2020高中数学必修2《第1章检测(A)》含解析

合集下载

2020_2021学年高中数学第一章立体几何初步章末综合测评含解析北师大版必修2

2020_2021学年高中数学第一章立体几何初步章末综合测评含解析北师大版必修2

高中数学:章末综合测评(一) 立体几何初步(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒lαB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .lα,A ∈l ⇒A ∉αD .A ∈l ,lα⇒A ∈αC [若直线l ∩α=A ,显然有l α,A ∈l ,但A ∈α,故C 错.]2.下列说法中,正确的是( )A .经过不同的三点有且只有一个平面B .分别在两个平面内的两条直线一定是异面直线C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行C [A 中,可能有无数个平面;B 中,两条直线还可能平行、相交;D 中,两个平面可能相交.]3.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 的面积是( )A. 3 B .2 2 C.32 D.34A [由题图可知,原△ABC 的高为AO =3, ∴S △ABC =12×BC ×OA =12×2×3=3,故选A.]4.下列四个命题判断正确的是( ) A .若a ∥b ,a ∥α,则b ∥α B .若a ∥α,bα,则a ∥bC .若a ∥α,则a 平行于α内所有的直线D .若a ∥α,a ∥b ,bα,则b ∥αD [A 中b 可能在α内;B 中a 与b 可能异面;C 中a 可能与α内的直线异面;D 正确.] 5.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120°,底面圆的半径为1,则该圆锥的体积为( )A.22π3 B.2π3C.2π3D.3πA [因为扇形弧长为2π,所以圆锥母线长为3,高为22,所求体积V =13×π×12×22=22π3.] 6.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1D 1 B [CE平面ACC 1A 1,而BD ⊥AC ,BD ⊥AA 1,所以BD ⊥平面ACC 1A 1,所以BD ⊥CE .]7.正方体AC 1中,E ,F 分别是DD 1,BD 的中点,则直线AD 1与EF 所成角的余弦值是( ) A.12 B.32 C.63 D.62C [连接BD 1,则BD 1∥EF ,∠BD 1A 是异面直线AD 1与EF 所成的角.∵AB ⊥AD 1,∴cos∠BD 1A =AD 1BD 1=63.] 8.如图所示,则这个几何体的体积等于( )A .4B .6C .8D .12 A [由三视图得几何体为四棱锥, 如图记作S ­ABCD ,其中SA ⊥平面ABCD ,SA =2,AB =2,AD =2,CD =4,且ABCD 为直角梯形, ∠DAB =90°,∴V =13SA ×12(AB +CD )×AD =13×2×12×(2+4)×2=4,故选A.]9.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β; ②若α∥β,lα,则l ∥β;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中正确的说法个数是( ) A .3 B .2 C .1 D .0B [垂直于同一平面的两个平面不一定平行,故①错误;由面面平行的性质知②正确;借助于三棱柱可知③正确.]10.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A.316 B.916 C.38 D.932A [如图所示,设球的半径为R ,由题意知OO ′=R2,OF =R ,∴r =32R . ∴S 截面=πr 2=π⎝ ⎛⎭⎪⎫32R 2=3π4R 2.又S 球=4πR 2,∴S截面S 球=3π4R24πR2=316.]11.如图,ABCD­A1B1C1D1为正方体,下面结论错误的是( )A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°D[由于BD∥B1D1,易知BD∥平面CB1D1;连接AC(图略),易证BD⊥平面ACC1,所以AC1⊥BD;同理可证AC1⊥B1C,因为BD∥B1D 1,所以AC1⊥B1D1,所以AC1⊥平面CB1D1;对于选项D,∵BC∥AD,∴∠B1CB即为AD与CB1所成的角,此角为45°,故D错.]12.在四面体ABCD中,下列条件不能得出AB⊥CD的是( )A.AB⊥BC且AB⊥BD B.AD⊥BC且AC⊥BDC.AC=AD且BC=BD D.AC⊥BC且AD⊥BDD[A项,∵AB⊥BD,AB⊥BC,BD∩BC=B,∴AB⊥平面BCD,∵CD平面BCD,∴AB⊥CD.B项,设A在平面BCD内的射影为O,则AO⊥平面BCD,∵AD⊥BC,AC⊥BD,∴O为△BCD的垂心,连接BO,则BO⊥CD.又AO⊥CD,AO∩BO=O,∴CD⊥平面ABO,∵AB平面ABO,∴AB⊥CD.C项,取CD中点G,连接BG,AG.∵AC=AD且BC=BD,∴CD⊥BG,CD⊥AG,∵BG∩AG=G,∴CD⊥平面ABG,∵AB平面ABG,∴AB⊥CD,故选D.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.底面直径和高都是4 cm 的圆柱的侧面积为________ cm 2. 16π [圆柱的底面半径为r =12×4=2(cm),∴S 侧=2π×2×4=16π(cm 2).]14.如图,长方体ABCD ­A 1B 1C 1D 1中,MN 在平面BCC 1B 1内,MN ⊥BC 于M ,则MN 与AD 的位置关系是________.垂直 [由平面BCC 1B 1⊥平面ABCD , 知MN ⊥平面ABCD . ∴MN ⊥AD .]15.已知一个圆台的下底面半径为r ,高为h ,当圆台的上底面半径r ′变化时,圆台体积的变化范围是________.⎝ ⎛⎭⎪⎫13πr 2h ,πr 2h [V 圆台=13π(r 2+rr ′+r ′2)h,0<r ′<r . 当上底面面积为0时,圆台变为圆锥,V 圆锥=13πr 2h ;当上、下底面面积相等时,圆台变为圆柱,V 圆柱=πr 2h .所以圆台体积的变化范围是⎝ ⎛⎭⎪⎫13πr 2h ,πr 2h .]16.将正方形ABCD 沿对角线BD 折成直二面角A ­BD ­C ,则异面直线AB 与CD 所成的角等于________.60° [如图所示,分别取BC ,AC 的中点G 、F , 连接EG ,GF ,EF , 则EG ∥CD ,GF ∥AB ,∴∠EGF 就是AB 与CD 所成的角. 由题意EG =GF =EF =a2, ∴△EFG 是等边三角形,∴∠EGF =60°.]三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如图所示,四棱锥V ­ABCD 的底面为边长等于2 cm 的正方形,顶点V 与底面正方形中心的连线为棱锥的高,侧棱长VC =4 cm ,求这个正四棱锥的体积.[解] 连接AC ,BD 相交于点O ,连接VO , ∵AB =BC =2 cm , 在正方形ABCD 中, 求得CO = 2 cm ,又在直角三角形VOC 中, 求得VO =14 cm ,∴V V ­ABCD =13S ABCD ·VO =13×4×14=4314(cm 3).故这个正四棱锥的体积为4314 cm 3.18.(本小题满分12分)如图所示,P 是▱ABCD 所在平面外一点,E ,F 分别在PA ,BD 上,且PE ∶EA =BF ∶FD .求证:EF ∥平面PBC .[证明] 连接AF 延长交BC 于G ,连接PG . 在▱ABCD 中, 易证△BFG ∽△DFA , ∴GF FA =BF FD =PE EA, ∴EF ∥PG . 而EF平面PBC ,PG平面PBC ,∴EF ∥平面PBC .19.(本小题满分12分)如图,长方体ABCD ­A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. [解] (1)交线围成的正方形EHGF ,如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 20.(本小题满分12分)如图所示,在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .[证明] 由长方体的性质可知A 1B 1⊥平面BCC 1B 1, 又BM平面BCC 1B 1,所以A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,所以C 1M =CM =1. 在Rt△B 1C 1M 中,B 1M =B 1C 21+MC 21=2, 同理BM =BC 2+CM 2=2,又B 1B =2, 所以B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M . 又A 1B 1∩B 1M =B 1,所以BM ⊥平面A 1B 1M , 因为BM平面ABM ,所以平面ABM ⊥平面A 1B 1M .21.(本小题满分12分)如图,在三棱锥P ­ABC 中,PA ⊥底面ABC ,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面PAC ;(2)是否存在点E 使得二面角A ­DE ­P 为直二面角?并说明理由. [解] (1)证明:∵PA ⊥底面ABC ,BC 底面ABC ,∴PA ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩PA =A ,AC ,PA 平面PAC ,∴BC ⊥平面PAC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC . 又∵AE平面PAC ,PE平面PAC , ∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A ­DE ­P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°. ∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A ­DE ­P 为直二面角.22.(本小题满分12分)如图所示,在长方形ABCD 中,AB =2,AD =1,E 为CD 的中点,以AE 为折痕,把△DAE 折起到△D ′AE 的位置,且平面D ′AE ⊥平面ABCE .(1)求证:AD ′⊥BE ;(2)求四棱锥D ′­ABCE 的体积;(3)在棱ED ′上是否存在一点P ,使得D ′B ∥平面PAC ,若存在,求出点P 的位置,若不存在,请说明理由.[解] (1)证明:根据题意可知,在长方形ABCD 中,△DAE 和△CBE 为等腰直角三角形, ∴∠DEA =∠CEB =45°, ∴∠AEB =90°,即BE ⊥AE .∵平面D ′AE ⊥平面ABCE ,且平面D ′AE ∩平面ABCE =AE ,BE 平面ABCE ,∴BE ⊥平面D ′AE , ∵AD ′平面D ′AE ,∴AD ′⊥BE .(2)取AE 的中点F ,连接D ′F ,则D ′F ⊥AE . ∵平面D ′AE ⊥平面ABCE , 且平面D ′AE ∩平面ABCE =AE ,D ′F 平面D ′AE ,∴D ′F ⊥平面ABCE ,∴V D ′­ABCE =13S 四边形ABCE ·D ′F =13×12×(1+2)×1×22=24.(3)如图所示,连接AC 交BE 于Q ,假设在D ′E 上存在点P ,使得D ′B ∥平面PAC ,连接PQ .∵D ′B平面D ′BE ,平面D ′BE ∩平面PAC =PQ ,∴D ′B ∥PQ , ∴在△EBD ′中,EP PD ′=EQQB. ∵在梯形ABCE 中,EQ QB =EC AB =12,∴EP PD ′=EQ QB =12,即EP =13ED ′, ∴在棱ED ′上存在一点P ,且EP =13ED ′时,使得D ′B ∥平面PAC .。

