土力学课件清华大学第四章
土力学课件清华大学变形与强度工管

pmax F G M
pmin
bl
W
M (N G)e
W bl2 6
e M N G
pmax pmin
F G bl
1
6e l
土力学与地基基础
若 pmin 0
pmax
2(F G) 3ab
3 土的压缩性与地基沉降计算
土力学与地基基础
3.5.3 基础底面附加压力
础自重计算的基底均布压力为140kPa。试求基础中心O点下
及A点下、H点下z=1m深度处的竖向附加应力。
【解】 (1)先求基底净压力(基底附加压力) pn,由已知条件知
pn=p-γod=140-18×0.5=131kPa
(2)求O点下1m深处地基附加应力σzo。 O点是矩形面积OGbE,OGaF,OAdF,
OAcE的共同角点。这四块面积相等,长
度l、宽度b均相同,故其附加应力系数αc 相同。根据l,b,z的值可得
土力学与地基基础
3 土的压缩性与地基沉降计算
l/b=2 /1=2;z /b=1/1=1;查表得
Ks=0.1999,所以σzo=4 αcpn
=4×0.1999 ×131=104.75kPa
(3)求A点下1m深处竖向附加应力σzA
3.3 侧限条件下土的压缩性
3.3.1 侧限压缩试验
(1)试验仪器
——压缩仪(Oedometer)
(2)试验方法 (3)试验结果
●变形在各级荷载下都可趋于稳定 ●变形随荷载的增大而逐渐增大 ●孔隙比随荷载的增大而逐渐减小
土力学与地基基础
3 土的压缩性与地基沉降计算
(4)垂直压缩变形量(Vertical compression deformation)
(清华大学土力学1)PPT课件-第四章-土的压缩性与地基沉降计算

§4.2 土的压缩性测试方法
室内试验
• 侧限压缩试验 • 三轴压缩试验 • 其他特殊试验
现场试验
• 荷载试验 • 旁压试验
一维问题 三轴应力状态
土的变形特性测定方法
§4.2 土的压缩性测试方法
常用试验类型
类型
固结 排水
施加 3
固结
固结 不排水
固结
不固结 不排水
不固结
施加 1-3 排水
不排水
不排水
压缩曲线上
过D点作斜率为Ce的直线DB,
DB为原位再压缩曲线
以0.42e0在压缩曲线上确定C
点,BC为原位初始压缩曲线
DBC即为所求的原位再压缩和
压缩曲线
超固结土原位再压缩曲线的推求
§4.3 一维压缩性及其指标
- p(或)曲线 e – p(或)曲线 e – lgp(或lg)曲线
由侧限压缩试 验整理得到的 三条常用曲线
d
d
客观存在的,无法直接得到
超固结土: 水位上升
土层剥蚀
引起卸载, 使土处于
冰川融化 回弹状态
f
p(lg)
原状土的原位再压缩曲线: 客观存在的,无法直接得到
原位压缩及原位再压缩曲线
§4.3 一维压缩性及其指标
基本假定: 取样后不回弹,即土样取出后孔隙比保持不 变,(e0,s)点位于原状土初始压缩或再压缩 曲线上 压缩指数Cc和回弹指数Ce为常数 试验曲线上的0.42e0点不受到扰动影响,未 受扰动的原位初始压缩曲线也应相交于该点
1 3
1
1
Et
Ei
p e
1
固结排水试验
§4.2 土的压缩性测试方法
固结容器:
环刀、护环、导环、透水 石、加压上盖和量表架等
土力学课件清华大学.ppt

▪应变条件
y x 0;
xy yz zx 0
▪应力条件
xy yz zx 0;
x y;
x
x E
E
y z
0;
x y 1 z K0z;
▪独立变量 z , z F(z)
K0:侧压力系数
ij =
0 x 0xy 0xz 0yx 0 y 0yz
第三章
土体中的应力计算
§3 土体中的应力计算
地基中的应力状态 应力应变关系 土力学中应力符号的规定
强度问题 变形问题
应力状态及应力应变关系
自重应力 附加应力
建筑物修建以前,地基 中由土体本身的有效重 量所产生的应力。
基底压力计算 有效应力原理
建筑物修建以后,建筑物 重量等外荷载在地基中引 起的应力,所谓的“附加” 是指在原来自重应力基础 上增加的压力。
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
•与围压有关
•非线性
•剪胀性
v
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
应力应变关系-以某种粘土为例
u
§3 土体中的应力计算 §3.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (1)常规三轴试验 a) 固结排水试验
施加围压,排水阀门始终打开, 充分固结
施加(1 -)时,排水阀门始终 打开,速度慢足以使孔压消散
土力学第四章课件

土力学第四章课件一、压缩性四、地基压缩变形量指在竖向附加应力作用下,地基土层产四、本章主要内容一、固结试验(一)室内压缩试验土的室内压缩试验,是研究土压缩性的最基本的方法。
