高等代数习题课n阶行列式的计算
行列式的计算

n 阶行列式的计算n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。
下面介绍几种常用的方法,并举例说明。
1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---= .该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnn a a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n n nn n a a a a a a D a a a a a a -----=-12131122321323312300(1)00n n n n nnn a a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
例3 计算n 阶行列式a b b b ba b b D bbabb b b a=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a b b D a n bbaba nb b b a+-+-=+-+-11[(1)]11b b b a b b a n b babb b a =+-100[(1)]000bbb a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
n阶行列式的计算方法

n阶行列式的计算方法行列式是线性代数中的一个重要概念,它在矩阵理论、线性方程组的求解等方面都有着重要的应用。
在本文中,我们将讨论n阶行列式的计算方法,希望能够帮助读者更好地理解和掌握行列式的相关知识。
首先,我们来回顾一下行列式的定义。
对于一个n阶方阵A,它的行列式记作|A|或det(A),定义为:|A| = Σ(−1)^σ(σ) a1σ(1) a2σ(2) ... anσ(n)。
其中,σ是1~n的一个排列,a1σ(1) a2σ(2) ...anσ(n)表示排列σ对应的n个元素的乘积,Σ表示对所有可能的排列求和。
接下来,我们将介绍n阶行列式的计算方法。
对于一个n阶方阵A,我们可以使用以下方法来计算它的行列式:1. 代数余子式法。
代数余子式法是一种经典的计算行列式的方法。
对于一个n阶方阵A,它的行列式可以通过以下公式来计算:|A| = a11A11 + a12A12 + ... + a1nA1n。
其中,aij表示A的第i行第j列的元素,Aij表示它的代数余子式,即去掉第i行第j列后得到的n-1阶子式的行列式。
2. 拉普拉斯展开法。
拉普拉斯展开法是另一种常用的计算行列式的方法。
对于一个n阶方阵A,它的行列式可以通过以下公式来计算:|A| = a11C11 + a12C12 + ... + a1nC1n。
其中,Cij表示A的第i行第j列的元素的代数余子式,即去掉第i行第j列后得到的n-1阶子式的行列式,而Cij的计算可以通过递归地应用相同的方法来完成。
3. 数学归纳法。
数学归纳法是一种较为抽象但十分有效的计算行列式的方法。
通过递归地应用n-1阶行列式的计算方法,我们可以最终得到n阶行列式的值。
在实际应用中,我们可以根据具体的情况选择合适的计算方法来计算行列式,以便更高效地完成计算任务。
除了以上介绍的计算方法,还有一些特殊的行列式计算技巧,比如利用行列式的性质进行变换、化简等操作,以便更快地求得行列式的值。
N阶行列式的计算方法

N阶行列式的计算方法行列式是矩阵的一个重要性质,它可以用来描述矩阵的线性变换的特征。
N阶行列式的计算方法可以通过多种途径实现,包括展开法、性质法、三角法等。
下面将详细介绍N阶行列式的计算方法。
1.展开法:展开法也是最常用的计算N阶行列式的方法。
N阶行列式可以根据其中的其中一行或其中一列展开成N个N-1阶行列式之和。
以N阶行列式A为例,可以通过以下公式计算:det(A) = a1j * C1j + a2j * C2j + ... + anj * Cnj其中,a1j, a2j, ..., anj 分别是矩阵A第j列的N个元素;C1j,C2j, ..., Cnj 分别是对应元素的代数余子式。
2.性质法:性质法是通过行列式的性质来计算N阶行列式。
行列式有很多性质,包括换行换列、行列秩相等、其中一行列乘以一个常数等。
利用这些性质,可以将N阶行列式变换成简化形式,进而计算行列式的值。
例如,可以通过初等行变换将行列式变换为上(下)三角形,而上(下)三角形行列式的计算非常简单。
此外,还可以使用性质法计算N阶行列式的公式,例如:det(A) = (-1)^(i+j) * Mij,其中,A是一个N阶矩阵,Mij是A删除第i行和第j列后的N-1阶矩阵。
3.三角法:三角法是一种用于计算N阶行列式的简便方法。
它将矩阵进行初等行变换,将其化为上三角阵或下三角阵,然后通过对角线上元素的乘积得到行列式的值。
具体步骤如下:(1)将行列式按其中一行或其中一列展开;(2)通过初等行变换,将行列式化为上三角形或下三角形;(3)计算对角线上元素的乘积,得到行列式的值。
4.克拉默法则:如果N阶行列式的其中一行或其中一列可被向量等式左边的向量线性表出,那么可以使用克拉默法则来计算行列式的值。
克拉默法则通过求解N个方程组,其中每个方程组都将一个未知量用行列式展开的形式表示,最后求解这N个方程组得到行列式的值。
但是,克拉默法则的计算复杂度高,对于大规模的行列式来说,不太适用。
n阶行列式