2020高中数学人教A版必修二 第一章 空间几何体 学业分层测评5 Word版含答案

2020高中数学人教A版必修二 第一章 空间几何体 学业分层测评5 Word版含答案

学业分层测评(五)(建议用时:45分钟)[达标必做]一、选择题1.圆台OO ′的母线长为6,两底面半径分别为2,7,则圆台OO ′的侧面积是( )A .54πB .8πC .4πD .16π【解析】 S 圆台侧=π(r +r ′)l =π(7+2)×6=54π. 【答案】 A2.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A .πB .2πC .4πD .8π【解析】 设轴截面正方形的边长为a , 由题意知S 侧=πa ·a =πa 2.又∵S 侧=4π,∴a =2. ∴V 圆柱=π×2=2π. 【答案】 B3.如图1­3­7,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )图1­3­7【解析】 由三视图的概念可知,此几何体高为1,其体积V =Sh =S =12,即底面积S =12,结合选项可知,俯视图为三角形.【答案】 C4.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图1­3­8所示,该四棱锥的侧面积和体积分别是( )图1­3­8A .45,8B .45,83C .4(5+1),83D .8,8【解析】 由题图知,此棱锥高为2,底面正方形的边长为2,V =13×2×2×2=83,侧面三角形的高h =22+12=5,S 侧=4×⎝⎛⎭⎪⎪⎫12×2×5=4 5.【答案】 B5.一个四面体的三视图如图1­3­9所示,则该四面体的表面积是( )图1­3­9A .1+ 3B .2+ 3C .1+2 2D .2 2【解析】根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.故选B.【答案】 B 二、填空题6.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm ,则该棱柱的侧面积为________cm 2.【导学号:09960026】【解析】 棱柱的侧面积S 侧=3×6×4=72(cm 2). 【答案】 727.一个几何体的三视图如图1­3­10所示(单位:m),则该几何体的体积为________m3.图1­3­10【解析】由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V=13π×12×1×2+π×12×2=83π.【答案】8 3π三、解答题8.一个三棱柱的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图1­3­11所示,AA1=3.(1)请画出它的直观图;(2)求这个三棱柱的表面积和体积.图1­3­11【解】 (1)直观图如图所示.(2)由题意可知, S △ABC =12×3×332=934.S 侧=3×AC ×AA 1=3×3×3=27.故这个三棱柱的表面积为27+2×934=27+932.这个三棱柱的体积为934×3=2734.9.已知圆台的高为3,在轴截面中,母线AA 1与底面圆直径AB 的夹角为60°,轴截面中的一条对角线垂直于腰,求圆台的体积.【解】 如图所示,作轴截面A 1ABB 1,设圆台的上、下底面半径和母线长分别为r 、R ,l ,高为h .作A 1D ⊥AB 于点D ,则A 1D =3. 又∵∠A 1AB =60°,∴AD =A 1Dtan 60°,即R -r =3×33,∴R -r = 3.又∵∠BA 1A =90°,∴∠BA 1D =60°. ∴BD =A 1D ·tan 60°,即R +r =3×3, ∴R +r =33,∴R =23,r =3,而h =3, ∴V 圆台=13πh (R 2+Rr +r 2)=13π×3×[(23)2+23×3+(3)2] =21π.所以圆台的体积为21π.[自我挑战]10.圆锥的侧面展开图是圆心角为120°、半径为2的扇形,则圆锥的表面积是________.【解析】 因为圆锥的侧面展开图是圆心角为120°、半径为2的扇形,所以圆锥的侧面积等于扇形的面积=120×π×22360=43π,设圆锥的底面圆的半径为r , 因为扇形的弧长为2π3×2=43π,所以2πr =43π,所以r =23,所以底面圆的面积为49π.所以圆锥的表面积为169π.【答案】 169π。

2020年高中数学(人教版必修2)配套练习 第一章1.1第1课时

2020年高中数学(人教版必修2)配套练习 第一章1.1第1课时

第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是() A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8. 如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例.....................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

高中数学必修二:各章章末检测(含解析)

高中数学必修二:各章章末检测(含解析)