室内压缩试验采用的试验。
试验时将切有土样的环刀置于刚性护环常规压缩试验通过逐级加荷进行试验,常V v=e0HiV v=e i(二)压缩曲线e二、压缩性指标1、压缩系数aαtan =a eΔ=e压缩系数数值越大,土的压缩性越高压缩系数a 值与土所受的荷载大小有关。
工程中一般采用100~200 kPa 压力区间内2、压缩指数C c当采用半对数的直角坐标来绘制室内侧e Δe e ?e3、压缩模量E s根据e -p 曲线,可以得到另一个重要V =e ?Hp 2V =ee e ?∴1121(e ΔH Δ例4-1一饱和粘性土样进行室内压缩试验,已知土样的原始高度为20mm,初始e e 解:(1)计算孔隙比及(2)计算压缩系数并评价该土的压缩性21?a 土在完全侧限的条件下体积应变?4、体积压缩系数m v反压重物三、土的变形模量(一)浅层平板载荷试验及应力变形曲线1-载荷板2-千斤顶3-百分表4-平台反力梁千斤顶基准梁荷载板百分表地基土现场载荷试验p -s 曲线(二)变形模量变形模量计算公式:由于土体不是完全弹性体,加上二种试验*一、分层总和法(二)假设1、每一薄层的附加应力为直线分布;(三)计算公式pσΔppEΔΔQ(四)计算步骤1.地基土分层;4.计算各分层界面处基底中心下竖向附加应力及每一薄层平均附加应力;7.确定地基沉降计算深度(或压缩层下限);8.计算各薄层土的压缩量s i; Hp1i—第i层土自重应力平均值;p—第i层土自重应力平均值与附加应力例题4-2尺寸为4m×2m,上部结构的荷载F=1168kN,地基基础剖面及有关计算指标如图4-12及图4-13所示,试用分层总和法计算地基最终沉降量。
(P132)解:(1)地基分层:粘土与粉质粘土的分界面及地下水位面须作为计算分层面,同时各分层土(3)地基附加应力的计算①计算基底附加压力nzσσ(4)确定地基沉降计算深度一般按≤0.2的要求确定沉降计算深度。
土力学课件

①在稳定坡角时的临界高度:
H cr =KH = 1.2×5=6m
【解答】
稳定因数:9
.80
.1268.17=⨯==c H N cr
s γ由ϕ=15°,N s = 8.9查图得稳定坡角= 57°
②由β=60°,ϕ=15°查图得泰勒稳定数N 为8.6 6.80.128.17=⨯==
库伦理论假定破坏面为一平面,而实际上为曲面。实践证明,计算的主动土压力误差不大,而被动土压力误差较大。
地面荷载作用下的土压力
第八章土坡稳定分析
主要内容
无粘性土土坡稳定分析
粘性土土坡稳定分析
土坡稳定分析中有关问题*
土坡稳定概述天然土坡人工土坡
由于地质作用而
自然形成的土坡
在天然土体中开挖
或填筑而成的土坡坡底坡脚坡角
一、概述
土压力:
挡土结构背后土体的自重或外荷载在结构上产生的侧向作用力。
自重土压力
墙后墙前墙顶
墙底(基底)墙趾
墙跟(踵)
墙
背刚性结构和柔性结构
墙
面
三、Rankine 土压力理论(1857
)
William John Maquorn Rankine
(1820 -1872)
土力学热力学
英国科学家
ττ=
二、地基中的应力计算
地基假设为:
半无限体
弹性
均质
各项同性
地基
如考虑
3. 基底的接触压力
•刚性基础
•柔性基础
•绝对柔性基础
Valentin Joseph Boussinesq(1842-1929)
土力学课件(清华大学)

载力;还可评定砂土的震动液化势。标准贯 入试验适用于砂性土与粘性土。
第十二页,共102页。
地基4勘触探 探 动力触探和静力触探
(1) 动力触探
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距,贯入深度
30cm的击数, N 63.5
(1) 动力触探Dynamic Penetration
管状探头 标准贯入试验SPT, 63.5 kg, 76cm距, 贯入深度30cm的击数, N 63.5
锥状探头
轻型10 kg, 50cm落距,贯入深度30cm
中型 28kg 重型 63.5kg 碎石,砾石地层
特重型 120kg
第九页,共102页。
• 单桥探头 端部Ps=Q/A 比贯入阻力
双桥探头 端部和侧壁
• 土的密实度
• 压缩性
• 强度
• 桩和地基的承载力
电缆 传感器
传感器 传感器
单桥探头
第十五页,共102页。
双桥探头
地基勘探
示意图
静力触探是可以迅速、连续的反映土质变化 划分土层, 承载力、 压缩性、不排水抗剪强度、砂土密实度等 静力触探适用于粘性土和砂类土
第十六页,共102页。
地基勘探
5 现场试验 In situ testing
十字板 Vane Shear-饱和软粘土 载荷板试验Loading Plate-深浅均可 旁压仪 Pressuremeter -较深地基
第十七页,共102页。
地基勘探
