高中数学 第二章平面向量测试题 新人教版必修4

合集下载

人教版高一数学必修4第二章平面向量测试题(含答案)

人教版高一数学必修4第二章平面向量测试题(含答案)

必修4 第二章平面向量检测参考答案一、选择题:1C、2C、3A、4C、5D、6B、7C、8B、9D、10A、11C、12C、二. 填空题6 5 3 5 6 5 3 513 (1,3).14 28 15 (,)或(,)5 5 5 516 (5,3)17 2 35三. 解答题:18、(1)∵AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2 AB +AC =2(-1,1)+(1,5)=(-1,7)∴|2 AB +AC | = 2 7 2( 1) =50 .(2)∵| AB| =( 1)2 12 = 2 .| AC | =12 52 =26,AB·AC =(-1)×1+1×5=4.∴cos =AB AC| AB | | AC | =42=2 261313.(3)设所求向量为m =(x,y),则x2+y2=1.①又BC =(2-0,5-1)=(2,4),由BC⊥m ,得2 x +4 y =0.②2 5 2 5x x-5 5 由①、②,得或∴(5 55 5y.y.255,-52)或(-555,55)即为所求.19.由题设, 设b= , 则由, 得. ∴,解得sin α=1 或当sin α=1 时,cosα=0;当时,。

故所求的向量或。

2 b ka t b20.解:(1), 0. [( 3) ] ( ) 0.x y x y 即 a t2 22a b 0,a 4,b 1,4k t(t 3) 0,即k 142t(t 3).(2)由f(t)>0, 得1 2t(t 3) 0,即t(t 3) (t 3)0,则 3 t 0或4t 3.必修4 第二章平面向量检测参考答案一、选择题:1C、2C、3A、4C、5D、6B、7C、8B、9D、10A、11C、12C、二. 填空题6 5 3 5 6 5 3 513 (1,3).14 28 15 (,)或(,)5 5 5 516 (5,3)17 2 35三. 解答题:18、(1)∵AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2 AB +AC =2(-1,1)+(1,5)=(-1,7)∴|2 AB +AC | = 2 7 2( 1) =50 .(2)∵| AB| =( 1)2 12 = 2 .| AC | =12 52 =26,AB·AC =(-1)×1+1×5=4.∴cos =AB AC| AB | | AC | =42=2 261313.(3)设所求向量为m =(x,y),则x2+y2=1.①又BC =(2-0,5-1)=(2,4),由BC⊥m ,得2 x +4 y =0.②2 5 2 5x x-5 5 由①、②,得或∴(5 55 5y.y.255,-52)或(-555,55)即为所求.19.由题设, 设b= , 则由, 得. ∴,解得sin α=1 或当sin α=1 时,cosα=0;当时,。

