动机压气机、涡轮叶片的振动可靠性计算;陈立伟等[7]建立了平均应力为定值和随机变量时的结构振动可靠性模型,给出了可靠度计算的相应表达式及分析流程;欧阳德等[8]提出了1种发动机叶片振动可靠性评估方法,引入了概率故障树概念;宋兆泓[9]给出了发动机叶片故障的理论研究、计算分析、实验研究、故障结论、排故方法和使用效果等;江龙平等[10]将灰色理论与方法引入叶片的振动可靠性评估;孟越等[11]对叶片强迫响应问题提出了应用瞬态分析的方法。

汽车轮毂模态分析PPT课件

汽车轮毂模态分析PPT课件
3、散热好
铝合金的热传导系数为钢的3倍。散热作用好,远程高速行驶之时,也能使轮胎保持在恰当 的温度,使刹车鼓及轮胎不易老化。
4、真圆度好
精度高达0.05mm,工作平衡功能佳,有利于消除通常车身超长及方向盘颤动表象。
5、坚固耐用
铝合金轮毂之耐冲击力、抗张力及热力等各项强度较钢轮毂要高。这也是铝合金在国防工 业、航空工业扮演重要的角色原因之一。
6、美观
通常钢轮毂因生产所限,形式单调板滞,缺乏改变;铝合金轮毂则有林林总总的规划,加上 光泽、色彩作用好,然后提高了轿车的价值与美感。
精选ppt
33
应用
为了避免发生共振,轮毂的振动频率要避开的外部激励频率。外 部激振主要包括路面激励频率和发动机的振动频率。
• 根据工程经验,高速公路和城市较好路面,路面激励频率多 在 3Hz以下,凹凸不平路面激励频率一般低于11Hz。
24
2阶振型
(轮辋Ⅱ型同向倾斜振动 )
精选ppt
25
3阶振型
(轮辋扭转振动)
精选ppt
26
4阶振型
(轮辋前后振动)
精选ppt
27
5阶振型
(轮辋Ⅰ型反向倾斜的振动)
精选ppt
28
6阶振型
7阶振型
精选ppt
8阶振型
29
9阶振型
10阶振型
精选ppt
30
铝合金轮毂和钢材轮毂固有频率和特征值
铝合金轮毂
基于ABAQUS汽车轮毂模态分析
精选ppt
1
一.研究汽车模态的意义 二.模态分析与汽车NVH问题 1. NVH概念 2. NVH解决的问题 3. NVH特性研究方法 三. 轮毂实例分析
精选ppt
2

某燃气轮机涡轮叶片的模态和疲劳分析_毛艳蕾

某燃气轮机涡轮叶片的模态和疲劳分析_毛艳蕾

中。结合 HyperMesh 中叶片底面和旋转中心的
刚性连接,对叶片榫头侧面施加 X 方向的位移
约束。结果如图 3 所示。
3 固定约束下叶片的模态分析
模态分析是分析机械结构的固有振动特
性。通过模态分析可以确定机械结构在一定
的频率范围内的振动特性,即结构的固有频
率和固有振型[3],找出振型变化最大点为疲劳分析点的选
分。为在 ANSYS 软件中能
全面施加约束和载荷,各受
力面采用 shell 63 单元模拟
与整个叶片 Solid 185 单元
以共结点的方式划分网格, 图 2 叶片网格单元的划分
根据实际旋转工况,用 rigid
刚性单元使叶片底面和涡轮旋转中心点刚性连接。相关
材料属性:杨氏模量 E=1.96×1011N/m2,泊松比 μ=0.3,密度
求解得到转子的前 8 阶固有频率见表 2。图 4 和图 5
分别给出叶片的前 2 阶弯曲模态振型。模态分析结果表
图 4 叶片Hale Waihona Puke 阶约束模态 图 5 叶片二阶约束模态
明叶片旋转工况激励频率与其固有频率相差较大,不会 产生共振。 4 疲劳寿命分析 4.1 各旋转工况的计算结果
根据燃气轮机的工作特点及工程中参数的变化规 律,按照燃气轮机调峰使用,每天工作运行 14h,每天工
叶身内面 76665 11.483 56.617 5.5405 58.03483
叶身外面 77368 14.186 114.76 31.091 119.7403 慢车
榫头接触面 72932 34.523 171.36 44.959 180.4921
振型变化最大点 77206 0.97893 1.0601 1.056 1.788086