十字板
F
F Mmax=F×D
f
Mmax D2 D
H
2. 极限承载力pu
清华大学版土力学(课堂PPT)
u(tz )4 ,πp i 1si n m 2πH π ex p m 2 π 4 2 T v m=1,3,5,7······
Tv
Cv H2
t
时间因数
反映孔隙水压力的消散程度-固结程度
固结度
固结度
0.0 0.2 0.4
1
0.6 0.8 1.0
0.001
2
3 透水边界
渗 流
不透水边界
孔压系数
土体在不排水和不排气条件下,由外荷载 引起的孔隙压力增量与应力增最的比值。
固结过程孔压系数的变化
外荷载 附加应力σz
土骨架:有效应力
孔隙水:孔隙水压力
应力历史
土在其形成的地质年代中所经受的应力变 化情况称为应力历史。
土的压缩性的地基沉降计算
固结
饱和土压缩的全过程叫做土的固结
土的固结状态
土力学重点知识点
土的三相性
土的物理性质指标
1)土的密度、重度 2)土粒的比重 3)土的饱和度 4)土的含水量 5)土的孔隙比和空隙率
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
(1)层状构造;(2)分散构造;(3)裂 隙构造(4)结核状构造
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
2
2
1f
450+/2
450+/2
c O 3
1f
图5-7 土的破裂面确定
挡土结构物上土压力
三种土压力的大小关系
静止土压力对应于图中A点,墙位移为0,墙后土体处于弹性 平衡状态 主动土压力对应于图中B点,墙向离开填土的方向位移,墙 后土体处于主动极限平衡状态 被动土压力对应于图中C点,墙向填土的方向位移,墙后土 体处于被动极限平衡状态
清华大学版土力学ppt课件
土的三相性
土的物理性质指标
1)土的密度、重度 2)土粒的比重 3)土的饱和度 4)土的含水量 5)土的孔隙比和空隙率
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
(1)层状构造;(2)分散构造;(3)裂 隙构造(4)结核状构造
土的结构与构造
(1)单粒结构;(2)蜂窝结构;(3)絮 状结构
时间因数
曲线1 曲线2 曲线3
1
沉降与时间的关系
t
Tv
Cv H2
t
U t=1
8
2
e
4
2
Tv
( 1)
St UtS
沉降与时间的关系
Ut
St S
从 Ut 查表(计算)确定 Tv
t Tv H 2 Cv
土的抗剪强度
莫尔库伦破坏理论要点
1.破坏面上,材料的抗剪强度是法向应力的函数。
f f ( )
流砂与管涌
当动水力足够大时,会将土体冲起,造成 破坏。当动水力梯度大于土的浮重度时, 土体被水冲起的现象,称为流土
当土体颗粒级配不连续时,水流可将土体 粗粒孔隙中充填的细粒土冲走,破坏土的 结构,这种作用称作管涌。
流土与管涌的区别
土体中的应力计算
地基中的自重应力及分布规律
地面
z
σsz=γz
地面
(d)确定计算深度zn
自重应力
(e)地基分层Hi
(f)计算每层沉降量Si
p
d p0
szi zi
d
基底
Hi
附加应力
(g) 各层沉降量叠加
沉降计算深度
30
用e-p曲线计算
地面
p
土力学课件清华大学绪论工管
土力学与地基基础
0 绪论
0.1.2 地基和基础 (1)建筑物组成:上部结构、基础和地基,是一整体
上部结构 基础
(a)水闸
(b)柱子
地基
土力学与地基基础
0 绪论
阿联酋迪拜全 球最高的“哈 利法塔 -迪拜 大厦”,162层, 高818m。
土力学与地基基础
0 绪论
918米长的马格德堡水桥位于德国柏林附近的马格德堡,历时6 年,花费5亿欧元建成。确切说它是一座跨越易北河的渠道桥,
0.2.2 国内外工程事故示例
0.2.2.1 变形
Ref:《建筑地基基础设计规范GB50007-2011》
地基变形特征: ●沉降量
●沉降差
●倾斜
●局部倾斜
0 绪论
土力学与地基基础
(1)倾斜
比萨斜塔
0 绪论
8层55m 直径16m 偏离中心5.27m 倾斜5.5度 修建时间: 1173~1370
●高耸结构 ●地基持力层为 粉砂、下面为粉 土和粘性土;粘 土由南向北变薄
(2)适用范围:砂土、一般粘性土
土力学与地基基础
1.5.4.2 动水力(渗透力)
(1)土颗粒对水流的阻力 F whA
(2)总渗透力为渗透水流
作用在土颗粒上的力,大 小为
J F whA
(3)渗流作用于土骨架单位
体积上的力(单位体积 渗流
力GD、j)为
●大小:
j
J V
whA
●地基的下卧层:持 力层下受荷载影响较 小的土层。
基础
基础底面
附加应力分布 地基持力层 影响深度 地基
地基下卧层 附加应力大小
●天然地基和人工地基
土力学与地基基础
土力学课件(清华大学)土力学绪论
什么是土?