章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是( ) A.棱柱B.棱台C.棱柱与棱锥组合体D.无法确定1 题图2 题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不.可.能.为:①长方形;②正方形;③圆.其中正确的是( ) A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN则四边形D1MBN 在正方体各个面上的正投影图形中,不可能出现的是( )4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC 的AB、AD、AC 三条线段中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC4 题图5 题图5.具有如图所示直观图的平面图形ABCD 是( ) A.等腰梯形B.直角梯形C.任意四边形D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是( )A .1B .2C .3D .47. 如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .188. 平面α截球 O 的球面所得圆的半径为 1,球心 O 到平面α的距离为 2,则此球的体积为() B .4 3πC .4 6πD .6 3π9. 如图所示,则这个几何体的体积等于()A .4B .6C .8D .1210. 将正三棱柱截去三个角(如图 1 所示,A ,B ,C 分别是△GHI 三边的中点)得到几何体如图 2,则该几何体按图 2 所示方向的侧视图为选项图中的()11. 圆锥的表面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形的圆心角为( )A .120°B .150°C .180°D .240°12. 已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC =2,则此棱锥的体积为()A. 6πA.26二、填空题B.36 C.23 D.2213.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的1,则油桶直立时,油的高度与桶的高度的比值是.4三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2 的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积.19.如图所示,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD 的长;(2)容器的容积.= 答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π 16.1- 1 4 2π17.解 由三视图可知:该几何体的下半部分是棱长为 2 m 的正方体,上半部分是半径为 1 m 的半球.(1) 几何体的表面积为 S 1× 24π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为 V =23+1×4×π×13=8+2π(m 3).2 3 318.解 (1)直观图如图.(2) 这个几何体是一个四棱锥. 它的底面边长为 2,高为 3,所以体积 V =1×22× 3=4 3.3 319.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2=(4 2+60)π.V =V 圆台-V 圆锥 =1π(r 2+r r +r 2)h -12 ′1 12 2 3πr 1h3 =1π(25+10+4)×4-1π×4×2 3 3 148 π. 320.解 (1)设圆台上、下底面半径分别为 r 、R ,AD =x ,则 OD =72-x ,由题意得2πR =60·π×72 180 72-x =3R即 AD 应取 36 cm.R =12,∴ .x =36 (2)∵2πr =π·OD =π·36,3 3 ∴r =6 cm ,圆台的高 h = x 2-(R -r )2= 362-(12-6)2=6 35. ∴V =1 2+Rr +r 2)=1π·6 35·(122+12×6+62)=504 35π(cm 3).πh (R 3 3=章末检测一、选择题1.下列推理错误的是( ) A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉α D.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1 中,异面直线AB,A1D1 所成的角等于( ) A.30°B.45°C.60°D.90°3.下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD 的边AB,BC,CD,DA 上分别取E、F、G、H 四点,如果EF,GH 交于一点P,则( )A.P 一定在直线BD 上B.P 一定在直线AC 上C.P 一定在直线AC 或BD 上D.P 既不在直线AC 上,也不在直线BD 上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和②B.②和③C.③和④D.② 和④ 6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3 中,E,F 分别是G1G2 及G2G3 的中点,D 是EF 的中点,现在沿SE,SF 及EF 把这个正方形折成一个四面体,使G1,G2,G3 三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG 中必有( )A.SG⊥△EFG 所在平面B.SD⊥△EFG 所在平面C.GF⊥△SEF 所在平面D.GD⊥△SEF 所在平面8.如图所示,在正方体ABCD—A1B1C1D1 中,若E 是A1C1 的中点,则直线CE 垂直于( )A.AC B.BD C.A1D D.A1D18 题图9 题图9.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B′AC=60°,那么这个二面角大小是( ) A.90°B.60°C.45°D.30°10.如图,ABCD-A1B1C1D1 为正方体,下面结论错误的是( )A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD 与CB1 所成的角为60°10 题图11 题图11.如图所示,在长方体ABCD—A1B1C1D1 中,AB=BC=2,AA1=1,则BC1 与平面BB1D1D所成角的正弦值为( )A. 63B.2 65C. 155D. 10512.已知正四棱柱ABCD-A1B1C1D1 中,AB=2,CC1=2 2,E 为CC1 的中点,则直线AC1与平面BED 的距离为( )A.2二、填空题D.113.设平面α∥平面β,A、C∈α,B、D∈β,直线AB 与CD 交于点S,且点S 位于平面α,β之间,AS=8,BS=6,CS=12,则SD=.14.下列四个命题:①若a∥b,a∥α,则b∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,则B. 3C. 2a 平行于α内所有的直线;④若a∥α,a∥b,b⊄α,则b∥α.其中正确命题的序号是.15.如图所示,在直四棱柱ABCD—A1B1C1D1 中,当底面四边形A1B1C1D1 满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).15 题图16 题图16.如图所示,已知矩形ABCD 中,AB=3,BC=a,若PA⊥平面AC,在BC 边上取点E,使PE⊥DE,则满足条件的E 点有两个时,a 的取值范围是.三、解答题17.如图所示,长方体ABCD-A1B1C1D1 中,M、N 分别为AB、A1D1 的中点,判断MN 与平面A1BC1 的位置关系,为什么?18.ABCD 与ABEF 是两个全等正方形,AM=FN,其中M∈AC,N∈BF.求证:MN∥平面BCE.19.如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD,E 是PC 的中点.已知AB=2,AD=2 2,PA=2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.20.如图所示,ABCD 是正方形,O 是正方形的中心,PO⊥底面ABCD,底面边长为a,E 是PC 的中点.(1)求证:PA∥面BDE;(2)求证:平面PAC⊥平面BDE;(3)若二面角E-BD-C 为30°,求四棱锥P-ABCD 的体积.21.如图,四棱锥P-ABCD 中,底面ABCD 为菱形,PA⊥底面ABCDAC=2 2,PA=2,E 是PC 上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C 为90°,求PD 与平面PBC 所成角的大小.答案1.C 2.D 3.C 4.B 5.D 6.D 7.A 8.B 9.A 10.D 11.D 12.D 13.914.④15.B1D1⊥A1C1(答案不唯一)16.a>617.解直线MN∥平面A1BC1,M 为AB 的中点,证明如下:∵MD/∈平面A1BC1,ND/∈平面A1BC1.∴MN⊄平面A1BC1.如图,取A1C1 的中点O1,连接NO1、BO1.∵NO1 綊1D1C1,MB 綊1D1C1,2 2∴NO1 綊MB.