人教新课标版数学 高一人教A版必修4 第二章 平面向量 单元测试

人教新课标版数学 高一人教A版必修4 第二章 平面向量 单元测试

(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .若a ∥b ,则a 与b 方向相同或相反B .零向量是0C .长度相等的向量叫做相等的向量D .共线向量是在同一条直线上的向量解析:选B.对A ,a 与b 若其中一个为0,不合题意,错误.对B ,零向量是0,正确;对C ,方向相同且长度相等的向量叫做相等向量,错误;对D ,共线向量所在直线可能平行,也可能重合,错误.故选B.2.已知向量a =(3,4),b =(2,-1),如果向量a +λb 与b 垂直,则λ的值为( )A.52 B .-52 C.25 D .-25 解析:选D.∵a =(3,4),b =(2,-1), ∴a·b =2,|b |= 5.若a +λb 与b 垂直, 则(a +λb )·b =a·b +λb 2=2+5λ=0.∴λ=-25,故选D.3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12)C .(3,2)D .(1,3)解析:选A.设点D (m ,n ), 则由题意知,(4,3)=2(m ,n -2),∴⎩⎪⎨⎪⎧2m =4,2n -4=3,解得m =2,n =72,∴D (2,72),故选A.4.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120°C .60°D .30°解析:选B.设向量a ,b 的夹角为θ, ∵a +b =c ,∴(a +b )2=c 2,a 2+b 2+2a·b =c 2, ∴|a |2+|b |2+2|a ||b |cos θ=|c |2. ∵|a |=|b |=|c |,∴cos θ=-12,∴θ=120°.5.设a ,b 是非零向量,若函数f (x )=(x a +b )·(a -x b )的图象是一条直线,则必有( ) A .a ⊥bB .a ∥bC .|a |=|b |D .|a |≠|b |解析:选A.f (x )=(x a +b )·(a -x b )=-a·b x 2+(a 2-b 2)x +a·b , 若函数f (x )的图象是一条直线,那么其二次项系数为0, ∴a·b =0,∴a ⊥b ,故选A.6.设点M 是线段BC 的中点,点A 在直线BC 外,如果BC →2=16,|AB →+AC →|=|AB →-AC→|,那么|AM →|等于( )A .8B .4C .2D .1解析:选C.∵BC →2=16,∴|BC →|=4.又∵|AB →-AC →|=|CB →|=4,∴|AB →+AC →|=4.∵M 为BC 的中点,∴AM →=12(AB →+AC →).∴|AM →|=12|AB →+AC →|=2.7.已知向量a ,b 满足|a |=1,|b |=2,|2a +b |=2,则向量b 在向量a 方向上的投影是( )A .-12B .-1C.12D .1 解析:选B.由投影的定义可知,向量b 在向量a 方向上的投影是|b |cos θ(θ为a 与b 夹角).由|2a +b |=2得4|a |2+4a·b +|b |2=4.∵|a |=1,|b |=2,∴a·b =-1,即|b |cos θ=-1.8.在△ABC 中,AB =BC =3,∠ABC =60°,AD 是边BC 上的高,则AD →·AC →的值等于( )A .-94 B.94C.274 D .9 解析:选C.分别以BC ,AD 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,根据已知条件可求得以下几点坐标:A (0,332),D (0,0),C (32,0),∴AD →=(0,-332),AC →=(32,-332),∴AD →·AC →=274.故选C.9.在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19B.13 C .1D .3解析:选B.如图,因为AN →=12NC →,AP →=mAB →+29AC →=mAB →+29×3AN →=mAB →+23AN →,又B ,P ,N 三点共线,所以m +23=1,则m =13.10.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A,1),q =(1,-cos B ),则p 与q 的夹角是( )A .锐角B .钝角C .直角D .不确定解析:选A.∵△ABC 为锐角三角形,∴A +B >π2,∴A >π2-B ,且A ,B ∈(0,π2),∴sin A >sin(π2-B )=cos B ,∴p·q =sin A -cos B >0,故〈p ,q 〉为锐角.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上) 11.已知向量a ,b 的夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 解析:因为|2a -b |=10,所以|2a -b |2=(2a -b )2=4a 2-4a·b +b 2=10,即|b |2-22|b |-6=0,解得|b |=3 2.答案:3 2 12.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析:设a =(x ,y ),x <0,y <0,则x -2y =0且x 2+y 2=20,解得x =-4,y =-2,即a =(-4,-2).答案:(-4,-2)13.已知直角坐标平面内的两个向量a =(1,3),b =(m,2m -3),使平面内的任意一个向量c 都可以唯一的表示成c =λa +μb ,则m 的取值范围是________.解析:∵c 可唯一表示成c =λa +μb ,∴a 与b 不共线,即2m -3≠3m .