涡轮振动模态及叠加应力计算

涡轮振动模态及叠加应力计算
- Equation :
s The force applied to the mass is proportional to body displacement x
F kx stiffness
- Solution :
Where :
kx 0 m x
xt A cos2 . f n .t
思考: 如何测试叶片固有频率?
4
振动基础
5
振动失效案例
The “Galloping Gertie“ First Tacoma Narrows Bridge collapse
November 7th, 1940
6
无阻尼自由振动
• Free vibrations without damping
- Applied force
-
at blade exducer near shroud contour This is a complex blade bending mode
Mode type is defined by max. displacement location
30
Blade vibratory stresses location
- Various types :
Constant excitation Harmonic excitation Spectrum excitation
F t F0 F t F0 cos.t
F t F0 Fi cosi..t i
27
涡轮模态及叠加应力计算
28
Blade mode shapes (2/3)
Mode 1 – 18.3kHz
• 1st exducer mode - Maximum displacement is located

涡轮增压技术及算法详解

涡轮增压技术及算法详解

涡轮增压技术103这篇文章涉及较多的涡轮技术,包括描述压缩机的部分特性曲线图、计算发动机的增压比和空气质量流量,怎样在特性曲线图上绘制点来帮助你选择合适的涡轮增压器。

把你的计算器放在手边吧。

一压缩机部分特性曲线图[1]压缩机特性曲线图是详细描述压缩机压缩效率、空气质量流量范围、增压性能和涡轮转速等性能特性的一种图表。

下面展示的是一幅典型的压气机特性曲线图:[2]增压比增压比()被定义为出口处绝对压力除以进口处绝对压力注:=增压比、P2c=压气机出口绝对压力、P1c=压气机入口绝对压力[3]在压气机入口和出口处使用绝对压力为计量单位非常有必要,一定要记住绝对压力的基础是14.7磅/平方英寸(在这个单位下“a”代表绝对压力)这被称为标准大气压力和标准情况。

[4]表压即计示压力(在计量单位为磅/平方英寸下“g”代表表压力)测量的是超过大气压力的大小,所以表压力在大气压力下应该显示为“0”。

增压表测量的岐管压力是相对于大气压力的,这就是表压力。

这对于决定压缩机出口处的压力是非常重要的。

比如说增压表上读出的12磅/平方英寸意味着进气歧管的压力高于标准大气压力12磅/平方英寸。

即:歧管压力26.7磅/平方英寸=12磅/平方英寸(表压力)+14.7磅/平方英寸(标准大气压力)[5]这个条件下的增压比就能计算了:(26.7磅/平方英寸[绝对压力])/14.7磅/平方英寸(标准大气压力)=1.82[6]然而这是在假定压气机入口处没有空气滤清器影响的情况下[7]在决定增压比的时候,压气机入口处的绝对压力时常比环境压力小,特别是在高负荷时。

为什么会这样呢?因为任何对空气的阻碍(这其中就包括空滤器管道的限制)都会对进气造成压力损耗,在决定增压比时,压气机上游的损耗都需要被计算。

这种压力损耗在某些进气系统上可能达到或超过1磅/平方英寸的表显压力。

在这种情况下压气机入口处压力应该如下取值:压气机入口绝对压力=14.7psia – 1psig = 13.7psia[8]带入最新的入口处压力进行增压比计算应该是下面这样(12 psig + 14.7 psia) / 13.7 psia = 1.95.[9]以上计算方法很好,但是如果你不是在标准大气压下呢?在这种情况下,在计算工式中简单地用真实的大气压力替代标准大气压力14.7psi能够使计算更精确。