∴四边形NO1BM 为平行四边形.∴MN∥BO1.又∵BO1⊂平面A1BC1,∴MN∥平面A1BC1.18.证明如图所示,连接AN,延长交BE 的延长线于P,连接CP.∵BE∥AF,∴FN=AN,NB NP由AC=BF,AM=FN 得MC=NB.∴FN=AM. NB MC∴AM=AN,MC NP∴MN∥PC,又PC⊂平面BCE.AC ∴MN ∥平面 BCE .19. 解 (1)因为 PA ⊥底面 ABCD ,所以 PA ⊥CD .又 AD ⊥CD ,所以 CD ⊥平面 PAD ,从而 CD ⊥PD . 因 为 PD = 22+(2 2)2=2 3,CD =2,所以三角形 PCD 的面积为1×2×2 3=2 3.2(2)如图,取 PB 中点 F ,连接 EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与 AE 所成的角.在△AEF 中,由 EF = 2,AF = 2,AE =2 知△AEF 是等腰直角三角形, 所以∠AEF =45°.因此,异面直线 BC 与 AE 所成的角的大小是 45°. 20.(1)证明 连接 OE ,如图所示.∵O 、E 分别为 AC 、PC 的中点,∴OE ∥P A. ∵OE ⊂面 BDE ,PA ⊄面 BDE , ∴PA ∥面 BDE .(2) 证明 ∵PO ⊥面 ABCD ,∴PO ⊥BD .在正方形 ABCD 中,BD ⊥AC , 又∵PO ∩AC =O , ∴BD ⊥面 PAC . 又∵BD ⊂面 BDE , ∴面 PAC ⊥面 BDE .(3) 解 取 OC 中点 F ,连接 EF .∵E 为 PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO . 又∵PO ⊥面 ABCD ,∴EF ⊥面 ABCD . ∵OF ⊥BD ,∴OE ⊥BD .∴∠EOF 为二面角 E -BD -C 的平面角,∴∠EOF =30°.在 Rt △OEF 中,OF =1OC =1 = 2a ,∴EF =OF ·tan 30°= 6a ,2 4 4 12 ∴OP =2EF = 6a .62 3 ∴V P1 6 6-ABCD= ×a × = . 361821.(1)证明 因为底面 ABCD 为菱形, 所以 BD ⊥AC .又 PA ⊥底面 ABCD ,所以 PC ⊥BD . 如图,设 AC ∩BD =F ,连接 EF .因为 AC =2 2,PA =2,PE =2EC ,故 PC =2 3,EC =2 3,FC = 2,3从而PC= 6,FC AC= 6. EC因为PC =AC,∠FCE =∠PCA ,FC EC所以△FCE ∽△PCA ,∠FEC =∠PAC =90°.由此知 PC ⊥EF . 因为 PC 与平面 BED 内两条相交直线 BD ,EF 都垂直, 所以 PC ⊥平面 BED .(2)解 在平面 PAB 内过点 A 作 AG ⊥PB ,G 为垂足. 因为二面角 A -PB -C 为 90°, 所以平面 PAB ⊥平面 PBC . 又平面 PAB ∩平面 PBC =PB , 故 AG ⊥平面 PBC ,AG ⊥BC .因为 BC 与平面 PAB 内两条相交直线 PA ,AG 都垂直, 故 BC ⊥平面 PAB ,于是 BC ⊥AB , 所以底面 ABCD 为正方形,AD =2, PD = PA 2+AD 2=2 2. 设 D 到平面 PBC 的距离为 d .因为 AD ∥BC ,且 AD ⊄平面 PBC ,BC ⊂平面 PBC ,故 AD ∥平面 PBC ,A 、D 两点到平面 PBC 的距离相等,即 d =AG = 2. 设 PD 与平面 PBC 所成的角为α,则 sin α= d =1.PD 2 所以 PD 与平面 PBC 所成的角为 30°.章末检测一、选择题1.若直线过点(1,2),(4,2+ 3),则此直线的倾斜角是()A .30°B .45°C .60°D .90°2.如果直线 ax +2y +2=0 与直线 3x -y -2=0 平行,则系数 a 为 ( )A .-3B .-6C .-3 2 3.若经过点(3,a )、(-2,0)的直线与经过点(3,-4) 1D.2 3 a 的值为( )且斜率为 的直线垂直,则 2A.5 2B.2 5 C .10 D .-104.过点(1,0)且与直线 x -2y -2=0 平行的直线方程是 ( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=05.实数 x ,y 满足方程 x +y -4=0,则 x 2+y 2 的最小值为 A .4 B .6 C .8 ()D .126.点 M (1,2)与直线 l :2x -4y +3=0 的位置关系是 () A .M ∈l B .M ∉l C .重合 D .不确定7.直线 mx +ny -1=0 同时过第一、三、四象限的条件是()A .mn >0B .mn <0C .m >0,n <0D .m <0,n <08. 若点 A (-2,-3),B (-3,-2),直线 l 过点 P (1,1)且与线段 AB 相交,则 l 的斜率 k 的取值范围是() A .k ≤3或 k ≥4B .k ≤-4或 k ≥-34 3 C.3≤k ≤4 3 4 D .-4≤k ≤-34 33 49.已知直线 l 1:ax +4y -2=0 与直线 l 2:2x -5y +b =0 互相垂直,垂足为(1,c ),则 a +b +c 的值为 ()A .-4B .20C .0D .2410.过点 P (0,1)且和 A (3,3),B (5,-1)距离相等的直线的方程是() A .y =1B .2x +y -1=0C .y =1 或 2x +y -1=0D .2x +y -1=0 或 2x +y +1=011. 直线 mx +ny +3=0 在 y 轴上的截距为-3,而且它的倾斜角是直线 3x -y =3 3倾斜角的 2 倍,则 ()A .m =- 3,n =1B .m =- 3,n =-3C .m = 3,n =-3D .m = 3,n =10,7 12. 过点A 3 与B (7,0)的直线 l 1 与过点(2,1),(3,k +1)的直线 l 2 和两坐标轴围成的四边 形内接于一个圆,则实数 k 等于 ()A .-3B .3C .-6D .6二、填空题13.若 O (0,0),A (4,-1)两点到直线 ax +a 2y +6=0 的距离相等,则实数 a =.14. 甲船在某港口的东 50 km ,北 30 km 处,乙船在同一港口的东 14 km ,南 18 km 处,那么甲、乙两船的距离是 .15. 已知直线 l 与直线 y =1,x -y -7=0 分别相交于 P 、Q 两点,线段 PQ 的中点坐标为(1, -1),那么直线 l 的斜率为.16. 已知实数 x ,y 满足 y =-2x +8,当 2≤x ≤3 时,则y的最大值为.x三、解答题17. 已知点 M 是直线 l : 3x -y +3=0 与 x 轴的交点,将直线 l 绕点 M 旋转 30°,求所得到的直线 l ′的方程.18. 求直线 l 1:2x +y -4=0 关于直线 l :3x +4y -1=0 对称的直线 l 2 的方程.19. 在△ABC 中,已知 A (5,-2)、B (7,3),且 AC 边的中点 M 在 y 轴上,BC 边的中点 N 在x 轴上,求:(1) 顶点 C 的坐标; (2) 直线 MN 的方程.20. 如图,已知△ABC 中 A (-8,2),AB 边上的中线 CE 所在直线的方程为x +2y -5=0,AC 边上的中线 BD 所在直线的方程为 2x -5y +8=0, 求直线 BC 的方程.21. 光线沿直线 l 1:x -2y +5=0 射入,遇直线 l :3x -2y +7=0 后反射,求反射光线所在的直线方程.22. 某房地产公司要在荒地 ABCDE (如图)上划出一块长方形地面(不改变方位)建一幢公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到 1 m 2).-5=0 答案1.A 2.B 3.D 4.A 5.C 6.B 7.C 8.C 9.A 10.C 11.D 12.B 13.-2 或 4 或 6 14.60 km15.-23 16.217.解 在 3x -y +3=0 中,令 y =0,得 x =- 3,即 M (- 3,0).∵直线 l 的斜率 k = 3,∴其倾斜角θ=60°.若直线 l 绕点 M 逆时针方向旋转 30°,则直线 l ′的倾斜角为 60°+30° =90°,此时斜率不存在,故其方程为 x =- 3.若直线 l 绕点 M 顺时针方向旋转 30°,则直线 l ′的倾斜角为 60°-30°=30°,此时斜率为 tan 30°= 3,故其方程为 y = 3(x + 3),3 3 即 x - 3y + 3=0.综上所述,所求直线方程为 x + 3=0 或 x - 3y + 3=0.18.解 设直线 l 2 上的动点 P (x ,y ),直线 l 1 上的点 Q (x 0,4-2x 0),且 P 、Q 两点关于直线 l :3x +4y -1=0 对称,则有|3x +4y -1| |3x 0+4(4-2x 0)-1|= , 5 5 y -(4-2x 0)=4.x -x 03 消去 x 0,得 2x +11y +16=0 或 2x +y -4=0(舍). ∴直线 l 2 的方程为 2x +11y +16=0.5+x 0,y 0-219.解 (1)设 C (x 0,y 0),则 AC 中点 M 2 2 ,7+x 0 y 0+3,BC 中点 N 2 2 .∵M 在 y 轴上,∴5+x 0=0,x 0=-5.2 ∵N 在 x 轴上,∴y 0+3=0,y 0=-3,即 C (-5,-3).2 (2)∵M 0,-52 ,N (1,0).