土及土力学有哪些特点? 为什么要学习土力学? 土力学包括哪些内容? 如何学好土力学?
一般固体: 液体: 土体(散粒体):
可保持固定的形状
不具有特定的形状
具有一定但不固 定的形状
土体的特点
碎散性
岩石风化或破 碎的产物,是 非连续体
• 受力以后易变形,强度低 • 体积变化主要是孔隙变化 • 剪切变形主要由颗粒相对 位移引起
连续墙并对塔周围与塔基进行钻 孔注浆和打设树根桩加固塔身。
1986年:开工 1990年:人工岛完成 1994年:机场运营 面积:4370m×1250m
填筑量:180×106m3
平均厚度:33m
世界最大的人工岛
日本 关西机场
关西机场
问题:沉降大且不均匀
• 设计沉降:5.7-7.5 m
• 完成时(1990年)实际沉降: 8.1 m,5cm/月 • 预测主固结需:20年 • 比设计多超填:3m
可归结为与土有关的 渗透问题
案例总结(三)
土工结构物或地基
强度问题 变形问题 渗透问题
土
强度特性 变形特性 渗透特性
土力学可以解决工程实践问题,这正是土力学存 在的价值以及我们学习土力学的目的。
学习土力学的目的
课程绪论:土力学及其特点
什么是土?
土及土力学有哪些特点? 为什么要学习土力学? 土力学包括哪些内容? 如何学好土力学?
土壤在自然界的位置
土壤带 腐殖质层 淀积层 母质层
土壤有非常复杂的形成过程,并具有独特 的层状构造。土壤剖面一般包含枯枝落叶 层、腐殖质层、淀积层和母质层四个基本 层次。 传统岩土工程的范畴 风化、搬运、沉积 土壤 地质大循环:岩石 地质成岩作用 生物小循环: 生物活动所造成的土壤 有机质的循环
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
建筑物立面高差过大
建筑物过长:长高比7.6:1
§4土的压缩性与地基沉降计算
概述
土具有压缩性 荷载作用 地基发生沉降
荷载大小 土的压缩特性
一致沉降 差异沉降 (沉降量) (沉降差)
建筑物上部结构产生附加应力
地基厚度
土的特点 (碎散、三相)
第四章
土的压缩性与 地基沉降计算
§4土的压缩性与地基沉降计算
工程实例
问题: 沉降2.2米, 且左右两部分 存在明显的沉 降差。左侧建 筑物于1969年 加固。
墨西哥某宫殿
左部:1709年;右部:1622年;地基:20多米厚的粘土
Kiss
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起阳台裂缝
沉降 速率
一维固结 三维固结 §4.4 饱和土体的渗流固结理论
主线、重点:
一维问题!