∴m ≠-3. 答案:{m |m ∈R ,m ≠-3}14.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.解析:由题意可得AB →·AD →=|AB →|·|AD →|cos 120°=2×2×(-12)=-2,在菱形ABCD 中,易知AB →=DC →,AD →=BC →,所以AE →=AB →+BE →=AB →+13AD →,AF →=AD →+DF →=1λAB →+AD →,AE →·AF →=(AB →+13AD →)·(1λAB →+AD →)=4λ+43-2(1+13λ)=1,解得λ=2.答案:215.已知|a |=|b |=2,且a 与b 的夹角为60°,若a +b 与a 的夹角为α,a -b 与a 的夹角为β,则α+β=________.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作平行四边形OACB ,则OC →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a ,因为|a |=|b |=2,且∠AOB =60°,所以△OAB 为正三角形,∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°,所以α+β=90°.答案:90°三、解答题(本大题共5小题,每小题10分,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)16.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.解:设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6).因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别是(0,4),(-2,0),从而CD →=(-2,-4). 17.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a·b -3b 2=61,即64-4a·b -27=61,∴a·b =-6.设向量a 与b 的夹角为θ,则cos θ=a·b |a ||b |=-64×3=-12.∵0°≤θ≤180°, ∴θ=120°. (2)|a +b |=a 2+2a·b +b 2=16+2×(-6)+9=13,|a -b |=a 2-2a·b +b 2=16-2×(-6)+9=37.18.在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.解:(1)AB →=(3,5),AC →=(-1,1),求两条对角线的长,即求|AB →+AC →|与|AB →-AC →|的大小. 由AB →+AC →=(2,6),得|AB →+AC →|=210. 由AB →-AC →=(4,4),得|AB →-AC →|=4 2.∴两条对角线的长分别为210,4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2,易求AB →·OC →=-11,OC →2=5,∴由(AB →-tOC →)·OC →=0,得t =-115.19.在四边形ABCD 中,AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3).(1)若BC →∥DA →,求x 与y 的关系式;(2)若又有AC →⊥BD →,求x ,y 的值以及四边形ABCD 的面积.解:(1)∵AD →=AB →+BC →+CD →=(x +4,y -2), ∴DA →=-AD →=(-x -4,2-y ).又∵BC →∥DA →,BC →=(x ,y ),∴x (2-y )-(-x -4)y =0,即x +2y =0. (2)AC →=AB →+BC →=(x +6,y +1),BD →=BC →+CD →=(x -2,y -3). ∵AC →⊥BD →,∴AC →·BD →=0, 即(x +6)(x -2)+(y +1)(y -3)=0,∴y 2-2y -3=0,∴y =3或y =-1.当y =3时,x =-6,于是BC →=(-6,3),AC →=(0,4),BD →=(-8,0). ∴|AC →|=4,|BD →|=8,∴S 四边形ABCD =12|AC →||BD →|=16.当y =-1时,x =2,于是有BC →=(2,-1),AC →=(8,0),BD →=(0,-4). |AC →|=8,|BD →|=4,S 四边形ABCD =16.综上可知⎩⎪⎨⎪⎧ x =-6,y =3,或⎩⎪⎨⎪⎧x =2,y =-1,S 四边形ABCD =16.20.已知三角形ABC 是等腰直角三角形,∠ABC =90°,D 是BC 边的中点,BE ⊥AD ,延长BE 交AC 于点F ,连接DF .求证:∠ADB =∠FDC .(用向量方法证明)证明:如图所示,建立直角坐标系,设A (2,0),C (0,2),则D (0,1).于是AD →=(-2,1),AC →=(-2,2).设F (x ,y ),由BF →⊥AD →,得BF →·AD →=0, 即(x ,y )·(-2,1)=0, ∴-2x +y =0. ①又F 点在AC 上,则FC →∥AC →,而FC →=(-x,2-y ), 因此2×(-x )-(-2)×(2-y )=0,即x +y =2.②由①、②式解得x =23,y =43,∴F (23,43),DF →=(23,13),DC →=(0,1),DF →·DC →=13,又DF →·DC →=|DF →||DC →|cos θ=53cos θ,∴cos θ=55,即cos ∠FDC =55.又cos ∠ADB =DB →·DA →|DB →||DA →|=15=55,∴cos ∠ADB =cos ∠FDC =55,故∠ADB =∠FDC .。