∴直线 MN x y 的方程为 + 15=1. - 2 即 5x -2y -5=0.x 0-8y 0+2 ,20. 解 设 B (x 0,y 0),则 AB 中点 E 的坐标为 2 2 ,由条件可得:2x 0-5y 0+8=0x 0-8+2·y 0+2 , 2 2205y 0+8=0 得 , x 0+2y 0-14=0x 2 x 0=6 y 0=4,即 B (6,4),同理可求得 C 点的坐标为(5,0).故所求直线 BC 的方程为y -0=x -5,即 4x -y -20=0.4-0 6-521. 解 设直线 x -2y +5=0 上任意一点 P (x ,y )关于直线 l 的对称点为 P ′(x ,y ),则y 0-y=-2,30 0x +x 0,y +y 0x 0-x又 PP ′的中点 Q 2 2 在l 上, ∴3 x +x 0 y +y 0× -2× 2 2 +7=0,y 0-y =-2,x 0-x3 由 3×x +x 0-(y +y )+7=0.2 可得 P 点的坐标为x 0=-5x +12y -42,y 0=12x +5y +28,13 13代入方程 x -2y +5=0 中,化简得 29x -2y +33=0, ∴所求反射光线所在的直线方程为 29x -2y +33=0.22. 解 在线段 AB 上任取一点 P ,分别向 CD 、DE 作垂线划出一块长方形土地,以 BC ,EA的交点为原点,以 BC ,EA 所在的直线为 x 轴,y 轴,建立直角坐标系,则 AB 的方程为 x + y=1,30 20 x ,20-2x设 P 3 ,则长方形的面积20-2xS =(100-x ) 80- 3 (0≤x ≤30).化简得 S =-2x 2+20+6 000(0≤x ≤30).3 3 当 x =5,y 50= 时,S 最大,其最大值为 6 017 m .3章末检测一、选择题1.方程x2+y2+2ax+2by+a2+b2=0 表示的图形是( )A.以(a,b)为圆心的圆B.以(-a,-b)为圆心的圆C.点(a,b)D.点(-a,-b)2.点P(m,3)与圆(x-2)2+(y-1)2=2 的位置关系为( ) A.点在圆外B.点在圆内C.点在圆上D.与m 的值有关3.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为86,则x 的值为( )A.2 B.-8C.2 或-8 D.8 或-24.若直线x-y+1=0 与圆(x-a)2+y2=2 有公共点,则实数a 的取值范围是( )A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)5.设A、B 是直线3x+4y+2=0 与圆x2+y2+4y=0 的两个交点,则线段AB 的垂直平分线的方程是( ) A.4x-3y-2=0 B.4x-3y-6=0C.3x+4y+6=0 D.3x+4y+8=06.圆x2+y2-4x=0 过点P(1,3)的切线方程为( ) A.x+3y-2=0 B.x+3y-4=0C.x-3y+4=0 D.x-3y+2=07.对任意的实数k,直线y=kx+1 与圆x2+y2=2 的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心8.已知圆O:x2+y2=5 和点A(1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A.5 B.10 C.252D.2549.将直线2x-y+λ=0 沿x 轴向左平移1 个单位,所得直线与圆x2+y2+2x-4y=0 相切,则实数λ的值为( )A.-3 或7 B.-2 或8 C.0 或10 D.1 或1110.已知圆C:x2+y2-4x=0,l 是过点P(3,0)的直线,则( ) A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能11.若直线mx+2ny-4=0(m、n∈R,n≠m)始终平分圆x2+y2-4x-2y-4=0 的周长,则mn 的取值范围是( )A.(0,1) B.(0,-1)C.(-∞,1) D.(-∞,-1)12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25 的切线l,直线m:ax-3y=0 与直线l 平行,则直线l 与m 的距离为( )A.4 B.2 C.85D.125二、填空题13.与直线2x+3y-6=0 关于点(1,-1)对称的直线方程为.14.过点P(-2,0)作直线l 交圆x2+y2=1 于A、B 两点,则|PA|·|PB|=.15.若垂直于直线2x+y=0,且与圆x2+y2=5 相切的切线方程为ax+2y+c=0,则ac 的值为.16.在平面直角坐标系xOy 中,圆C 的方程为x2+y2-8x+15=0,若直线y=kx-2 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三、解答题17.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x2+y2-4x-4y+7=0 相切,求光线l 所在直线的方程.18.已知圆x2+y2+x-6y+m=0 与直线x+2y-3=0 相交于P,Q 两点,O 为原点,若OP⊥OQ,求实数m 的值.19.已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).(1)求证:不论m 为何值,圆心在同一直线l 上;(2)与l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.20.如图,已知圆O:x2+y2=1 和定点A(2,1),由圆O 外一点P(a,b向圆O 引切线PQ,切点为Q,且有|PQ|=|PA|.(1)求a、b 间关系;(2)求|PQ|的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程.1+k 2答案章末检测1.D 2.A 3.C 4.C 5.B 6.D 7.C 8.D 9.A 10.A 11.C 12.A 13.2x +3y +8=0 14.3 15.±5 16.4 317. 解 如图所示,已知圆 C :x 2+y 2-4x -4y +7=0 关于 x 轴对称的圆为 C 1:(x -2)2+(y +2)2=1,其圆心 C 1 的坐标为(2,-2),半径为 1,由光的反射定律知,入射光线所在直线方程与圆 C 1 相切.设l 的方程为 y -3=k (x +3),即 kx -y +3+3k =0. 则|5k +5|=1,即 12k 2+25k +12=0.∴k 1=-4,k 2=-3.3 4则 l 的方程为 4x +3y +3=0 或 3x +4y -3=0.18. 解 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由 OP ⊥OQ 可得 x 1x 2+y 1y 2=0, x 2+y 2+x -6y +m =0, 由x +2y -3=0, 可得 5y 2-20y +12+m =0.①所以 y 1y 2=12+m,y 1+y 2=4.5 又 x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2=9-24+4(12+m ),5所以 x 1x 2+y 1y 2=9-24+4(12+m )+12+m =0,5 5 解得 m =3.将 m =3 代入方程①,可得Δ=202-4×5×15=100>0,可知 m =3 满足题意,即 3 为所求 m 的值.19.(1)证明 配方得:(x -3m )2+[y -(m -1)]2=25,设圆心为(x ,y ),x =3m 则 , y =m -1消去 m 得 x -3y -3=0,则圆心恒在直线 l :x -3y -3=0 上.10 22+12( (2) 解 设与 l 平行的直线是 l 1:x -3y +b =0,则圆心到直线 l 1 的距离为 d =|3m -3(m -1)+b | |3+b |∵圆的半径为 r =5,∴当 d <r ,即-5 10-3<b <5 10-3 时,直线与圆相交; 当 d =r ,即 b =±5 10-3 时,直线与圆相切;当 d >r ,即 b <-5 10-3 或 b >5 10-3 时,直线与圆相离.(3) 证明 对于任一条平行于 l 且与圆相交的直线 l 1:x -3y +b =0,由于圆心到直线 l 1 的距离 d |3+b |弦长=2 r 2-d 2且 r 和 d 均为常量.∴任何一条平行于 l 且与圆相交的直线被各圆截得的弦长相等. 20.解 (1)连接 OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2=1+|PA |2,所以 a 2+b 2=1+(a -2)2+(b -1)2,故 2a +b -3=0.(2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2- 12a +8=5(a -1.2)2+0.8,得|PQ |min =2 5.5 (3)以 P 为圆心的圆与圆 O 有公共点,半径最小时为与圆 O 相切的情形,而这些半径的最小值为圆 O 到直线 l 的距离减去圆 O 的半径,圆心 P 为过原点且与 l 垂直的直线 l ′与 l 的交点 P 0,所以 r = 3 -1=3 5-1,5 又 l ′:x -2y =0,联立 l :2x +y -3=0 得 P 0(6,3).5 5 所以所求圆的方程为(x -6)2+(y -3)2= 3 5-1)2.5 5 510 10= .= ,。

