数学建模-(货物运输)
数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。
这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。
2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。
我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。
3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。
设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。
我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。
那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。
这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。
2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。
进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。
4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。
线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。
对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。
这些算法可以快速找到较好的解,但不能保证找到最优解。
常用的算法包括模拟退火算法、遗传算法等。
5. 应用领域运输问题在许多实际应用中都有广泛的应用。
例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。
数学建模-(货物运输)

1、某货物运输公司 5种型号的汽车. 由于运输条件,当地货源等各种因素,每种型号的汽车运输货物到不同城市所得的利润如表1.设一种汽车只能到一个城市,每个城市都只能要一种型号的汽车,应如 何安排发货?解:设ij x (i =1,2,3,4,5;j =1,2,3,4,5)i 为各种型号的汽车;j 为五个不同的城市。
ij x =0或1,(0不发往该城市,1为发往该城市)目标函数为:max z =2011x +1612x +1813x +2514x +3015x +2221x +1422x +1623x +1724x +2025x +3531x +2832x +1233x +1834x +2235x +4041x +3542x +3043x +1544x +2445x +2851x +2052x +1953x +1754x +2755x根据条件约束,“一种汽车只能到一个城市,每个城市都只能要一种型号的汽车”。
写出约束条件矩阵A=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1; 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0; 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ; 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0; 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0; 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]; 用MATLAB 编程为:c=[20 16 18 25 30 22 14 16 17 20 35 28 12 18 22 40 35 30 15 24 28 20 19 17 27] C=-cA=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 ;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1;1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0;0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ;0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0;0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0;0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ];b=[1,1,1,1,1,1,1,1,1,1];Aeq=[]beq=[]lb=zeros(25,1);VUB=ones(25,1);[x,fval]=linprog(C,A,b,Aeq,beq,lb,VUB)窗口运行为:>> c=[20 16 18 25 30 22 14 16 17 20 35 28 12 18 22 40 35 3015 24 28 20 19 17 27]C=-cA=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 ;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1;1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0;0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ;0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0;0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0;0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ];b=[1,1,1,1,1,1,1,1,1,1];Aeq=[]beq=[]lb=zeros(25,1);VUB=ones(25,1);[x,fval]=linprog(C,A,b,Aeq,beq,lb,VUB)c =Columns 1 through 2220 16 18 25 30 22 14 16 17 20 35 28 12 18 22 40 35 30 15 24 28 20Columns 23 through 2519 17 27C =Columns 1 through 22-20 -16 -18 -25 -30 -22 -14 -16 -17 -20 -35 -28 -12 -18 -22 -40 -35 -30 -15 -24 -28 -20Columns 23 through 25-19 -17 -27Aeq =[]beq =[]Optimization terminated.x =0.00000.00000.00001.00000.00000.00000.00001.00000.00000.00001.00000.00000.00000.00000.00000.00001.00000.00000.00000.00000.00000.00000.00000.00001.0000fval =-138.0000所以,最大利润为车辆1发往城市4、车辆2发往城市3、车辆3发往城市1、车辆4发往城市2、车辆5发往城市5 。