(典型题)高中数学必修四第二章《平面向量》测试卷(答案解析)

(典型题)高中数学必修四第二章《平面向量》测试卷(答案解析)

一、选择题1.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角2.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)3⎛⋃+∞ ⎝⎭C .33⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17115.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦6.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==7.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=8.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( ) A .8B .4C .6D .39.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC ∆的面积之比为( ) A .12B .1C .32D .210.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =2BC =,0GA GB GC ++=,则AB CG=( )A .3B C .2D .211.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知单位向量,a b 满足1a b +=,则|a b -=___________. 14.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________. 15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.已知点()0,1A ,()3,2B,向量()4,3AC =,则向量BC =______.17.在梯形ABCD 中,//AB CD ,2AB BC ==,1CD =,120BCD ∠=︒,P ,Q分别为线段BC 和CD 上的动点,且BP BC λ=,16DQ DC λ=,则AP BQ 的最大值为_____________.18.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.19.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.20.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值.22.在平面直角坐标系xOy 中,已知点()1,2A -,()1,1B ,()3,1C -. (Ⅰ)求AB 的坐标及AB ;(Ⅱ)当实数t 为何值时,()tOC OB AB +. 23.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 24.设()2,0a →=,(3b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值. 25.设非零向量a ,b 不共线.(1)若(),1a t =,()5,b t =,且//a b ,求实数t 的值;(2)若OA a b =+,2OB a b =+,3OC a b =+.求证:A ,B ,C 三点共线. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.2.A解析:A 【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A .3.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.4.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222mOD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811 mn⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m-=.故选D【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.5.B解析:B【分析】作出图形,可求得线段MN的中点Q的轨迹方程为2234x y+=,由平面向量加法的平行四边形法则可得出2PM PN PQ+=,求得PQ的取值范围,进而可求得PM PN+的取值范围.【详解】由1MN =,可知OMN为等边三角形,设Q为MN 的中点,且3sin602OQ OM==Q的轨迹为圆2234x y+=,又()3,4P,所以,33PO PQ PO-≤≤+,即3355PQ≤≤+.由平面向量加法的平行四边形法则可得2PM PN PQ+=,因此2103,103PM PN PQ ⎡⎤+=∈-+⎣⎦.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.6. B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.7.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点 ∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C8.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF . 【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D. 【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.9.A解析:A 【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.10.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以2101,12AB CE CG CG===∴== 本题选择B 选项.11.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③. 【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λbc ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B. 【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.【分析】根据条件两边平方进行数量积运算可求得然后根据即可求得答案【详解】因为所以所以所以故答案为:【点睛】思路点睛:该题考查的是有关向量模的求解问题解题思路如下:(1)首先根据题中条件结合向量模的平【分析】根据条件1a b +=两边平方,进行数量积运算可求得21a b ⋅=-,然后根据2()a b a b -=-即可求得答案.【详解】因为1a b ==,1a b +=,所以2222()2221a b a b a a b b a b +=+=+⋅+=+⋅=,所以21a b ⋅=-, 所以22()223a b a b a b a b -=-=-=-⋅=,【点睛】思路点睛:该题考查的是有关向量模的求解问题,解题思路如下:(1)首先根据题中条件,结合向量模的平方等于向量的平方,求得21a b ⋅=-; (2)之后再应用向量的模的平方等于向量的平方来求解.14.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-,222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为1727a b b⋅==.故答案为:714. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, ,设()1cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭, 又()(()1,0OC mOA nOB m n m =+=+=,得()1,=22m λ⎛⎫ ⎪ ⎪⎝⎭,即=212m λλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】根据向量的坐标运算即可求出【详解】因为所以故答案为:【点睛】本题考查了向量的坐标运算向量模的坐标公式属于基础题目【分析】根据向量的坐标运算即可求出. 【详解】 因为()0,1A ,()3,2B,所以()3,1AB =,()()()4,33,11,2BC AC AB =-=-=,21BC ==【点睛】本题考查了向量的坐标运算,向量模的坐标公式,属于基础题目.17.【分析】根据平面向量的线性运算与数量积运算求的解析式根据题意求出的取值范围再根据对勾函数的性质求最大值【详解】解:梯形中则解得;设则在上单调递增;时取得最大值故答案为:【点睛】本题主要考查了平面向量解析:76【分析】根据平面向量的线性运算与数量积运算,求AP BQ 的解析式,根据题意求出λ的取值范围,再根据对勾函数的性质求最大值. 【详解】解:梯形ABCD 中,//AB CD ,2AB BC ==,1CD =,120BCD ∠=︒,BP BCλ=,16DQ DCλ=,则61()()()()6AP BQ AB BP BC CQ AB BC BC CDλλλ-=++=++2611666AB BC AB CD BC CB CDλλλλ--=+++26116122cos12021221()662λλλλ--=⨯⨯︒-⨯⨯+⨯+⨯⨯⨯-125536λλ=+-,011016λλ⎧⎪⎨⎪⎩,解得116λ;设125()536fλλλ=+-,则()fλ在1,16⎡⎤⎢⎥⎣⎦上单调递增;1λ∴=时()fλ取得最大值76,故答案为:76.【点睛】本题主要考查了平面向量的线性运算以及平面向量的数量积的运算问题,同时也考查了函数的最值问题,其中解答中根据向量的线性运算和数量积的运算,求得AP BQ的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档题.18.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解.【详解】非零向量m→,n→满足4m→=3n→,cos m→〈,13n→〉=,n→⊥t m n→→⎛⎫+⎪⎝⎭,n→∴⋅22+||||cos,||t m n t m n n t m n m n n→→→→→→→→→→⎛⎫+=⋅=<>+⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.19.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果.【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==,2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.20.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=,则a 在b 的方向上的投影为1025a b b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.三、解答题21.(12 【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+,所以()293117199361681616BM=⨯-⨯-+⨯=,从而3194BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以27cos8BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以D ⎛ ⎝⎭,AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos819BM AD BM ADθ⋅===. 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(Ⅰ)(2,1)AB =-,5AB =Ⅱ)3t = 【分析】(Ⅰ)根据点A ,B 的坐标即可求出(2,1)AB =-,从而可求出||AB ;(Ⅱ)可以求出(13,1)tOC OB t t +=-+,根据()//tOC OB AB +即可得出2(1)(1)(13)30t t t +---=-=,解出t 即可.【详解】(Ⅰ)∵()1,2A -,()1,1B ,∴(2,1)AB =- ∴2||2AB ==(Ⅱ)∵()3,1C -,∴(13,1)tOC OB t t +=-+. ∵()tOC OB AB +∴2(1)(1)(13)30t t t +---=-=,∴3t =【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.23.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b-⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+ =42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =14322⨯⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 24.(1)12λ=;(2)1x =,1y =或1x =-,2y =. 【分析】(1)根据向量垂直的坐标运算即可求解;(2)由模的向量坐标运算及夹角的向量坐标运算联立方程即可求解. 【详解】(1)∵()2,0a →=,(b →=,∴()2,a b λλ→→-=-,∵a a b λ→→→⎛⎫-⊥ ⎪⎝⎭, ∴0a b b λ→→→⎛⎫-⋅= ⎪⎝⎭,即240λ-=, ∴12λ=. (2)∵()2,0a →=,(b →=,∴()2m x a y b x y →→→=+=+,又m →=,∴()222312x y y ++=,又cos 62m bm bπ→→→→⋅===, 即23x y +=,由()22231223x y y x y ⎧++=⎪⎨+=⎪⎩, 解得11x y =⎧⎨=⎩或12x y =-⎧⎨=⎩,∴1x =,1y =或1x =-,2y =.【点睛】本题主要考查了向量的坐标运算,考查了垂直关系,夹角公式,模的运算,属于中档题. 25.(1)2)证明见解析. 【分析】(1)利用平面向量的坐标运算和共线定理列方程求出t 的值;(2)根据条件得到2AC AB =且有公共点A ,即可得到结论. 【详解】解:(1)∵(),1a t =,()5,b t =,且//a b ,故250t t -=⇒=, 即实数t 的值为:5±;(2)证明:∵OA a b =+,2OB a b =+,3OC a b =+. ∴AB OB OA b =-=,2AC OC OA b =-=,即2AC AB =且有公共点A , 故A ,B ,C 三点共线. 【点睛】本题考查向量平行的坐标表示,用向量法证明三点共线,属于基础题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦. 【详解】 (1)313cos32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a ab a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b⋅+∴+===⨯⋅+ 【点睛】本题主要考查了利用定义求模长以及求夹角,属于中档题.。