基于ANSYS的某型航空发动机涡轮叶片的振动特性分析

基于ANSYS的某型航空发动机涡轮叶片的振动特性分析本文旨在对一款航空发动机的涡轮叶片进行振动特性分析,通过ANSYS软件进行模拟计算,以期评估其振动强度和工作寿命,为发动机设计提供参考。

1. 背景介绍与分析涡轮叶片作为航空发动机中的核心部件之一,其振动特性直接影响发动机的性能和寿命。

因此,在发动机设计中,对涡轮叶片的振动强度和稳定性进行分析和研究是至关重要的。

在本次分析中,我们将以某型航空发动机的涡轮叶片为例,通过ANSYS软件对其进行振动特性分析。

涡轮叶片的几何形状如图所示。

(图片)2. 建模与网格划分首先,在ANSYS中建立三维模型,采用SolidWorks导入到ANSYS平台。

接着,进行网格划分,采用四面体单元网格划分,设置裂纹控制等参数,进行网格剖分。

3. 材料选择与约束条件设置在建立模型和进行网格划分后,需要对涡轮叶片的材料进行选择,同时设定约束条件。

本次研究中,涡轮叶片的材料选用了镍基合金,其密度为8.28g/cm³,杨氏模量为210GPa,泊松比为0.3。

约束条件包括固定壳体支撑,在振动载荷下叶片不能有位移,不允许旋转。

4. 振动分析在进行建模、网格划分及设置约束条件之后,进入振动分析步骤。

本次分析采用动态分析法,采用隐式求解器求解其模态分析结果。

模态分析结果中包括杆件自然频率、振型形态和统计指标。

5. 计算结果与分析经过模拟计算,得出该涡轮叶片的前三阶固有频率为:335Hz、596Hz、916Hz。

下面就这些结果进行分析:1)自然频率随着振型的变化而变化。

而当达到某一频率时,就会发生共振现象,应引起足够的注意。

2)从涡轮叶片自然频率分析结果来看,其频率较高,工作在这样高的频率下容易导致疲劳断裂,从而出现永久性损坏,缩短了涡轮叶片的工作寿命,亦增加对机体的冲击力。

3) 在涡轮叶片的一些易损部位,比如根部区域,容易发生应力集中,导致应力低于叶片的材料极限从而使叶片疲劳失效。

基于ANSYS的压气机叶轮振动特性有限元仿真分析

基于ANSYS的压气机叶轮振动特性有限元仿真分析黄新忠;赵俊生【摘要】车用涡轮增压器的压气机叶轮常常因为振动而导致破坏,对压气机叶轮进行模态分析是避免叶轮与激振频率发生共振的常用手段,能有效避免因发生共振而导致的叶轮破坏问题.利用AN-SYS软件,采用子结构分析方法对压气机叶轮的中低阶固有频率进行了数值仿真计算,获得了不同转速和不同节径时的频率,并根据计算结果绘制了Campbell图,找出了与压气机叶轮固有频率产生共振的转速,为压气机叶轮的优化设计提供了依据,同时说明采用子结构分析的方法可以较精确地获得整体模型的低阶固有频率解.%The compressor impeller of the automotive turbocharger is often damaged by the vibration, while model analysis for the compressor impeller is a kind of common means to avoid resonance between the impeller and natural frequency,which can effectively avoid the damage caused by the resonance.Based on the software of ANSYS,the mid and low order nature frequency was simulated and calculated by the method of substructure,and the frequency of different speed and different nodal diameter were obtained.In addition, Campbell chart was drawn according to the results to find the resonance speed of the compressor impeller, which provided reference for optimal design of the compressor impellerAt the same time,the method of substructure was proved to be able to obtain accurately the low order natural frequency of whole model.【期刊名称】《机械设计与制造》【年(卷),期】2012(000)002【总页数】3页(P12-14)【关键词】压气机叶轮;振动特性;模态分析;子结构【作者】黄新忠;赵俊生【作者单位】中北大学机械工程与自动化学院,太原030051;中北大学机械工程与自动化学院,太原030051【正文语种】中文【中图分类】TH16;TK421.81 引言随着人们对内燃机强化要求的不断提高,涡轮增压已被公认为内燃机技术的主要发展方向之一。