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 §4.2 一维压缩性及其指标 §4.3 地基的最终沉降量计算 §4.4 饱和土体的渗流固结理论
§4土的压缩性与地基沉降计算 §4.1 土的压缩性测试方法
一、侧限压缩试验及其应力-应变关系(复习)
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标 一、e - σ′曲线
e
a e 压缩系数,KPa-1
1.0
'
a1-2常用作 比较土的压 缩性大小
0.9
0.8 e
'
0.7
0.6 0 100 200 300 400
'(kPa )
土的类别 a1-2 (MPa-1)
高压缩性土
0.5
中压缩性土 0.1-0.5
低压缩性土
<0.1
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标 一、e - σ′曲线
单向压缩试验的各种参数的关系
指标
指标
a
a
1
mv
a/(1+e0)
Es
(1+e0)/a
mv
Es
mv(1+e0) 1
1/mv
(1+e0)/Es 1/Es 1
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标
§4.1 土的压缩性测试方法及应力应变关系 四、荷载试验与旁压试验
自学
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 §4.2 一维压缩性及其指标 §4.3 地基的最终沉降量计算 §4.4 饱和土体的渗流固结理论
§4土的压缩性与地基沉降计算 §4.2 一维压缩性及其指标
一、e -σ′曲线 二、e - lgσ′曲线 三、先期固结压力 四、原位压缩曲线及原位再压缩曲线
•施加荷载,静置至变形稳定 •逐级加大荷载
试验结果:
测定: 轴向应力 轴向变形
百分表
P
Se
e0
p2
p1
e1
e2 s2
s1
t s3
e3
t
透水石
传压板 水槽 环刀 内环
试样
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 一、侧限压缩试验及其应力-应变关系
应力应变关系-以某种粘土为例
z p
非线性 弹塑性
施加σ3时 固结 固结 不固结
施加σ1-σ3时 量测
排水
体变
不排水 孔隙水压力
不排水 孔隙水压力
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 二、三轴压缩试验及其应力-应变关系
应力应变关系 -以某种粘土固结排水试验为例
•与围压有关
•非线性
•弹塑性 •剪胀性
v
§4土的压缩性与地基沉降计算
1 Ee
1 Es
z
e0 (1e0)
侧限变形模量:
Es
z z
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 二、三轴压缩试验及其应力-应变关系(复习)
轴向加压杆
测定:
有机玻璃罩
顶帽 压力室
轴向应变 轴向应力 体变或孔隙水压力
பைடு நூலகம்橡皮膜
试
样
透水石 量测体变或
孔隙水压力
排水管
压力水
阀门
类型 固结排水 固结不排水 不固结不排水
体应变主要是由于孔隙体积变化引起的; 剪应变主要是由于土颗粒的大小和排列形态变化引起的。
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法 三、普遍应力-应变关系及本构模型
2.土的本构模型
1 3 f 1
E
线弹性-理想塑性 1
1 3 1 2
非线性弹性 1
1 3 4
1
32
弹塑性
1
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标
三、先期固结压力
先期固结压力:历史上所经受到的最大压力p(指有效应力)
s= z:自重压力 p= s:正常固结土 p> s:超固结土 p< s:欠固结土
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标
一、e - σ′曲线
e
1.0
0.9
0.8
0.7 0.6
0 100 200 300 400
'(kPa )
eie0(1e0)S i/H 0
P
Se
e0
p2
p1
t
e1 e2 s 2
s3
s1
e3
t
§4土的压缩性与地基沉降计算
§4.2 一维压缩性及其指标 一、e - σ′曲线
二、e - lgσ′曲线
e-σ′曲线缺点: 不能反映土的应力历史
1
e
Cc
特点:有一段较长的直线段
0.9
0.8 1 Ce
指标:
Cc
e (lg ')
压缩指数
0.7
Ce 回弹指数(再压缩指数)
0.6
Ce << Cc,一般Ce≈0.1-0.2Cc
100
1000 '(kPa, lg)
§4土的压缩性与地基沉降计算
§4.1 土的压缩性测试方法
三、普遍应力-应变关系及本构模型 1. 土变形的物理机制(原因)
土受力以后为什么会表现出上述变形特性?
——土的特殊性
✓ 接触点处弹性变形
▪
弹性变形
✓ ✓
弹性挠曲变形 颗粒滚爬的可逆性
✓ 封闭气泡受压
✓ 大孔隙消失
▪
塑性变形
✓ ✓
接触点颗粒破碎 颗粒相对滑移
✓ 扁平颗粒断裂
e
a e
压缩系数,KPa-1,MPa-1
1.0
'
0.9
0.8 e
Es
' z
侧限压缩模量,KPa ,MPa 侧限变形模量
'
0.7 0.6
e
z
1 e0
0
100
200 300 400
'(kPa )
Es
1
e0 a
e0 e 1
孔隙 固体颗粒
mv
1 Es
a 1e0
体积压缩系数, KPa-1 ,MPa-1
沉降具有时间效应-沉降速率 影响结构物的安全和正常使用
§4土的压缩性与地基沉降计算 概述
压缩性 测试
室内试验
室外试验
侧限压缩、三轴压缩等 荷载试验、旁压试验等
§4.1 土的压缩性测试方法
较复杂应 力状态?
最终 沉降量 一维压缩
简化条件
§4.2 一维压缩性及其指标
修正 复杂条件下的计算公式
§4.3 地基的最终沉降量计算