n1
i
a2
x
an .
i1
1 a2 a3 x
将第1列的( a1)倍加到第2列,将第1列的
( a2)倍加到第3列,,将第1列的( an)倍加到
最后一列,得
1
0
0
0
n
1 x a1 0
0
D a (x n1
)1
i
a2 a1 x a2
0
i 1
0
1 a2 a1 a3 a2 x an
4
5
因为 p1 , p2 , p3 , p4 , p5 在上述可能取的
代码中,一个5元排列也不能组成,
故 D5 0.
评注:本例是从一般项入手,将行标按标准 顺序排列,讨论列标的所有可能取到的值,并注 意每一项的符号,这是用定义计算行列式的一般 方法。
注意:如果一个n阶行列式中等于零的元素
比n2 n还多,则此行列式必等于零。
22211211的所有排列取和表示对逆序数为这个排列的的一个排列为自然数其中的逆序数为行标排列其中亦可定义为阶行列式乘此行列式等于用数以同一数中所有的元素都乘行列式的某一行列式等于零则此行完全相同如果行列式有两行行列式变号式相等行列式与它的转置行列行列式的值不对应的元素上去然后加到另一列的各元素乘以同一数把行列式的某一列列式之和则此行列式等于两个行的元素都是两数之和若行列式的某一列列式为零则此行元素成比例以提到行列式符号的外的所有元素的公因子可行列式中某一行1余子式与代数余子式的代数余子式
评注:本题所给行列式各行(列)都 是某元素的不同方幂,而其方幂次数或其 排列与范德蒙行列式不完全相同,需要利 用行列式的性质(如提取公因子、调换各 行(列)的次序等)将此行列式化成范德 蒙行列式。
线性代数 §12 n阶行列式 习题与答案

§1.2 n 阶行列式为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念。
为此,先介绍排列的有关知识。
㈠排列与逆序:(课本P4)1、排列的定义:由数码1,2,…,n ,组成一个有序数组12n i i i ,称为一个n 级排列。
【例1】1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列。
(课本P4中例)【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个。
【例3】数字由小到大的n 级排列1234…n 称为自然序排列。
2、逆序的定义:在一个n 级排列12n i i i 中,如果有较大的数t i 排在si 的前面,则称t i 与s i 构成一个逆序。
(课本P4)【例4】在4 级排列3412中, 31,32,41,42,各构成一个逆序,在5 级排列34152中, 31,32,41,42,52,共构成5个逆序。
3、逆序数的定义:一个n 级排列12n i i i 中逆序的总数,称为这个排列的逆序数,记为12()n N i i i 。
(课本P4)【例5】排列3412的逆序数为N (3412) = 4,排列52341的逆序数为N (52341) = 7, 自然序排列的逆序数为0。
4、奇、偶排列的定义:如果排列12n i i i 的逆序数12()n N i i i 是奇数,则将12n i i i 称为奇排列;如果排列12n i i i 的逆序数12()n N i i i 是偶数,则将12n i i i 称为偶排列。
(课本P4)【例6】由于N (3412) = 4,知排列3412是偶排列,由于N (52341) =7,知排列52341是奇排列, 由于N (123…n ) = 0,知自然排列123…n 是偶排列。
【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。
高等代数行列式

a2
a 1
2
a 2
2
a 3
2
(5)计算 D
b2 c2 d2
b 1 b 2 b 3 2 2 2 c 1 c 2 c 3 2 2 2 d 1 d 2 d 3
2 2 2
解:将行列式D看作 a 的多项式,按第一列展开可 知D是关于 a 的至多二次多项式。
an
0
0
(1)
2 n 1
bn
0
a b c d
1 1
0
cn 1 0
d n 1 0
0 dn
c
c
n
n 1
d
0
n 1
0
都按最后一行展开
由此得递推公式:
an d n D2 n2 bn cn D2 n2
D2n (an dn bncn )D2n2
即 而 得
D2 n (ai di bi ci ) D2
假设对于 (n 1) 阶行列式命题成立,即
Dn1 xn1 a1xn2
an2 x an1 ,
则Dn按第1列展开 :
Dn xDn 1 an (1) n 1 1 0 x 1 1 1 0 0 x 0 0 1
xDn1 an 右边
所以,对于 n 阶行列式命题成立.
n ( n 1) 2
n 1i j 1
n ( n 1) 2
[(a i 1) (a j 1)]
[(i j)] (1)
n ( n 1) 2
(1)
n 1i j 1
(1)
n ( n 1) 1 2
n 1i j 1
N阶行列式的计算