2020年新教材高中数学必修第一章《集合与常用逻辑用语》单元检测卷解析版

2020年新教材高中数学必修第一章《集合与常用逻辑用语》单元检测卷解析版

第一章《集合与常用逻辑用语》单元检测卷解析版(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列四个关系式:①7∈R;②Z∈Q;③0∈;④{0},其中正确的个数是()A.1B.2C.3D.4解析①④正确;对于②,Z与Q的关系是集合间的包含关系,不是元素与集合的关系;对于③,是不含任何元素的集合,故0,选B.答案 B2.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N解析由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6}知,M∪N=U,故选B.答案 B3.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个解析易知P=M∩N={1,3},故P的子集共有22=4个.答案 B4.已知集合A={1,a},B={1,2,3},则“a=3”是“A B”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析∵a=3A B,而A B a=3,∴“a=3”是“A B的充分不必要条件”.答案 B5.设全集U=R,集合A={x|x≥2},B={x|0≤x<5},则集合(∁U A)∩B=()A.{x|0<x<2}B.{x|0<x≤2}C.{x|0≤x<2}D.{x|0≤x≤2}解析先求出∁U A={x|x<2},再利用交集的定义求得(∁U A)∩B={x|0≤x<2}.答案 C6.已知M={y∈R|y=|x|},N={x∈R|x=m2},则下列关系中正确的是()A.M NB.M=NC.M≠ND.N M解析∵M={y∈R|y=|x|}={y∈R|y≥0},N={x∈R|x=m2}={x∈R|x≥0},∴M=N.答案 B7.命题p:ax2+2x+1=0有实数根,若綈p是假命题,则实数a的取值范围为()A.{a|a<1}B.{a|a≤1}C.{a|a>1}D.{a|a≥1}解析因为綈p是假命题,所以p为真命题,即方程ax2+2x+1=0有实数根.,满足条件.当a≠0时,若使方程ax2+2x 当a=0时,方程为2x+1=0,x=-12+1=0有实数根,则Δ=4-4a≥0,即a≤1.8.已知命题p :x ∈R ,1-x 2≤1,则( ) A.綈p :x ∈R ,1-x 2≥1 B.綈p :x ∈R ,1-x 2≥1 C.綈p :x ∈R ,1-x 2>1 D.綈p :x ∈R ,1-x 2>1解析 根据全称量词命题的否定方法,当命题p :x ∈R ,1-x 2≤1时,綈p :x ∈R ,1-x 2>1.故选C.答案 C 9.已知p :-4<x -a <4,q :2<x <3,若綈p 是綈q 的充分条件,则实数a 的取值范围是( )A.{a |-1≤a ≤6}B.{a |a ≤-1}C.{a |a ≥6}D.{a |a ≤-1或a ≥6}解析 p :-4<x -a <4,即a -4<x <a +4;q :2<x <3.所以綈p :x ≤a -4或x ≥a +4,綈q :x ≤2或x ≥3;而綈p 是綈q 的充分条件,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案 A10.满足“a ∈A ,且8-a ∈A ,a ∈N ”的有且只有2个元素的集合A 的个数是( )A.1B.2C.3D.4解析 由题意可知,满足题设条件的集合A 有{0,8},{1,7},{2,6},{3,5},共4个.11.已知集合A ={(x ,y )|x ,y 为实数,且y =x 2},B ={(x ,y )|x ,y 为实数,且y =1-x },则A ∩B 的元素个数为( )A.无数个B.3C.2D.1解析 联立⎩⎪⎨⎪⎧y =x 2,x +y =1,消去y 得x 2+x -1=0, ∵Δ=12-4×(-1)×1=5>0,∴方程x 2+x -1=0有2个不同的实数解,∴方程组⎩⎪⎨⎪⎧y =x 2,x +y =1有2组解,∴A ∩B 的元素有2个,故选C. 答案 C12.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A.4B.5C.19D.20解析 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19个,故选C.答案 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.若集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=________.解析 ∵B ={x |x <1},∴∁R B ={x |x ≥1}.∴A ∩(∁R B )={x |1≤x ≤2}.答案 {x |1≤x ≤2}14.命题:存在一个实数对(x ,y ),使2x +3y +3<0成立的否定是_______________. 解析 存在量词命题的否定是全称量词命题.答案 对任意实数对(x ,y ),2x +3y +3≥0恒成立15.当A ,B 是非空集合,定义运算A -B ={x |x ∈A ,且xB },若M ={x |x ≤1},N ={y |0≤y ≤1},则M -N =________.解析 画出数轴如图:∴M -N ={x |x ∈M 且xN }={x |x <0}. 答案 {x |x <0}16.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是________.解析 借助数轴可知⎩⎪⎨⎪⎧a <-1,a +8>5.∴-3<a <-1. 答案 {a |-3<a <-1}三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-4≤x ≤-2},集合B ={x |x +3≥0}. 求:(1)A ∩B ;(2)A ∪B ;(3)∁R (A ∩B ).解 由已知得B ={x |x ≥-3},(1)A ∩B ={x |-3≤x ≤-2}.(2)A ∪B ={x |x ≥-4}.(3)∁R (A ∩B )={x |x <-3或x >-2}.18.(本小题满分12分)写出下列命题的否定,并判断其真假性. (1)x ∈Z ,|x |∈N ; (2)每一个平行四边形都是中心对称图形;。

高中数学人教A版必修2练习第一章 1.2 1.2.1-1.2.2 中心投影与平行投影 空间几何体的三视图 课下检测 Word版

高中数学人教A版必修2练习第一章 1.2 1.2.1-1.2.2 中心投影与平行投影 空间几何体的三视图 课下检测 Word版

一、选择题.若一个几何体的正视图和侧视图都是等腰三角形,俯视图是圆和圆心,则这个几何体可能是( ).圆柱.三棱住.圆锥.球体解析:由三视图概念知,正确.答案:.(·新课标全国高考)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )解析:由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示.由图可知侧视图为等腰三角形,且轮廓线为实线.答案:.(·厦门高一检测)①从投影的角度看,三视图是在平行投影下画出来的空间图形;②平行投影的投影线互相平行,中心投影的投影线相交于一点;③空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;④空间几何体在平行投影与中心投影下有不同的表现形式.其中正确的命题有( ).个.个.个.个解析:根据中心投影和平行投影的定义知.①②④都正确.答案:.(·张家界高一检测)如图,几何体的正视图和侧视图都正确的是( )解析:侧视时,看到一个矩形且不能有实对角线,故、排除,而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应为中所示.答案:二、填空题.下列图形:①线段;②直线;③圆;④梯形;⑤长方体.其中投影不可能是线段的是.解析:根据投影的定义知②⑤不可能.答案:②⑤.(·南京高一检测)如果一个几何体的三视图如下图所示(单位长度:),则此几何体是.解析:由三视图可知,此几何体为一个正方体和正四棱锥的组合体.答案:正方体和正四棱锥的组合体.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的.①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观察者时其正视图是三角形,其余的正视图均不是三角形.答案:①②③⑤.(·青岛高一检测)一个组合体由几个相同的小正方体组合而成,它的正视图、侧视图、俯视图如图所示,。

高中数学必修一和必修二第一二章综合试题(人教A版含答案)

高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( ) A.5 B.10 C.52 D.1025.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是( )A 1B 1C 1D 1O 110.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=25那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log 3(6x-9)=3.19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性.20. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB . (1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.21.(12分)已知正方体1111ABCD A B C D ,O 是底ABCD 对角线的交点.求证:(1)O C 1∥面11AB D ;D 1ODB AC 1B 1A 1C(2)1A C 面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则5PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x -x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =D 1ODBAC 1B 1A 1C11AOC O ∴是平行四边形 111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥又1111A C B D ⊥, 1111B D AC C ∴⊥面111AC B D ⊥即同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2,则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。