(word版)高一数学必修四第二章平面向量测试题及答案,文档

(word版)高一数学必修四第二章平面向量测试题及答案,文档

一、选择题:(本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.设点P〔3,-6〕,Q〔-5,2〕,R的纵坐标为-9,且P、Q、R三点共线,那么R点的横坐标为〔〕。

A、-9B、-6C、9D、62.=(2,3),b=(-4,7),那么在b上的投影为〔〕。

A、B、C、D、3.设点A〔1,2〕,B〔3,5〕,将向量按向量=〔-1,-1〕平移后得向量为〔〕。

A、〔2,3〕B、〔1,2〕C、〔3,4〕D、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ABC是〔〕。

A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形5.||=4,|b|=3,与b的夹角为60°,那么|+b|等于〔〕。

A、B、C、D、6.O、A、B为平面上三点,点C分有向线段所成的比为2,那么〔〕。

A、B、C、D、7.O 是ABC所在平面上一点,且满足条件,那么点O是ABC的〔〕。

A、重心B、垂心C、内心D、外心8.设、b、均为平面内任意非零向量且互不共线,那么以下4个命题:(1)(·b)2=2·b2(2)|+b|≥|-b|(3)|+b|2=(+b)2(4)(b)-(a)b与不一定垂直。

其中真命题的个数是〔〕。

A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。

A、B、C、D、10.设、b不共线,那么关于x的方程x2+bx+=0的解的情况是〔〕。

A、至少有一个实数解C、至多有两个实数解二、填空题:〔本大题共4小题,每题B、至多只有一个实数解D、可能有无数个实数解4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________ 12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______. 13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。

人教版高一数学必修4第二章平面向量测试题(含答案)

人教版高一数学必修4第二章平面向量测试题(含答案)