例4: = = =…
练习:(1) 【160】(2) 【 】
(5)逐行(列)相加(减)(适用于行列式相邻两行相加减后有共同特点时)
例5: =…=0
例6:
= 。
练习: 【 】
(6)拆项计算行列式(适用于行列式中的行(列)元素是两项之和)
例7: = + =
题设行列式正是 ,即y的系数,展开(1)式,得到y的系数为
所以: = 。
7、观察一次因式法
例13:计算 =
解:当 时,第一、第二行对应元素相等,所以 =0,可见 中含有因式, ,当 时,第三、第四行对应元素相等,所以 =0,可见 中含有因式 。
由于 中关于 的最高次数是4,所以
中含 的项是 ,
比较上面两式中 的系数,得 ,故 。
N阶行列式的计算
N阶行列式的计算方法主要有以下几种:
1、直接按定义计算:(适用于行列式中非零元素非常少的情形)
例1:计算 = 解:由定义知 = ,因为 ,所以 的非零项中 只能取2或3,同理,有 = = =0,可推出 只能取2或3,又因为 要求各不相同,故 项中至少有一个必须取零,所以 =0.
练习:用行列式的定义计算下列行列式:【1, , 0, 0】
例14:解方程 =0
解:当 =0,1,2, 时,行列式的两列对应元素相等,行列式的值为0,因此左边行列式可写成 ,
于是原方程变为 ,
所以原方程的解为 。
8、利用数学归纳法进行证明或计算。
例15:证明n阶范德蒙行列式的正确性
+ =0练习:证明 =
3、降阶法:利用行列式按行(列)展开定理进行降阶,这种方法适用于行列式中某一行(列)非零元素较少。
n阶行列式的计算方法