数学建模运输问题

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2
…
n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2
…
…
bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。
数学建模,线性规划,运输为问题

X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20
数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
数学建模-(货机装运lingo)

数学建模-(货机装运lingo)货机装运是指将货物从一个起点运输到一个终点,在这个过程中需要考虑到货物的重量、体积、运输方式等多种因素。
在货机装运过程中,一个关键问题是如何最大化运载效率,即在保证运输安全和合法的前提下,尽可能地提高货机的装载量,从而降低单位运输成本。
在数学建模中,可以使用lingo等工具进行货机装运的优化。
具体来说,可以将该问题抽象为一个数学模型,以最大化货机的装载量为目标函数,同时考虑到运输安全、货物重量、体积等约束条件。
下面以一个具体例子来说明如何使用lingo进行货机装运的优化:假设有一架货机,其载重量为10000公斤,可以装载两种货物A和B,每种货物的重量和体积如下:货物类型重量(公斤)体积(立方米)A 600 1.5B 400 0.8同时,从起点到终点的运输费用如下:货物类型运输费用(元/公斤)A 10B 15要求在保证运输安全和合法的前提下,最大化货机的装载量,即:subject to:A +B <= 10000(装载量不超过10000公斤)其中,A和B表示货机装载的货物A和B的数量,V是货机的装载体积,运输费用是由货物类型和运输距离等因素决定的,这里简化为一个固定值。
使用lingo进行求解的过程如下:1.首先,在lingo中创建一个新的模型文件,并定义目标函数和约束条件:2.对模型进行求解,并设置模型参数:model:solve;parameters:V = 15;end;在上述代码中,V表示货机的装载体积,这里假设为15立方米。
solve表示对模型进行求解,通过设置end来结束参数定义。
3.对求解结果进行分析和优化,例如考虑不同装载体积下的最优解:for V := 15 to 20 dobeginwriteln('Optimal value for V=',V,': ',model.obj);在以上代码中,for循环遍历不同的装载体积值(15到20),分别求解模型并输出优化结果。
运筹学 运输问题例题数学建模
运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。
运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。
本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。
同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。
运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。
在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。
这种情况下,上述数学模型可以直接应用。
产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。
这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。
这样就可以把问题转化为一个产销平衡的问题。
产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。
这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。
这样也可以把问题转化为一个产销平衡的问题。
弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。
数学建模在物流运输中的应用
数学建模在物流运输中的应用在现代物流运输中,数学建模起着至关重要的作用。
对于物流运输企业来说,一个高效而精确的物流系统可以大幅提升企业的效益和竞争力,而数学建模恰恰可以为企业提供这样的系统。
物流运输是一项大数据领域的应用,数学建模在这一领域的应用非常广泛。
在物流运输中,我们需要承担从采购、仓储、运输到销售全过程中的各种信息,包括订单信息、物流信息、库存信息、财务信息等等。
这些信息需要经过系统准确的处理和分析,以得到最优的方案。
数学建模在物流运输中的应用可以分为三个方面:第一,计算优化算法。
第二,建立预测模型。
第三,实时监测和控制模型。
首先,计算优化算法是物流运输中最重要的算法之一。
现在的物流运输大都需要运用路线计划、装载计划、配送计划、运输调度等优化算法。
这些算法可以锁定各个方面的关键点,如改进配送效率以及降低运输成本。
实际上,计算优化算法的应用是很广泛的,涵盖了物流运输、制造业、销售业、最优化问题及各个具体的案例等。
其次,建立预测模型是保持物流运输业务前瞻性的关键之一。
预测模型可以用来预测未来的需求或者预测客户的需求。
例如,物流运输企业可以根据销售预测模型来预测销售量的变化,进而调整他们的运输方案和制造计划。
此外,预测模型也可以用于预测采购或生产成本的变化,从而计划必要的资产投资。
最后,实时监测和控制模型关键在于运输物流业务连续监控。
实时监测和控制模型可以用于运输信息分析、推荐和预测。
例如:在条码扫描时提取出的数据,可通过现场运输进展增加一大批数据,以辅助推荐优化算法,提供全面且可靠的信息。
此外,实时监控和控制模型也是一种有效的提醒机制。
总的来说,数学建模是实现物流运输高效的必要工具。
通过计算优化算法、建立预测模型以及实时监测和控制模型,物流运输企业可以优化物流运输的效率和质量,进而提升企业竞争力和经济效益。
数学建模大赛-货物运输问题
货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。
我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。
针对问题一,我们在两个大的方面进行分析与优化。
第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。
第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。
最后得出耗时最少、费用最少的方案。
耗时为40.5007小时,费用为4685.6元。
针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。
我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。
耗时为26.063小时,费用为4374.4元。
针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。
我们经过简单的论证,排除了4吨货车的使用。