微型燃机涡轮叶轮强度及振动特性计算分析

微型燃机涡轮叶轮强度及振动特性计算分析孙志江 于丽君 赵会琴沈阳黎明航空发动机(集团)有限责任公司技术中心燃气涡轮设计研究所,110043[ 摘 要 ] 本文采用大型有限元分析软件包ANSYS 5.7对某微型燃机涡轮叶轮强度及叶片振动特性进行了计算分析。

计算中采用的是三维实体有限元计算方法,通过实体建模、网格划分、加载边界条件、计算以及后处理等步骤得出涡轮叶轮关键部位的应力水平、安全系数、变形量以及叶片的Campbell 共振图。

[ 关键词 ] 有限元 布尔运算 边界条件 屈服极限 安全系数 振动特性 Campbell 共振图Calculation and Analysis on the Turbine Impeller Intensityand Vibrant Characteristic of a certain Micro-turbineSun Zhijiang Yu Lijun Zhao HuiqinShenyang Li Ming Aero-engine (Group) Co., Ltd., 110043[ Abstract ] A large type of limited element analysis software package ANSYS 5.7 is applied in calculation andanalysis on the impeller intensity and blade vibrant characteristic of a certain micro-turbine in this article. 3D-solid limited element method is used In calculation, by 3D modeling, meshing, loading edge condition, calculating and post-processing to get the stress level, safety factors, displacement of key position in turbine and Campbell resonance diagram of blade.[ Keyword ] Limited element Boolean calculation Edge condition Bending limit Safety factorVibrant characteristic Campbell resonance diagram1. 前言微型燃气轮机是一种能够为动力能源市场提供清洁、高质量动力能源的微型热力发电设备。

航空发动机涡轮盘应力分析张倩1汤旭1王天一1

航空发动机涡轮盘应力分析张倩1 汤旭1 王天一1发布时间:2023-06-02T09:11:01.305Z 来源:《中国科技人才》2023年6期作者:张倩1 汤旭1 王天一1[导读] 为研究航空发动机涡轮盘的应力情况,对涡轮盘进行应力分析研究,研究结构参数对周向应力、径向应力和等效应力的影响和变化规律。

结果表明:周向应力沿径向线性分布,但是随着温差的减小,直线拟合度越来越低;径向应力沿径向按二次曲线规律变化。

同时这也是涡轮盘优化设计、缩短结构与强度迭代周期必要的技术储备,可以为航空发动机涡轮盘的轻量化设计提供参考。

1. 中国航发沈阳发动机研究所沈阳 110015摘要:为研究航空发动机涡轮盘的应力情况,对涡轮盘进行应力分析研究,研究结构参数对周向应力、径向应力和等效应力的影响和变化规律。

结果表明:周向应力沿径向线性分布,但是随着温差的减小,直线拟合度越来越低;径向应力沿径向按二次曲线规律变化。

同时这也是涡轮盘优化设计、缩短结构与强度迭代周期必要的技术储备,可以为航空发动机涡轮盘的轻量化设计提供参考。

关键词:航空发动机;涡轮盘;应力分析Stress Analysis of Aero-engine Turbine DiskZHANG Qian1 TANG Xu1 WANG Tian-yi1(1. AECC Shenyang Engine Research Institution,Shenyang 110015,China)Abstract:In order to study the stress of aero-engine turbine disk,conduct stress analysis and research on the turbine disk,study the influence and variation rule of structural parameters on circumferential stress,radial stress and equivalent stress. The results show that:radial linear distribution of circumferential stress,however,as the temperature difference decreases,the straight-line fitting becomes lower and lower;radial stress changes along the radial direction according to a quadratic curve rule. At the same time,this is also a necessary technical reserve for optimizing the design of turbine disks and shortening the iteration cycle of structure and strength,which can provide a reference for lightweight design of aero-engine turbine disks.引言高压涡轮作为航空发动机的热端部件,长期处在高温、高负荷、高转速、大功率的工作环境下,工作条件十分苛刻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档