江西师范大学09届学士学位毕业论文n阶行列式的计算方法姓名:学号:学院:专业:指导老师:完成时间:江西师范大学09届学士学位毕业论文n阶行列式的计算方法【摘要】本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。
例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。
但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。
这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。
【关键词】n阶行列式行列式的性质数学归纳法递推法加边法Some methods of an n-order determinant calculation【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues .【Key words】n-order determinant the property of the determinantthe mathematical induction adding the edge method江西师范大学09届学士学位毕业论文目录1引言........................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的
ci 倍加到 ai
第1列,得:
Dn1
a1a2 L
an (a0
n i 1
bi ci ai
)
可转为箭形行列式的行列式:
1 a1 1 L
1)
1 L
1 a2 L LL
1 LL
1
1 1
,
1 an
ai 0, i 1, 2, 3L n.
a1 x L x
2)
x L
a2 L
L L
x x
,
ai 0, i 1,2,3L n.
(i
1,2L
n 1)
i1 bi 0 M
a1 L an b1 L 0 MMM
0 0 L bn
b1b2 L
bn(1
n i 1
ai bi
).
(四)递推公式法
a b ab 0 L 0 0
1 a b ab L 0 0
Dn
0 L
1 ab L 0 L LLL
0 L
.
0 0 0 L a b ab
0 0 0 L 1 ab
1aL MM M
b M
1bL a
1bL b
i
ri r1 2,3,L
n
a
(n
1)b
0a M
b M
L M
0 M
(a b)n1 a (n 1)b
0 0 L ab
1 2 3 L n1 n 2 3 4L n 1 2) D M M ML M M n1 n 1 L n3 n2 n 1 2 L n2 n2
由以上两式解得
Dn
an1 a
bn1 b
(n 1)an
ab ab
(先将行列式表成两个低阶同型的行列式的线形
关系式,再用递推关系及某些低阶(2阶,1阶)
行列式的值求出 D的值)
(五)拆项法(主对角线上、下元素相同)
1) 解:
a x1 a L a
Dn
a L
a x2 L LO
a L
a
a L a xn
解
1 2 3 L n1
D
n(n
1)
1 3 4L MM ML
n M
n 1 M
2 1 n 1 L n3 n2
1 1 2 L n2 n1
rnrn1Mrrnn12 r2 r1
n(n
1)
1 0 M
2 1 M
3 L n1 n 1 L 1 1n MMM M
2 0 1 1n L 1 1
0 1n 1 L 1 1
1 1 L 1 1n
n
1 a
1
Dn
i1 xi 0
aL x1 L
a a
L LOL
0
L L xn
x1 x2L
n
xn(1 a
i 1
1 )
xi
(六) 数学归纳法
例、证明:
1 a
1
Dn
1 L
1
1L
1 a2 L LL 1L
1
1
L
a1a2L an(1
1 an
1) ai
1 证:当 n 1 时,D1 1 a1 a1(1 a1 ) ,结论成立.
a x1 a L a a x1 a L a 0
Dn
a L
a x2 L LO
a L
a L
a x2 L a 0 L LLL
a
a L a xn
a
a L a xn
x1 0 L 0 a
0 L
x2 L LL
0 L
a L
xn Dn1
0 0L 0 a
Dn x1 x2 L xn1a xnDn1 Dn1 x1 x2 L xn2a xn1Dn2 , Dn2 x1 x2 L xn3a xn2Dn3 ,L L
继续下去,可得
Dn ax1L xn1 ax1 x2 L xn2 xn ax1 x2 L xn3 xn1 xn
L ax1 x2 x4 L xn ax1 x3 x4 L xn xn xn1L x3 x2D1
a( x1 x2 L xn1 x1 x2 L xn2 xn L x1 x3 L xn x2 x3 L xn )
0 a1 b1 a2 L
1) Dn 0 a1 a2 b2 L
M M ML
0 a1
a2 L
an an an M an bn n1
1 a1 a2 L an
ri
r1(i 2,3L
n 1) 1 1
b1 0
0L b2 L
0 0
M M ML M
1 0 0 L bn
1 n ai
c1
ci1 bi
2
L LL L L n 0 0 L 0 n1
n(n
1)
(
(1)
n1)( 2
n1)
(
1)(
n)n
2
2
n( n1)
(1) 2
(n
1)nn1
2
(三)升级法(加边法)
a1 b1 a2 L
Dn
a1 a2 b2 L M ML
a1
a2 L
an
an M
,
an bn
b1b2 L bn 0
解:
1 a1
a2 L
x1 x2 L xn
当
x1 x2 L
xn
0时, Dn
x1 x2 L
n
xn(1 a
i 1
1 )
xi
当 xi 0(i 1,2L n)时也可以用加边法做:
1 aL a
1 aL a
Dn
0 L
a x1 L
L O
a L
1 L
x1 L
L O
a L
0 a L a xn (n1) 1 L L xn
将第 i列乘以 xi1 加到第一列上i=2、3、·······、n+1
箭形行列式 行(列)和相等的行列式 递推公式法 加边法(升级法) 拆项法 数学归纳法
(一)箭形行列式
a0 b1 b2 L bn c1 a1 L L L Dn1 c2 L a2 L L , LLLLL
ai 0,i 1,2,3L n.
cn L L L an
解:把所有的第
i
1列(i
1,L
, n)
x L L an
(把第 i 行分别减去第1行, 即可转为箭形行列式)
(二)行(列)和相等的行列式
a bL b
1)
D
b aL MM M
b M
bL L a
a (n 1)b b L b
解:D
c1 c2 L
cn
a
(n M
1)b
aL b MMM
a (n 1)b b L a
1bL b
a
(n
1)b
n(n 1) 2
M M MM M 1 1n L 1 1
1n 1 L 1 1
n1
1 1 L 1 1n ri r1 n(n 1) 0 0 L n n i 2,3L n 1 2 L L L L L
n 0 0 L n n1
1 1 L 1 1
n(n 1) 0 0 L n 0
cn1 c1 L cn2
解
Dn 按c1展开 (a b)Dn1 abDn2
Dn aDn1 b(Dn1 aDn2 ) L bn2(D2 aD1 ) Dn bDn1 a(Dn1 bDn2 ) L an2(D2 bD1 )
而 D2 a2 ab b2, D1 a b
Dn aDn1 bn2(a2 ab b2 a2 ab) bn ; Dn bDn1 an2(a2 ab b2 a2 ab) an .
假设 n k 时结论成立,即,