题目没有规定车子不能变向,所以认为车辆可以掉头。
然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。
最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨,则用6吨货车运输,若在7~8吨用8吨货车运输。
最后得出耗时最少、费用最省的方案。
耗时为19.6844小时,费用为4403.2。
一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。
路线是唯一的双向道路(如图1)。
货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。
物流装箱问题数学建模
物流装箱问题数学建模
物流装箱问题是指在物流运输过程中,如何合理地将货物装箱以最大限度地利用装载空间,并确保货物的安全和稳定。
这是一个复杂的问题,需要综合考虑货物的形状、尺寸、重量、数量以及运输工具的限制等因素。
数学建模可以帮助我们在物流装箱问题中找到最优的解决方案。
首先,我们可以将货物的形状和尺寸抽象为几何体,如长方体、圆柱体等。
然后,通过数学方法计算每个货物的体积,并根据运输工具的限制,确定每个装箱的容量。
接下来,我们可以将问题转化为一个优化问题,即如何在有限的容量内,最大化装载的货物总体积。
在数学建模过程中,我们可以利用线性规划、整数规划、动态规划等方法来求解最优解。
通过确定目标函数和约束条件,我们可以使用数学模型来找到最佳的装箱方案。
同时,我们还可以考虑一些实际问题,如货物的稳定性、避免堆叠过高、减少装卸时间等因素,来综合评估每个装箱方案的可行性。
此外,随着科技的发展,人工智能和机器学习等技术也可以应用于物流装箱问题的数学建模中。
通过对大量历史数据的分析和学习,我们可以提前预测不同类型货物的运输需求,并自动优化装箱方案,提高装箱效率和节省运输成本。
总之,物流装箱问题数学建模是一个复杂且具有挑战性的问题。
通过运用数学方法和相关技术,我们可以找到最优解决方案,提高装箱效率,减少物流成本,提升物流运输的整体效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某货物运输公司 5种型号的汽车. 由于运输条件,当地货源等各种因素,每种型号的汽车运输货物到不同城市所得的利润如表1.设一种汽车只能到一个城市,每个城市都只能要一种型号的汽车,应如 何安排发货?
解:设ij x (i =1,2,3,4,5;j =1,2,3,4,5)i 为各种型号的汽车;j 为五个不同的城市。
ij x =0或1,(0不发往该城市,1为发往该城市)
目
标
函
数
为
:
max z =2011x +1612x +1813x +2514x +3015x +2221x +1422x +1623x +1724x +2025x +3531x +2832
x +1233x +1834x +2235x +4041x +3542x +3043x +1544x +2445x +2851x +2052x +1953x +1754x +27
55x
根据条件约束,“一种汽车只能到一个城市,每个城市都只能要一种型号的汽车”。
写出约束条件矩阵A=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1; 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0; 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ; 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0; 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0; 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]; 用MATLAB 编程为:
c=[20 16 18 25 30 22 14 16 17 20 35 28 12 18 22 40 35 30 15 24 28 20 19 17 27] C=-c
A=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1;
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0;
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ;
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0;
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0;
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ];
b=[1,1,1,1,1,1,1,1,1,1];
Aeq=[]
beq=[]
lb=zeros(25,1);
VUB=ones(25,1);
[x,fval]=linprog(C,A,b,Aeq,beq,lb,VUB)
窗口运行为:
>> c=[20 16 18 25 30 22 14 16 17 20 35 28 12 18 22 40 35 30
15 24 28 20 19 17 27]
C=-c
A=[1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1;
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0;
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 ;
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0;
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0;
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ];
b=[1,1,1,1,1,1,1,1,1,1];
Aeq=[]
beq=[]
lb=zeros(25,1);
VUB=ones(25,1);
[x,fval]=linprog(C,A,b,Aeq,beq,lb,VUB)
c =
Columns 1 through 22
20 16 18 25 30 22 14 16 17 20 35 28 12 18 22 40 35 30 15 24 28 20
Columns 23 through 25
19 17 27
C =
Columns 1 through 22
-20 -16 -18 -25 -30 -22 -14 -16 -17 -20 -35 -28 -12 -18 -22 -40 -35 -30 -15 -24 -28 -20
Columns 23 through 25
-19 -17 -27
Aeq =
[]
beq =
[]
Optimization terminated.
x =
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
fval =
-138.0000
所以,最大利润为车辆1发往城市4、车辆2发往城市3、车辆3发往城市1、车辆4发往城市2、车辆5发往城市5 。
最大利润为138元。
不足之处还请见谅。