高中数学必修2教学同步讲练第一章《圆柱、圆锥、圆台、球、简单组合体的结构特征》练习题(含答案)

第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4;π同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2.所以选C.π答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l -12l =25,所以l =20 cm. 故截得此圆台的圆锥的母线长为20 cm.B 级 能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为__________cm 2.解析:如图所示,过球心O 作轴截面,设截面圆的圆心为O 1,其半径为r .由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.。

2020_2021学年高中数学第1章常用逻辑用语能力检测含解析新人教A版选修2_1202103232

第一章能力检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)1.(2020年某某某某模拟)命题“若x2<1,则-1<x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1【答案】D【解析】命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题是“若,则的形式,所以“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.2.命题p:x=π是y=|sin x|的一条对称轴,q:2π是y=|sin x|的最小正周期,下列复合命题:①p∧q;②p∨q;③¬p;④¬q.其中真命题有( )A.0个B.1个C.2个D.3个【答案】C【解析】由正弦函数的图象和性质,可知命题p为真,q为假,所以②p∨q,④¬q为真.3.已知命题p:实数的平方是非负数,则下列结论正确的是( )A.命题¬p是真命题B.命题p是特称命题C.命题p是全称命题D.命题p既不是全称命题也不是特称命题【答案】C【解析】命题p:实数的平方是非负数,是真命题,故¬p是假命题,命题p是全称命题.故选C .4.已知命题p :∀x ∈R ,cos x ≤1,则¬p 为( ) A .∃x ∈R ,cos x ≥1B .∀x ∈R ,cos x ≥1 C .∃x ∈R ,cos x >1D .∀x ∈R ,cos x >1 【答案】C【解析】命题p :∀x ∈R ,cos x ≤1,则¬p :∃x ∈R ,cos x >1.故选C .5.(2019年某某某某期末)原命题:“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A .1个B .2个C .3个D .4个 【答案】B【解析】原命题:若c =0则不成立.由等价命题同真同假知其逆否命题也为假.由ac 2>bc 2知c 2>0,由不等式的基本性质得a >b ,∴逆命题为真.由等价命题同真同假知否命题也为真.∴有2个真命题.7.(2019年某某某某模拟)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】A【解析】当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q的必要条件.故p 是q 的充要条件.故选A .8.下列四个选项中,p 是q 的必要不充分条件的是( ) A .p :a >b ,q :a 2>b 2 B .p :a >b ,q :2a >2bC .p :0<a <1,q :方程ax 2+2x +1=0有负实根D .p :ax 2+bx +c >0,q :cx 2+bx+a >0【答案】D【解析】a 2>b 2⇔|a |>|b |⇒/ a >b ,所以A 不正确.2a >2b ⇔a >b ,则p 是q 的充要条件,所以B 不正确.当0<a <1时,方程ax 2+2x +1=0必有负实根,即p ⇒q ;但当a =0或a =1时方程ax 2+2x +1=0也有负实根,故q ⇒/p ,即p 是q 的充分不必要条件,所以C 不正确.c x2+b x+a >0⇒ax 2+bx +c >0(x 2显然大于0),故q ⇒p ,但p ⇒/ q ,所以p 是q 的必要不充分条件.故选D .9.(2019年某某某某校级月考)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,3,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值X 围是( )A .a ≤0B .a ≥0C .a ≤1D .a ≥1【答案】A【解析】∵x ∈⎣⎢⎡⎦⎥⎤12,3,∴f (x )≥2x ·4x=4,当且仅当x =2时,f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意得f (x )min ≥g (x )min ,∴a ≤0.故选A .10.(2019年某某某某模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体.p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等.根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】如果A ,B 在等高处的截面积恒相等,则A ,B 的体积相等,因此有p ⇒q ,但q ⇒p 不一定成立.把两个相同的锥体放在一个平面上,再把其中一个锥体翻转底向上,顶点在原底面所在平面,虽然在等高处的截面积不恒相等,但体积相等.故p 是q 的充分不必要条件.故选A .11.(多选题)有以下命题,其中是真命题的是( ) A.“若xy =1,则x ,y 互为倒数”的逆命题 B.“面积相等的两个三角形全等”的否命题C.“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题D.“若A ∩B =B ,则A B ”的逆否命题【答案】ABC【解析】对于A ,原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;对于B ,原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;对于C ,若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;对于D ,由A ∩B =B ,得BA ,所以原命题是假命题,故其逆否命题也是假命题.故选ABC.12.(多选题)给出下列说法,其中正确的是( ) A.“若x +y =π2,则sin x =cos y ”的逆命题是假命题B.“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题C.“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件D.命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0” 【答案】ABD【解析】对于A ,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x+y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,A正确;对于B ,在△ABC 中,由正弦定理得sin B >sin Cb >c B >C ,B 正确;对于C ,“a=±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故C 错误;对于D ,根据否命题的定义知D 正确.二、填空题(本大题共4小题,每小题5分,满分20分)13.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________. 【答案】-1【解析】因为x 2>1⇔x <-1或x >1.所以a ≤-1,即a 的最大值为-1.14.(2019年某某某某期末)若命题“∃x 0∈R ,x 20+mx 0+2m -3<0”为假命题,则实数m 的取值X 围是________.【答案】[2,6]【解析】由题意可知命题“∀x ∈R ,x 2+mx +2m -3≥0”为真命题,故Δ=m 2-4(2m -3)=m 2-8m +12≤0.解得2≤m ≤6.15.下列说法正确的是.(填序号)①若p 是q 的充分不必要条件,则16.已知命题p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0},命题q :函数y =lg(ax 2-x +a )的定义域为R .若p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值X 围为________.【答案】⎝ ⎛⎦⎥⎤0,12∪[1,+∞)【解析】由关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0},知0<a <1;由函数y=lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >0,1-4a 2<0,解得a >12.因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q假”,故⎩⎪⎨⎪⎧a ≤0或a ≥1,a >12或⎩⎪⎨⎪⎧0<a <1,a ≤12,即a ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞).三、解答题(本大题共6小题,满分70分)17.(10分)当c <0时,若ac >bc ,则a <b .请写出该命题的逆命题、否命题、逆否命题,并分别判断真假.解:逆命题:当c <0时,若a <b ,则ac >bc (真命题); 否命题:当c <0时,若ac ≤bc ,则a ≥b (真命题); 逆否命题:当c <0时,若a ≥b ,则ac ≤bc (真命题).18.(12分)已知c >0,c ≠1,设命题p :函数y =c x 在R 上单调递减.命题q :不等式x 2-2x +c >0的解集为R .如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,某某数c 的取值X 围.解:∵y =c x 在R 上单调递减,∴0<c <1. ∴命题p :0<c <1. ∵不等式x 2-2x +c >0的解集为R ,∴Δ=(-2)2-4c <0.解得c >12.∴命题q :c >12.∵“p ∨q ”为真命题,“p ∧q ”为假命题, ∴命题p 与命题q 恰好一真一假.∴⎩⎪⎨⎪⎧ 0<c <1,c ≤12或⎩⎪⎨⎪⎧c >1,c >12.解得0<c ≤12或c >1.综上所述,实数c 的取值X 围是⎝ ⎛⎦⎥⎤0,12∪(1,+∞).19.(12分)写出下列命题的逆命题、否命题与逆否命题,并分别指出四种命题的真假.(1)设a ,b ∈R ,若a +b >0,ab >0,则a >0,b >0;(2)当2m +1>0时,若m +32m -1>0,则m 2-5m +6<0.解:(1)原命题“设a ,b ∈R ,若a +b >0,ab >0,则a >0,b >0”是真命题(因为由ab >0知a ,b 同号,再由a +b >0知a ,b 同正号,即a >0,b >0).逆命题“设a ,b ∈R ,若a >0,b >0,则a +b >0,ab >0”是真命题(因为两正数的和与积为正数).否命题“设a ,b ∈R ,若a +b ≤0或ab ≤0,则a ≤0或b ≤ 0”是真命题(否命题与逆命题同真同假).逆否命题“设a ,b ∈R ,若a ≤0或b ≤0,则a +b ≤0或ab ≤0”是真命题(逆否命题与原命题同真同假).(2)由2m +1>0,得m >-12.由m +32m -1>0,得m <-3或m >12. 又由m >-12,得m >12.由m 2-5m +6<0,得2<m <3.由此可知,原命题可变为“若m >12,则2<m <3”显然是假命题.逆命题:“当2m +1>0时,若m 2-5m +6<0,则m +32m -1>0”即是“若2<m <3,则m >12”,是真命题.否命题:“当2m +1>0时,若m +32m -1≤0,则m 2-5m +6≥0”.∵否命题与逆命题真假性相同, ∴否命题为真命题.逆否命题:“当2m +1>0时,若m 2-5m +6≥0,则m +32m -1≤0”.∵逆否命题与原命题真假性相同, ∴逆否命题为假命题.20.(12分)在数列{a n }中,若a 2n -a 2n -1=k (n ≥2,n ∈N *,k 为常数),则称{a n }为“X 数列”. 求证:一个等比数列为“X 数列”的充要条件是其公比为1或-1. 证明:设数列{a n }是等比数列,且a n =a 1q n -1(q 为公比且q ≠0).①若{a n }为“X 数列”,则有a 2n -a 2n -1=a 21q 2n -2-a 21q 2n -4=a 21q 2n -4(q 2-1)=k (k 为与n 无关的常数),所以q 2=1,即q =1或q =-1.②若一个等比数列{a n }的公比q =1,则a n =a 1,进而a 2n -a 2n -1=0,所以{a n }为“X 数列”; 若一个等比数列{a n }的公比q =-1,则a n =(-1)n -1a 1,进而a 2n -a 2n -1=(-1)2n -2a 21-(-1)2n -4a 21=0,所以{a n }为“X 数列”.综上,一个等比数列为“X 数列”的充要条件是其公比为1或-1.21.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1且p ∧q 为真,某某数x 的取值X 围;(2)若¬p 是¬q 的充分不必要条件,某某数a 的取值X 围.解:由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,∴a <x <3a ,即p 为真时,x 的取值X 围为A ={x |a <x <3a }.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值X 围是B ={x |2<x ≤3}.(1)若a =1,则A ={x |1<x <3}.若p ∧q 为真,则p 真且q 真,∴实数x 的取值X 围是A ∩B ={x |2<x <3}.(2)若¬p 是¬q 的充分不必要条件,则p 是q 的必要不充分条件,即q ⇒p ,p ⇒/ q . ∴BA .∴a ≤2<3<3a .解得1<a ≤2.∴实数a 的取值X 围是(1,2].22.(12分)已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题. (1)某某数m 的取值集合B ;(2)设a ≠1,不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,某某数a 的取值X 围.解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max .得m >2,即B ={m |m >2}. (2)不等式(x -3a )(x -a -2)<0, 由a ≠1得3a ≠a +2.①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a }. 若x ∈A 是x ∈B 的充分不必要条件,则AB ,∴2+a ≥2,此时a ∈(1,+∞).②当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a }. 若x ∈A 是x ∈B 的充分不必要条件,则AB 成立,∴3a ≥2,此时a ∈⎣⎢⎡⎭⎪⎫23,1.综合①②,可得a ∈⎣⎢⎡⎭⎪⎫23,1∪(1,+∞).。