必修4第二章平面向量检测一.选择题:1.以下说法错误的选项是〔 〕2.以下四式不能化简为AD 的是〔 〕A .;)++(BC CD AB B .);+)+(+(CM BC MB AD C .;-+BM AD MB D .;+-CD OA OC 3.已知a =〔3,4〕,b =〔5,12〕,a 与b 则夹角的余弦为〔 〕A .6563B .65C .513 D .13 4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =〔 〕A .7B .10C .13D .4 5.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =〔 〕〔A 〕 )(21→→-b a 〔B 〕 )(21→→-a b 〔C 〕 →a +→b 21 〔D 〕 )(21→→+b a 6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则以下关系式中正确的选项是 〔 〕〔A 〕−→−AD =−→−BC 〔B 〕−→−AD =2−→−BC 〔C 〕−→−AD =-−→−BC 〔D 〕−→−AD =-2−→−BC7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是〔 〕〔A 〕 1 〔B 〕 -1 〔C 〕 1± 〔D 〕 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是〔 〕〔A 〕 矩形 〔B 〕 菱形 〔C 〕 直角梯形 〔D 〕 等腰梯形9.已知M 〔-2,7〕、N 〔10,-2〕,点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为〔 〕(A ) 〔-14,16〕〔B 〕 〔22,-11〕〔C 〕 〔6,1〕 〔D 〕 〔2,4〕10.已知→a =〔1,2〕,→b =〔-2,3〕,且k →a +→b 与→a -k →b 垂直,则k =〔 〕〔A 〕 21±-〔B 〕 12±〔C 〕 32±〔D 〕 23±11、假设平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=〔 〕A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是〔 〕 ① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题13.假设),4,3(=AB A点的坐标为〔-2,-1〕,则B点的坐标为 .14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________。

人教版高二必修四数学第二章平面向量试题

人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。

【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。

5、已知点M是 ABC的重⼼,若,求的值。

6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。

2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。

2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。

【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。

(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。

必修4 第二章 平面向量 测验题1

必修4   第二章  平面向量   测验题1

绵阳市开元中学高2013级高一(下) 数学1 必修4 第二章 平面向量 测试题(1)制卷:王小凤 学生姓名一.选择题(本题共10个小题,每小题5分,共50分)1.若a r 是任一非零向量,b r 是单位向量,下列各式①a b >r r ;②//a b r r ; ③0a >r ;④1b =±r ;⑤a b a=r rr ,其中正确的有( ) A .①④⑤ B .③ C .①②③⑤ D .②③⑤ 2.在菱形ABCD 中,下列各式中不成立的是( )A .AC AB BC -=uuu r uu u r uu u r B .AD BD AB -=uuu r uu u r uu u r C .BD AC BC -=uu u r uuu r uu u r D .BD CD BC -=uu u r uu u r uu u r3.下列各式中结果为0r的有( )①AB BC CA ++uu u r uu u r uu r ②OA OC BO CO +++uu r uuu r uu u r uu u r ③AB AC BD CD -+-uu u r uuu r uu u r uu u r ④MN NQ MP QP +-+uuu r uuu r uuu r uu u rA .①②B .①③C .①③④D .①②③4.在△ABC 中,向量BC uu u r可表示为( )①AB AC -uu u r uuu r ②AC AB -uuu r uu u r ③BA AC +uu r uuu r④BA CA -uu r uu rA .①②③B .①③④C .②③④D .①②④5.已知ABCDEF 是一个正六边形,O 是其中心,其中,,OA a OB b OC c ===uu r r uu u r r uuu r r 则EF =uu u r( )A .a b +r rB .b a -r rC .c b -r rD .b c -r r6.在矩形ABCD ,4,2AB BC ==uu u r uu u r,则向量AB AD AC ++uu u r uuu r uuu r 的长度等于( )A. B. C .12 D .67.若(2,4)AB =uu u r ,(1,3)AC =uuu r, 则BC =uu u r ( )A . (1,1)B .(-1,-1)C .(3,7)D .()3,7--8.已知向量()1,2a =r ,()2,3b =-r .若向量c r 满足()//c a b +r r r ,()c a b ⊥+rr r ,则c r =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--9.平面向量a r 与b r 的夹角为060,()2,0a =r ,1b =r ,则2a b +=r r ( )AB .C .4D .1210.已知向量()2,1a =r ,10a b ⋅=r r,a b +=r r b =r( )ABC .5D .25二.填空题:(本题共10小题,每小题5分,共50分)11.化简:(1)AB BC CD ++=uu u r uu u r uu u r ; (2)()AB MB BO BC OM ++++=uu u r uuu r uu u r uu u r uuu r;12.下列命题正确的有①单位向量都相等 ②长度相等且方向相反的两个向量不一定是共线向量 ③若a r ,b r满足a b >r r 且a r 与b r 同向,则a b >r r ④对于任意向量a r 、b r,必有a b a b +≤+r r r r13.一架飞机向北飞行200 km 后,改变航向向东飞行200 km ,则两次位移的和的方向为 ,大小为14.3AB =,2AC =,BC =AB AC ⋅=uu u r uu u r15.在平面直角坐标系xoy 中,四边形ABCD 的边//AB CD ,//AD BC ,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.16.若向量a r =(3,2),b r=(0,-1),则向量2b a -r r 的坐标是________.17.已知()1,2A -,()2,4B ,()4,3C -,(),1D x ,若AB uu u r 与CD uu u r 共线,则BD uu u r的值等于________.18.已知向量a r ,b r 的夹角为120︒,且2a =r ,5b =r ,则()2a b a -⋅=r r r =______19.向量a r 、b r 满足1a =r,b =r ()()2a b a b +⊥-r r r r ,则向量a r 与b r 的夹角为________20.平面上有三个点()1,3A ,()2,2B ,()7,C x ,若90ABC ︒∠=,则x 的值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 第二章平面向量测试题 新人教版必修4一、单项选择题(本大题共12小题,每小题5分,共60分)() 命题中正确的是是两个单位向量,下列、e 已知e 1.21 1e e .A 21=⋅ 21e e .B ⊥ 2221e e .C =21e //e .D2.下列命题中:①若a 与b 互为负向量,则a +b =0;②若k 为实数,且k·a=0,则a =0或k =0;③若a·b=0,则a =0或b =0;④若a 与b 为平行的向量,则a·b=|a||b|;⑤若|a|=1,则a =±1.其中假命题的个数为()A .5个B .4个C .3个D .2个() 的值等于CA BC 则,60C 8,b 5,a 在ΔABC中, 3.→--→--⋅︒=== 20 .A20 .B -320 .C 320 .D -4.设|a|=1,|b|=2,且a 、b 夹角120°,则|2a +b|等于 ( ) 2 .A4 .B21 .C32 .D5.已知△ABC 的顶点坐标为A (3,4),B (-2,-1),C (4,5),D 在BC 上,且ABD ABC S 3S ∆∆=,则AD 的长为 ( )2 .A22 .B23 .C227.D6.已知a =(2,1),b =(3,λ),若(2a -b )⊥b ,则λ的值为 ( )A .3B .-1C .-1或3D .-3或17.向量a =(1,-2),|b|=4|a|,且a 、b 共线,则b 可能是 ( )A .(4,8)B .(-4,8)C .(-4,-8)D .(8,4)8.已知△ABC 中,5b ,3a ,415S ,0b a ,b AC ,a AB ABC ===<⋅==∆→--→--,则a 与b 的夹角为( )A .30°B .-150°C .150°D .30°或150°() b 则a 5,b 4,a ,32041b a 若 9.=⋅==-=- 310 .A 310 .B - 210 .C 10 .D10.将函数y =f (x )的图象先向右平移a 个单位,然后向下平移b 个单位(a >0,b >0).设点P (a ,b )在y =f (x )的图象上,那么P 点移动到点 ( )A .(2a ,0)B .(2a ,2b )C .(0,2b )D .(0,0)() 所得的比是BP 则A分,43所成的比为AB 若点P分 11.→--→--73.A37.B37 .C -73 .D -()()() 的取值范围是ba b a 那么,2,3x b ,x,1已知a 12.22+⋅==(]2,2 .A ∞⎥⎥⎦⎤⎢⎢⎣⎡420, .B⎥⎥⎦⎤⎢⎢⎣⎡-42,42 .C[]+∞,22 .D 二、填空题(本大题共4小题,每小题4分,共16分)13.向量a =(2k +3,3k +2)与b =(3,k )共线,则k =___________.()_.__________向量,则k的值为__且a与b为互相平行的,k,8b ,k ,29已知a 14.=⎪⎭⎫⎝⎛=15.向量a =(1,1),且a 与(a +2b )的方向相同,则a·b 的取值范围是________..___________BC ,12AC ,8AB .16取值范围用区间表示为则→--→--→--==三、解答题(本大题共6小题,共74分) 17.(本小题满分12分)设O 为原点,()()→--→--→--→--→--→--⊥-==OA //BC ,OB OC ,2,1OB ,1,3OA ,试求满足→--→--→--=+OC OA OD 的→--OD 的坐标.18.(本小题满分12分)设1e 和2e 是两个单位向量,夹角是60°,试求向量21e e 2a +=和21e 2e 3b +-=的夹角. 19.(本小题满分12分)已知→--→--→--==AC,2.4BC ,6.5AC 与→--AB 的夹角为40°,求→--→---BC AC 与→--CB 的夹角|AC BC |→--→---(长度保留四位有效数字,角度精确到′).20.(本小题满分12分)不共线,与e 设两个非零向量e 21(),e e 3CD ,8e 2e BC ,e e AB ①如果212121-=+=+=→--→--→-- 求证:A 、B 、D 三点共线.共线.ke 和e e 使ke ②试确定实数k的值,2121++ 21.(本小题满分12分)已知a ,b 是两个非零向量,当a +tb (t ∈R )的模取最小值时, ①求t 的值。