2019-2020学年高中人教A版数学必修二习题:第1章 空间几何体 学业分层测评6 Word版含答案

学业分层测评(六)(建议用时:45分钟)一、选择题1.设正方体的表面积为24,那么其外接球的体积是( )A.43πB.8π3C .43πD .323π【解析】 设正方体边长为a ,由题意可知,6a 2=24,∴a =2.设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π.【答案】 C2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( )A .2∶3B .4∶9 C.2∶ 3 D.8∶27【解析】 ⎝ ⎛⎭⎪⎫43πr3∶⎝ ⎛⎭⎪⎫43πR3=r 3∶R 3=8∶27,∴r ∶R =2∶3,∴S 1∶S 2=r 2∶R 2=4∶9.【答案】 B3.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323πC .8πD .4π【答案】 A4.一平面截一球得到直径是6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是() A.100π3 cm 3 B.208π3 cm 3C.500π3 cm 3D.41613π3 cm 3【解析】 根据球的截面性质,有R =r2+d2=32+42=5,∴V 球=43πR 3=5003π(cm 3).【答案】 C5.等边圆柱(轴截面是正方形)、球、正方体的体积相等,它们的表面积的大小关系是( )A .S 球<S 圆柱<S 正方体B .S 正方体<S 球<S 圆柱C .S 圆柱<S 球<S 正方体D .S 球<S 正方体<S 圆柱【解析】 设等边圆柱底面圆半径为r ,球半径为R ,正方体棱长为a ,则πr 2·2r =43πR 3=a 3,⎝ ⎛⎭⎪⎫R r 3=32,⎝ ⎛⎭⎪⎫a r 3=2π, S 圆柱=6πr 2,S 球=4πR 2,S 正方体=6a 2,S 球S 圆柱=4πR26πr2=23·⎝ ⎛⎭⎪⎫R r 2=323<1, S 正方体S 圆柱=6a26πr2=1π·⎝ ⎛⎭⎪⎫a r 2=34π>1,故选A. 【答案】 A二、填空题6.一个几何体的三视图(单位:m)如图1­3­19所示,则该几何体的体积为________m 3.图1­3­19【解析】 由三视图知,几何体下面是两个球,球半径为32; 上面是长方体,其长、宽、高分别为6、3、1,所以V =43π×⎝ ⎛⎭⎪⎫323×2+1×3×6=9π+18. 【答案】 9π+187.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为6 cm ,深为1 cm 的空穴,则该球半径是________cm ,表面积是________cm 2.【解析】 设球心为O ,OC 是与冰面垂直的一条球半径,冰面截球得到的小圆圆心为D ,AB 为小圆D 的一条直径,设球的半径为R ,则OD =R -1,则(R -1)2+32=R 2,解得R =5 cm ,所以该球表面积为S =4πR 2=4π×52=100π(cm 2).【答案】 5 100π三、解答题8.如图1­3­20,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.图1­3­20【解】 设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得R =1.5(cm),所以所求球的半径为1.5 cm.9.如图1­3­21所示(单位:cm)四边形ABCD 是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的表面积和体积.图1­3­21【解】 12S 球=12×4π×22=8π(cm 2), S 圆台侧=π(2+5)-+42=35π(cm 2), S 圆台下底=π×52=25π(cm 2),即该几何体的表面积为8π+35π+25π=68π(cm 2).又V 圆台=π3×(22+2×5+52)×4=52π(cm 3), V 半球=12×4π3×23=16π3(cm 3). 所以该几何体的体积为V 圆台-V 半球=52π-16π3=140π3(cm 3).10.如图1­3­22,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图1­3­22A .17πB .18πC .20πD .28π 【答案】 A11.轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为2,求球的体积.【解】 如图所示,作出轴截面,因为△ABC 是正三角形,所以CD =12AC =2,所以AC =4,AD =32×4=23,因为Rt △AOE ∽Rt △ACD , 所以OEAO =CDAC .设OE =R ,则AO =23-R , 所以R 23-R =12,所以R =233.所以V 球=43πR 3=43π·⎝ ⎛⎭⎪⎫2333=323π27.所以球的体积等于323π27.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档