②已知a 与b 共线且同向,求证:b 与a +tb 垂直. 22.(本小题满分14分)已知A (2,0),B (0,2),C (cos α,sin α),且0<α<π (1)若|OA+OC|=7,求OB 与OC 的夹角;(2)若AC ⊥BC ,求tan α的值。

参考答案一、1.C 2.C 3.B 4.A 5.C 6.C 7.B 8.C 9.A 10.A 11.C 12.C()[]4,20 16. 1, 15. 6 14. 2213二、13.+∞-±±()()1y 3,x OA OD OC 则,y x,OD 设:解 三、17.++=+==→--→--→--→--():OB OC 1y ,4x OB OC BC 得由→--→--→--→--→--⊥-+=-= ()()①012y 即x 0,1y 23x =+-=+++-()()②073y 即x 0,4x 1y 得3,OA //BC 由 =+-=+--→--→-- ().11,6坐标为OD 即6,y 11,解得x ②联立,由①,→--== 2121e 2e 3b ,e e 2a : .18+-=+=解,72111414 e e 4e e 4a 2122212=⨯⨯⨯++=⋅++=∴.721111249 e e 12e 4e 9b 2122212=⨯⨯⨯-+=⋅-+=()(),272216 e 2e e e 6e 2e 3e e 2b a 2221212121-=++-=+⋅+-+-⋅+=⋅.217727b a b a cos -=-=⋅=θ∴故θ=120°.,40sin 2.4B sin 6.5,Asin BC Bsin AC : .19︒==→--→--得由正弦定理解.875.02.440sin 6.5B sin =︒⨯=.121,B ,CB BC AC ,59B ︒-︒=∴→--→--→--即角之补角为夹角与因为,815940180C ︒=︒-︒-︒=.453.6 81cos 2.46.522.46.5 C cos BC AC 2BC AC AB 2222=︒⋅⋅-+=⋅⋅-+=∴→--,AB |AC BC | →--→--→--=- .453.6|AC BC | =-∴→--→--,5e 5e BD CD BC :①证 20.21+==+→--→--→--,e e AB 21+=→-- 又.AB 5BD →--→--=∴∴ A 、B 、D 共线.().ke e λe 使ke 只需存在实数λ,共线,ke 和e e 要使ke :②解21212121+=+++ .ke e e ke ,2221λ+λ=+于是()().0e k 1e k 21=λ-+λ-∴所以只有不共线与由于,e e 21⎩⎨⎧=λ-=λ-,0k 1,0k .1k ±=∴21.解:①令m =|a +tb|,().cos 1a cos b at b cos a a cos b a t cos b 1a 2t b at cos b a 2t b t cos b a 2b t a tb a m 22222222222222222222θ-+⎪⎪⎭⎫ ⎝⎛θ+=θ-+⎪⎪⎭⎫ ⎝⎛θ+⋅θ+=+⋅θ+=⋅θ++=+=则.sin a m ,cos ba t min θ=θ-=∴时当ba t 1,cosθ a与b共线且同向, :②证明-=∴=∴(),0b a b a b b a b a tb a b 2=-=⎪⎪⎭⎫ ⎝⎛-+⋅=+⋅∴ ().tb a b +⊥∴22..解:∵OA+OC=(2cos α,sin α),|OA+OC|=7 ∴7sin cos)2(22=++a ,∴21cos =a 又α∈(0,π),∴3π=a ,即∠AOC=3π又∠AOB=2π,∴OB 与OC 的夹角为6π (2))2sin ,(cos ),sin ,2(cos -=-=a a BC a a AC , ∵AC ⊥BC ,∴AC ·BC=0,21sin cos =+a a ① ∴41)sin (cos 2=+a a ,∴43cos sin 2-=a a ∵),,0(π∈a ∴),,2(ππ∈a 又由0sin cos ,47cos sin 21)sin (cos 2<-=-=-a a a a a a ,∴27sin cos -=-a a ② 由①、②得471sin ,471cos +=-=a a 从而374tan +-=a。

相关文档
最新文档